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Abstract—A number of engineering and scientific problems
require representing and manipulating probability distributions
over large alphabets, which we may think of as long vectors of
reals summing to 1. In some cases it is required to represent such
a vector with only b bits per entry. A natural choice is to partition
the interval r0, 1s into 2b uniform bins and quantize entries
to each bin independently. We show that a minor modification
of this procedure – applying an entrywise non-linear function
(compander) fpxq prior to quantization – yields an extremely
effective quantization method. For example, for b “ 8p16q and
105-sized alphabets, the quality of representation improves from
a loss (under KL divergence) of 0.5p0.1q bits/entry to 10´4

p10´9
q

bits/entry. Compared to floating point representations, our com-
pander method improves the loss from 10´1

p10´6
q to 10´4

p10´9
q

bits/entry. These numbers hold for both real-world data (word
frequencies in books and DNA k-mer counts) and for synthetic
randomly generated distributions. Theoretically, we set up a
minimax optimality criterion and show that the compander
fpxq 9 ArcSinhp

a

p1{2qpK logKqxq achieves near-optimal per-
formance, attaining a KL-quantization loss of — 2´2b log2 K for
a K-letter alphabet and bÑ8. Interestingly, a similar minimax
criterion for the quadratic loss on the hypercube shows optimality
of the standard uniform quantizer. This suggests that the ArcSinh
quantizer is as fundamental for KL-distortion as the uniform
quantizer for quadratic distortion.

I. COMPANDER BASICS AND DEFINITIONS

Consider the problem of finding a quantization scheme on
4K´1 (probability simplex of alphabet size K) minimizing
the KL (Kullback-Leibler) divergence between probability
vectors and their representations, which corresponds to the
excess code length for lossless compression and is commonly
used as a way to measure the difference between probability
distributions. Specifically, a probability vector x P 4K´1 is
represented by some y “ ypxq from some finite subset of
4K´1 (so of course many x must map to the same y); the
goal is to minimize the KL divergence between the vectors x
and their representations ypxq.

(Full proofs and additional discussion are in [1].)
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In this paper we consider only scalar quantization meth-
ods, which handle each element xi of x separately since
we showed in [2] that for Dirichlet priors on the simplex,
scalar quantization performs nearly as well as optimal vector
quantization; scalar quantization is typically simpler and faster
to use, and can be parallelized easily. Our technique is based
on companders (portmanteau of ‘compressor’ and ‘expander’).

1) Encoding: Companders require two things: a monoton-
ically increasing function f : r0, 1s Ñ r0, 1s (we denote the
set of such functions as F) and an integer N representing the
number of quantization levels, or granularity. To simplify the
problem and algorithm, we use the same f for each element of
the vector x “ px1, . . . , xKq P 4K´1. To quantize x P r0, 1s,
the compander computes fpxq and applies a uniform quantizer
with N levels, i.e. encoding x to n “ nN pxq P rN s if
fpxq P pn´1

N , nN s; this is equivalent to nN pxq “ rfpxqN s.
This encoding system partitions r0, 1s into bins Ipnq:

x P Ipnq “ f´1
´´n´ 1

N
,
n

N

ı¯

ðñ nN pxq “ n

where f´1 denotes the preimage under f .
2) Decoding: To decode n P rN s, we pick some pypnq P Ipnq

to represent all x P Ipnq; for a given x (at granularity N ), its
representation is denoted pypxq “ pypnN pxqq. This is usually the
midpoint of the bin or, if x is drawn randomly from a prior,1

the centroid (the mean within bin Ipnq). The midpoint of Ipnq

can be computed quickly using the inverse of f .
Using scalar quantization means the decoded values may

not sum to 1, so we normalize. Thus, if x is the input, let

yipxq “
pypxiq

řK
j“1 pypxjq

; (1)

then the vector y “ ypxq “ py1pxq, . . . , yKpxqq P 4K´1

is the output of the compander. We refer to py “ pypxq “
ppypx1q, . . . , pypxKqq as the raw reconstruction of x, and y as
the normalized reconstruction. If the raw reconstruction uses
centroid decoding, we likewise denote it using ry “ rypxq “
prypx1q, . . . , rypxKqq; in general, we use r̈ to denote values
dependent on centroid decoding.

Thus, any x P 4K´1 requires Krlog2N s bits to store; to
encode and decode, only f and N need to be stored (as well as

1Priors on 4K´1 induce priors over r0, 1s for each letter.
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the prior if using centroid decoding). Another major advantage
of companders is that a single f can work well over many or
all choices of N , making the design more flexible.

3) KL divergence loss: The loss incurred by representing
x as ypxq is the KL divergence

DKLpx}ypxqq “
K
ÿ

i“1

xi log
xi

yipxq
.

4) Distributions from a prior: Much of our work concerns
the case where x P 4K´1 is drawn from some prior Px (to
be commonly denoted as simply P ). Using a single f for each
entry means we can WLOG assume that P is symmetric over
the alphabet, as permuting the letter indices does not affect
the KL divergence. We denote the set of such priors as P4

K .
We let P denote the class of continuous probability distribu-

tions on r0, 1s; these have a probability density function (PDF)
p and a cumulative distribution function (CDF) Fp satisfying
ppxq “ F 1ppxq and Fppxq “

şx

0
pptq dt (since Fp is monotonic,

its derivative exists almost everywhere). We denote elements of
P by their PDFs, i.e. as p P P (the PDF p does not have to be
continuous, but the CDF Fp has to be absolutely continuous).

Let P1{K Ă P be the set of p where EX„prXs “ 1{K.
Note that P P P4

K implies its marginals are in P1{K .
5) Expected loss and preliminary results: For P P P4

K ,
f P F and granularity N , we define the expected loss:

LKpP, f,Nq “ EX„P rDKLpX}ypXqqs .

This is the value we want to minimize.
Note that LKpP, f,Nq can almost be decomposed into a

sum of K separate expected values (one per entry), except
the normalization step (1) depends on the vector as a whole.
Hence, we define the raw loss (with centroid decoding):

rLKpP, f,Nq “ EX„P

”

K
ÿ

i“1

Xi logpXi{rypXiqq

ı

We also define for p P P , the single-letter loss as

rLpp, f,Nq “ EX„p
“

X logpX{rypXqq
‰

The raw loss is useful because it bounds the (normalized)
expected loss and is decomposable into single-letter losses:

Proposition 1. For P P P4
K with marginals p,

LKpP, f,Nq ď rLKpP, f,Nq “ K rLpp, f,Nq

To derive our results about worst-case priors (for instance,
Theorem 3), we will also be interested in rLpp, f,Nq even
when p is not known to be a marginal of some P P P4

K .

Remark 1. Though one can define raw loss and single-letter
loss without centroid decoding, doing so removes much of their
usefulness. This is because the resulting expected loss can
be dominated by the difference between ErXs and ErpypXqs,
potentially even making it negative; specifically, the Taylor
expansion of X logpX{pypXqq has X ´ pypXq in its first term,
which can have negative expectation. However, this cannot be

exploited to make the (normalized) expected loss negative as
the normalization step removes this term.

As we will show, when N is large these values are roughly
proportional to N´2 (for well-chosen f ) and hence we define
the asymptotic single-letter loss:

rLpp, fq “ lim
NÑ8

N2
rLpp, f,Nq . (2)

We similarly define rLKpP, fq and LKpP, fq. While the limit
in (2) does not exist for every p, f , we will show that one can
ensure it exists by choosing an appropriate f (which works
against any p P P), and cannot gain much by not doing so.

II. MAIN RESULTS

We demonstrate, theoretically and experimentally, the ef-
ficacy of companding for quantizing probability distributions
with KL divergence loss. Though our theoretical results are
asymptotic as N Ñ8 and focus on raw loss, the experimental
(normalized) loss of the various companders closely tracks the
(raw) loss predicted theoretically, even for quantization levels
as low as N “ 256 (8 bits per value).

1) Theory: We define a set of ‘well-behaved’ companders:

Definition 1. Let F: Ď F be the set of f such that there exist
constants c ą 0 and α P p0, 1{2s (allowed to depend on f )
for which fpxq ´ cxα is still monotonically increasing.

This is equivalent to f 1pxq ě c α xα´1 for all x where f 1

is defined (which is almost everywhere since f is monotonic).
We also define the following function on p and f :

Definition 2. For p P P and f P F , let

L:pp, fq “
1

24

ż 1

0

ppxqf 1pxq´2x´1 dx (3)

“

ż

r0,1s

1

24
f 1pxq´2x´1 dp

Then the asymptotic loss of f against p satisfies:

Theorem 1. For any p P P and f P F , the bound holds:

lim inf
NÑ8

N2
rLpp, f,Nq ě L:pp, fq . (4)

Furthermore, if f P F: then an exact result holds:

rLpp, fq “ L:pp, fq ă 8 . (5)

Essentially, as long as you select a compander f from the
‘well-behaved’ set F:, for large granularities N the single-
letter loss will be approximated by

rLpp, f,Nq « N´2L:pp, fq .

The lower bound (4) shows that even for f R F:,

rLpp, f,Nq Á N´2L:pp, fq

i.e. the quantizer cannot do better than N´2L:pp, fq loss (as
N Ñ8) by choosing f R F:.
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Theorem 2. The best loss against source p P P is

inf
fPF

rLpp, fq“min
fPF

L:pp, fq“
1

24

´

ż 1

0

pppxqx´1q1{3dx
¯3

(6)

where the optimal compander against p is

fppxq “ arg minfPFL
:pp, fq “

şx

0
ppptqt´1q1{3 dt

ş1

0
ppptqt´1q1{3 dt

(7)

(satisfying f 1ppxq9 pppxqx
´1q1{3).

If fp P F:, it achieves the value from (6) and (as the
minimizer of L:pp, fq) it has the smallest asymptotic loss
against p. If fp R F:, we use the following:

Proposition 2. For any f P F and δ P p0, 1s, the functions

fp,δpxq “ p1´ δqfppxq ` δx
1{2 (8)

satisfy fp,δ P F: and

lim
δÑ0

rLpp, fp,δq “ lim
δÑ0

L:pp, fp,δq “ L:pp, fpq

Thus, you can imitate fp arbitrarily closely by mixing it
with x1{2 (or any xα for α P p0, 1{2s will also work); the
mixture is by definition in F:. This (with Theorem 1) shows
there is no real advantage to using f R F:, so we restrict our
analysis to f P F:, for which (3) holds.

Since the prior P generating x is usually unknown, we give
a compander which performs well against any prior. This is
closely linked to the following probability density on r0, 1s:

Proposition 3. For alphabet size K ą 4, there is a unique
cK P r14 ,

3
4 s such that if aK “ p4{pcKK logK ` 1qq1{3 and

bK “ 4{a2K ´ aK , then the following density is in P1{K:

p˚Kpxq “ paKx
1{3 ` bKx

4{3q´3{2 (9)

Furthermore, limKÑ8 cK “ 1{2.

We call p˚K the maximin single-letter density.
The optimal compander against p˚K is the minimax compander:

f˚Kpxq “
ArcSinhp

a

cKpK logKqxq

ArcSinhp
?
cKK logKq

(10)

Note that f˚K P F: (see Remark 2). The source p˚K and
compander f˚K then form an ‘equilibrium’:

Theorem 3. The minimax compander f˚K and maximin single-
letter density p˚K satisfy

sup
pPP1{K

rLpp, f˚Kq “ inf
fPF:

sup
pPP1{K

rLpp, fq (11)

“ sup
pPP1{K

inf
fPF:

rLpp, fq “ inf
fPF:

rLpp˚K , fq (12)

which is equal to rLpp˚K , f
˚
Kq and satisfies

rLpp˚K , f
˚
Kq “ ΘpK´1 log2Kq (13)

This theorem importantly implies the following:

Corollary 1. For any prior P P P4
K ,

LKpP, f˚Kq ď rLKpP, f˚Kq “ Θplog2Kq

There also exists P˚ P P4
K such that for any P P P4

K

inf
fPF

rLKpP˚, fq ě
K ´ 1

2K
rLKpP, f˚Kq “ Θplog2Kq (14)

The K´1
2K -factor gap in (14) is because P˚ P P4

K is a
stronger constraint than p˚K P P1{K ; however, whether the
gap can be improved further remains open.

For any K, cK can be approximated numerically. We can
also simplify the quantizer by noting that cK « 1

2 for large K
to get the approximate minimax compander:

f˚˚K pxq “
ArcSinhp

a

p1{2qpK logKqxq

ArcSinhp
a

p1{2qK logKq
(15)

This is close to optimal without needing to compute cK :

Theorem 4. If cK P r 1
2p1`εq ,

1`ε
2 s, then for any p P P ,

rLpp, f˚˚K q ď p1` εqrLpp, f˚Kq

Remark 2. While f˚K and f˚˚K might appear complicated,
ArcSinhp

?
zq “ logp

?
z `

?
z ` 1q is fairly simple. Taking

the Taylor expansion also confirms that they are in F:.
Note that (7) (Theorem 2) suggests that the natural form of

an optimal compander against p is a normalized incomplete
integral, which is hard to use. Thus, the closed-form expres-
sions of f˚K and f˚˚K is a welcome surprise.

Using the minimax compander f˚K or approximate minimax
compander f˚˚K on P P P4

K with granularity N , we have a
bound on the average KL divergence:

EX„P rDKLpX}Y qs “ O
`

N´2 log2K
˘

. (16)

Remark 3. Instead of the KL divergence loss on the simplex,
we can do a similar analysis to find the minimax compander
for mean-square error on the unit hypercube. The solution is
given by the identity function fpxq “ x corresponding to the
standard (non-companded) uniform quantization.

The above are all ‘average case’ results, where X is drawn
from a prior P (which is fixed as N Ñ8). In the worst-case
problem, x is chosen to maximize loss and can depend on N :

Theorem 5. The minimax compander with midpoint decoding
achieves worst-case loss of

max
xP4K´1

DKLpx}yq “ O
`

N´2 log2K
˘

. (17)

Due to space constraints, we omit the proofs of Theorems 4
and 5 (see [1]). We sketch the rest in Sections IV and V.

Remark 4. When b is the number of bits used to quantize each
value in the probability vector, we get a loss on the order of
2´2b log2K. If we use optimal vector quantization (for worst-
case loss instead of average; explored in [3]), the loss is an
order between 2´2b K

K´1 and 2´2b K
K´1 logK. Thus, our result

using companders is within a factor 22b{pK´1q log2K of the
optimal loss. (The bound 2´2b K

K´1 logK is not associated with
an explicit quantization scheme. One is only shown to exist.)
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Compander Power
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iv
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e
KL Divergence of Word Frequencies in Books

austen-emma 7806 words
bible-kjv 13769 words
carroll-alice 3015 words
melville-moby_dick 19311 words
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whitman-leaves 14329 words
austen-emma theor. opt.
bible-kjv theor. opt.
carroll-alice theor. opt.
melville-moby_dick theor. opt.
milton-paradise theor. opt.
whitman-leaves theor. opt.

Fig. 1. Power compander fpxq “ xs performance with different powers s
used to quantize frequency of words in books. Number of distinct words in
each book is shown in the legend. The theoretical optimal power s “ 1

logK
is plotted where K is the number of distinct words.

2) Experiments: We test the performance of the approxi-
mate minimax compander (15) on three types of datasets: (i)
random synthetic distributions drawn from the uniform prior
over the simplex; (ii) frequency of words in books; and (iii)
frequency of k-mers in DNA. We compare it against four
alternatives, for granularities N “ 28 and N “ 216:

‚ Truncation: Values are quantized uniformly (equivalent
to fpxq “ x), which truncates the least significant bits.
This is the natural way of quantizing values in r0, 1s.

‚ Float and bfloat16: For 8-bit encodings (N “ 28), we
use a floating point implementation which allocates 4 bits
to the exponent and 4 bits to the mantissa. For 16-bit
encodings (N “ 216), we use bfloat16, a standard which
is commonly used in machine learning [4].

‚ Exponential Density Interval (EDI): This is the quan-
tization method we used in an achievability proof in [2].
It is designed for the uniform prior over the simplex.

‚ Power Compander: The compander where fpxq “ xs,
a natural class of functions from r0, 1s to r0, 1s. We
optimize s and find that s “ 1

logK minimizes KL
divergence. To see the effects of different powers s on
the performance of the power compander, see Figure 1.

Our main experimental results are given in Figure 2, show-
ing the KL divergence between the original distribution x
and its quantized version y versus alphabet size K. The
approximate minimax compander performs well against all
sources. For truncation, the KL divergence increases with
K and is generally fairly large. The EDI quantizer works
well for the synthetic uniform prior (as it should), but for
real-world datasets like word frequency in books, it performs
badly (sometimes even worse than truncation). The power
compander performs similarly to the minimax compander and
is worse only by a constant.2

The experiments demonstrate that the approximate minimax
compander achieves low loss on the entire ensemble of data
(even for relatively small granularity, such as N “ 256) and

2Theorem 5 also holds for the power compander with different constants.
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DNA EDI
DNA power
DNA minimax
DNA bfloat16

Fig. 2. Plot comparing the performance of the truncation compander, the
EDI compander, floating points, the power compander, and the approximate
minimax compander (15) on probability distributions of various sizes.

outperforms both truncation and floating-point implementa-
tions on the same number of bits. Additionally, its closed-
form expression (and entrywise application) makes it simple
to implement and computationally inexpensive. Thus it can be
easily added to existing systems to lower storage requirements
at little or no cost to fidelity.

III. BACKGROUND

Companders (also spelled “compandors”) were introduced
by Bennett in 1948 [5] as a way to quantize speech signals.
Bennett gives a first order approximation of the mean-square
error given by companders, which is similar to our (3) (though
we measure expected KL divergence loss instead). Others have
expanded on this line of work. In [6], the authors studied
the same problem and determined the optimal compressor
under mean-square error, a result which parallels our result
(6). However, the results from [5], [6] are stated either as
first order approximations or make simplfying assumptions.
Generalizations of Bennett’s formula are also studied for the
case of expected rth moment loss E} ¨ }r. This is computed
for length-K vectors in [7] and [8]. The typical examples
of companders used in engineering are µ-law and A-law
companders [9]. For the µ-law, [6] and [10] argue that for
sufficiently large µ and mean-squared error, the distortion
becomes independent of the signal.

Quantizing probability distributions is a common topic,
though typically the loss function is a norm and not KL
divergence [11]. We studied average KL divergence loss in
our earlier work [2], where we focus on Dirichlet priors.
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A similar problem to quantizing under KL divergence is in-
formation k-means. This is the problem of clustering n points
ai to k centers âj to minimize the KL divergences between
the points and their associated centers. Theoretical aspects of
this are explored in [12] and [13]. Information k-means has
been implemented for several different applications [14], [15],
[16]. There are also other works that study clustering with a
slightly different but related metric [17], [18], [19]; the focus
of these works is to analyze data rather than reduce storage.

IV. ASYMPTOTIC SINGLE-LETTER LOSS

In this section we give the outline of the proof of Theorem 1.
Given density p and compander f , we construct the following:
the local loss function at granularity N , defined as

gN pxq “ N2 EX„prX logpX{rypXqq |X P IpnN pxqqs

and the asymptotic local loss function, defined as

gpxq “
1

24
f 1pxq´2x´1 .

The function gN basically takes each x and returns the
expected loss for X „ p which fall in the same bin as x,
thus averaging the losses in each bin. The expressions (4) and
(5) we need to show in Theorem 1 are thus equivalent to:

lim inf
NÑ8

ż

gN dp ě

ż

g dp for all f P F , p P P (18)

lim
NÑ8

ż

gN dp “

ż

g dp ă 8 for all f P F:, p P P (19)

To do this, we show the following:

Proposition 4. For all p P P , f P F , if X „ p then

lim
NÑ8

gN pXq “ gpXq almost surely.

The basic intuition for Proposition 4 follows from three
facts: (i) as N Ñ 8, the width of the bin containing x
becomes « N´1f 1pxq´1; (ii) as the width of an interval
approaches 0, p P P becomes approximately uniform; (iii) the
divergence produced by the uniform distribution on an interval
I of width r containing x (where all values in I are represented
by the same value y) is « 1

24r
´2x´1 when r is very small.

Combining these yields the result (see [1] for details).

Proposition 5. For all p P P , f P F:, we have
ş

g dp ă 8
and there exists h s.t. h ě gN for all N and

ş

h dp ă 8.

Proposition 4 then implies (18) by Fatou’s Lemma. If f P
F: then Proposition 5 (with Proposition 4) gives (19) via the
Dominated Convergence Theorem, thus showing Theorem 1.

V. MINIMAX COMPANDER

We show Theorem 2 and Proposition 2 together. They
follow from Theorem 1 by finding f P F which minimizes
L:pp, fq, by optimizing over f 1. Since f : r0, 1s Ñ r0, 1s is
monotonic, we use constraints f 1pxq ě 0 and

ş1

0
f 1pxq dx “ 1.

Using calculus of variations, we get f 1ppxq9 pppxqx
´1q1{3 and

fp0q “ 0 and fp1q “ 1, from which (6) and (7) follow. If
fp P F:, then fp “ arg minf rLpp, fq, as for any other f P F ,

rLpp, fpq “ L:pp, fpq ď L:pp, fq ď lim inf
NÑ8

N2
rLpp, f,Nq

If fp R F:, for any δ ą 0 define fp,δ P F: as in (8). Then

rLpp, fp,δq “ L:pp, fp,δq ď L:pp, fpqp1´ δq
´2 .

Taking δ Ñ 0 thus shows that L:pp, fpq “ inffPF: rLpp, fq.
This finishes the proofs of Theorem 2 and Proposition 2.

To prove Theorem 3 and Corollary 1, we ask: what density
p maximizes (6)? To do this, we instead maximize

ż 1

0

pppxqx´1q1{3 dx (20)

(which of course maximizes (6)) subject to ppxq ě 0 and
ş1

0
ppxq dx “ 1. Furthermore, since p must be the marginal of

some symmetric prior over 4K´1, we know p P P1{K , which
adds an additional constraint

ş1

0
ppxqx dx “ 1{K. Solving this

problem with calculus of variations yields the maximin density
p˚K (9) from Theorem 3. We then know from (7) that the best
compander for (9) is proportional to

ż x

0

z´
1
3

`

aKz
1
3 ` bKz

4
3

˘´ 1
2 dz “

2ArcSinh
´b

bKx
aK

¯

?
bK

Using the constants aK and bK which meet the constraints,
and normalizing so fp1q “ 1, gives f˚K (10). The function
L:pp, fq is linear in p and convex in f 1, and we can show
that the pair pf˚K , p

˚
Kq form a saddle point, thus proving (11)-

(12) from Theorem 3. Furthermore, f˚K P F: (it behaves as
a multiple of x1{2 near 0), so rLpp, f˚Kq “ L:pp, f˚Kq for all
p, thus showing that f˚K performs well against any p P P1{K .
Using (3) with the expressions for p˚K and f˚K gives (13).

While p˚K is the hardest density in P1{K to quantize, it is
unclear whether a prior P˚ on 4K´1 exists with marginals
p˚K . However, it is possible to construct a prior P˚ whose
marginals are as hard to quantize, up to a constant, as p˚K .

Lemma 1. For p P P1{K , there is a joint distribution of
pX1, . . . , XKq such that Xi „ p for all i, and

ř

iPrKsXi ď 2.

Lemma 1 yields a joint distribution of K ´ 1 values, with
marginals p˚K , that sums to at most 2; scaling by 1{2 and
adding a (nonnegative) residual random variable gives a prior
P˚ on 4K´1, as needed. Then:

inf
fPF

rLKpP˚, fq ě pK ´ 1q inf
fPF

rLp2p˚Kp2xq, fq

“ pK ´ 1q
1

2
L:pp˚K , f

˚
Kq ě

1

2

K ´ 1

K
sup
PPP4

K

rLKpP, f˚Kq

where the last inequality holds because p˚K is the worst-case
density (under expectation constraints). To make it symmetric,
we permute the letter indices randomly without affecting the
raw loss, thus getting the prior P˚ which shows Corollary 1.
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