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Abstract—We study a problem of constructing codes that
transform a channel with high bit error rate (BER) into one with
low BER (at the expense of rate). Our focus is on obtaining codes
with smooth (“graceful”) input-output BER curves (as opposed
to threshold-like curves typical for long error-correcting codes).

This paper restricts attention to binary erasure channels (BEC)
and contains two contributions. First, we introduce the notion
of Low Density Majority Codes (LDMCs). These codes are
non-linear sparse-graph codes, which output majority function
evaluated on randomly chosen small subsets of the data bits. This
is similar to Low Density Generator Matrix codes (LDGMs),
except that the XOR function is replaced with the majority.
We show that even with a few iterations of belief propagation
(BP) the attained input-output curves provably improve upon
performance of any linear systematic code. The effect of non-
linearity bootstraping the initial iterations of BP, suggests that
LDMCs should improve performance in various applications
where LDGMs have been used traditionally.

Second, we establish several two-point converse bounds that
lower bound the BER achievable at one erasure probability as
a function of BER achieved at another one. The novel nature of
our bounds is that they are specific to subclasses of codes (linear
systematic and non-linear systematic) and outperform similar
bounds implied by the area theorem for the EXIT function.

I. INTRODUCTION

In this paper we study a case of joint-source channel coding

(JSCC) for a binary source and binary erasure channel (BEC).

Let Sk = (S1, S2, · · · , Sk) ∼ Ber(1/2)⊗k be information

bits. An encoder f : {0, 1}k → {0, 1}n maps Sk to a

(possibly longer) sequence Xn = (X1, · · · , Xn) where each

Xi is called a coded bit and Xn a codeword. The rate of the

code f is denoted by R = k/n and its bandwidth expansion

by ρ = n/k. The channel BECǫ takes Xn and produces

Y n = (Y1, . . . , Yn) where each Yj = Xj with probability

(1 − ǫ) and Yj =? otherwise. Here we will be interested in

performance of the code simultaneously for multiple values of

ǫ, and for this reason we denote Y n by Y n(ǫ) to emphasize the

value of the erasure probability. Upon observing the distorted

information Y n(ǫ), decoder1 g produces Ŝk(ǫ) = g(Y n(ǫ)).
We measure quality of the decoder by the data bit error rate

(BER):

BERf,g(ǫ) ,
1

k

k
∑

i=1

P[Si 6= Ŝi(ǫ)] =
1

k
E[dH(Sk, Ŝk(ǫ))] ,
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1The decoder may or may not use the knowledge of ǫ, but for the BEC
this is irrelevant.

where dH stands for the Hamming distance.

The motivation behind this work is thoroughly discussed in

[1]. In short, many modern coding systems, such as the one

for example being applied in optical communication [2], [3],

consist of a layered design: an inner code, which is used to

reduce the overall noise; and an outer code, which is used

to correct the residual error left from the inner code. Thus,

the goal of the inner code is to match the variable real-world

channel conditions to a prescribed lower level noise that falls

within the error correcting capability of a pre-selected (and

highly optimized) outer code.

In other words, the source bits S1, . . . , Sk ∈ {0, 1} that

appear at the input of the inner code need not be reconstructed

perfectly, but only approximately. Here we assume that the

inner code passes upstream a hard-decision about each bit

(that is, an estimate Ŝi ∈ {0, 1} of the true value of Si).

Thus, the figure of merit is a curve relating the channel’s

noise to the probability of bit-flip error of the induced channel

Si 7→ Ŝi that the outer code is facing.2 What types of curves

are desirable? First of all, we do not want the loss to drop

to zero at some finite noise level (since this will then be

an overkill: the outer code has nothing to do). Second, it is

desirable that the loss decrease with channel improvement,

rather than staying flat in a range of parameters (which would

be achievable by a separated compress-then-code scheme).

These two suggest that the resulting curve should be a smooth

and monotone one. With such a requirement the problem

is known as graceful degradation and has been attracting

attention since the early days of channel coding [4], [5].

Despite this, no widely accepted solution is available. This

paper’s main purpose is to advocate the usage of sparse-graph

non-linear codes for the problems of graceful degradation and

channel matching.

Consider now Fig. 1 which plots the BER functions for

some codes. We can see that using LDPC code as an inner

code is rather undesirable: if the channel noise is below the

BP threshold, then the BER is almost zero and hence the

outer code has nothing to do (i.e., its redundancy is being

wasted). While if the channel noise is only slightly above the

BP threshold the BER sharply rises, this time making outer

2Note that a more complete description would be that of the “multi-letter”

induced channel Sk 7→ Ŝk . However, in this paper we tacitly assume that
performance of the outer code is unchanged if we replace the multi-letter

channel with the parallel independent channels {Si 7→ Ŝi}i∈[k]. This is
justified, for example, if the outer code uses a large interleaver (with length
much larger than k), or employs an iterative (sparse-graph) decoder.
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Fig. 1: BER performance vs. capacity-to-rate-ratio of the era-

sure channel for four codes with rate R = 1
5 and k = 3× 105

data bits: an LDPC code using 50 iterations of peeling decoder,

the repetition code, a regular (non-systematic) LDMC(5) using

5 iterations of BP, and a regular systematic LDMC(5) using 5

iterations of BP. The LDPC code is the dual of a systematic

LDGM(16) code, i.e., the variable nodes have degree 17 (and

check nodes have approximately Poisson distributed degrees).

The LDPC code suffers from the cliff effect, while the LDMCs

and the repetition codes degrade gracefully. The LDMC codes

uniformly dominates the repetition code for all levels of the

channel noise.

code’s job impossible. In this sense, a simple (blocklength

5) repetition code might be preferable. However, the low-

density majority codes (LDMCs) introduced in this paper

universally improve upon the repetition. This fact (universal

domination) should be surprising for several reasons. First,

there is a famous area theorem in coding theory [6], which

seems to suggest that BER curves for any two codes of the

same rate should crossover3. Second, a line of research in

combinatorial JSCC [7] has demonstrated that the repetition

code is optimal [8], [9] in a certain sense, that loosely speaking

translates into a high-noise regime here. Third, Prop. 6 below

shows that no linear code of rate 1/2 can uniformly dominate

the repetition code. Thus, the universal domination of the

repetition code by the LDMC observed in Fig. 1 came as a

surprise to us. An experienced coding theorist, however, will

object to Fig. 1 on the grounds that LDGMs, not LDPCs,

should be used for the problem of error-reduction – this was

in fact the approach in [2], [3]. So can LDMCs claim superior

performance to LDGMs too? Yes, and in fact in a certain sense

we claim that LDMCs are superior to all linear systematic

codes. This is the message of Fig. 2 and we explain the details

next.

What kind of (asymptotic) fundamental limits can we define

for this problem? Let us fix the rate R = k
n of a code. The low-

est possible BER δ∗(R,W ) achievable over a (memoryless)

3The caveat here is that the theorem talks about BER evaluated for coded
bits, while here we are only interested in the data (or systematic) bits.

channel W is found from comparing the source rate-distortion

function with the capacity C(W ) of the channel:

R(1− hb(δ
∗(R,W ))) = C(W ), (1)

where hb(x) = −x log x− (1− x) log(1− x). Below we call

δ∗(R,W ) a Shannon single-point bound. Single-point here

means that this is a fundamental limit for communicating over

a single fixed channel noise level. As we emphasized, graceful

degradation is all about looking at a multitude of noise levels.

A curious lesson from multi-user information theory shows

that it is not possible for a single code to be simultaneously

optimal for two channels (for the BSC this was shown in [10]

and Prop. 1 shows it for the BEC).

Correspondingly, we introduce a two-point fundamental

limit:

δ∗2(R, δa,Wa,W ) = lim sup
k→∞

inf
1

k
EY n∼W (·|Xn)[dH(Sk, Ŝk)] ,

(2)

where the infimum is over all encoders f : Sk → Xn and

decoders g : Y n → Ŝk satisfying
1

k
EY n∼Wa(·|Xn)[dH(Sk, Ŝk)] ≤ δa ,

where δa,Wa are called, respectively, the anchor distortion

and anchor channel. In other words, the value of δ∗2 shows the

lowest distortion achievable over the channel W among codes

that are already sufficiently good for a channel Wa. Clearly,

the two-point performance is related to a two-user broadcast

channel [11, Chapter 5].

Similarly, we can make definitions of δ∗ and δ∗2 but for a

restricted class of encoders, namely linear systematic ones. We

bound δ∗2 in Prop. 1 for general codes, in Prop. 7 for general

systematic codes, and in Theorem 1 for the subclass of linear

systematic codes.

Armed with these definitions, we can return to Fig. 2.

What it clearly demonstrates is two things. On one hand, the

single-point (top subplot) comparison shows that this specific

LDMC is far from Shannon optimality at any value of the

channel noise. On the other hand, the two-point (bottom

subplot) comparison shows LDMC outperforming any rate-
1
2 linear systematic code among the class of those which have

comparable performance at the anchor point C(Wa) = 1/4.

We hope that this short discussion, along with Fig. 1-2,

convinces the reader that indeed the LDMCs (and in general

adding non-linearity to the encoding process) appear to be the

step in the right direction for the problem of graceful degrada-

tion. However, perhaps even more excitingly, the performance

of available LDPC/LDGM codes can be improved by adding

some fraction of the LDMC nodes as shown in [1, Section

V].

II. MAIN RESULTS

A. The LDMC ensemble

We first define the notion of a check regular code ensemble

generated by a Boolean function.

Definition 1. Let P∆ be a joint distribution on d-

subsets of [k] = {1, · · · , k}. Given a Boolean function

f : {0, 1}d → {0, 1}, the (check regular) ensemble of codes on
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Fig. 2: BER performance vs. capacity-to-noise ratio of the

binary erasure channel for rate R = 1/2 codes. The starred

magenta curve corresponds to simulation results of the sys-

tematic regular LDMC(9) with k = 105 data bits using

3 iterations of BP. Top figure (a) compares LDMC against

lower bounds for general codes: Shannon’s single-point bound

from (1) and a two-point from Prop. 1. While every point A

on the Shannon converse curve is achievable by a separation

compress-then-code architecture, the latter suffers from non-

gracefulness (dashed blue curve). Bottom figure (b) compares

LDMC against lower bounds for linear codes. The single-

point line is from [1, Proposition 3]. While any point B

arbitrarily close to the single-point line is achievable by a

linear systematic code, any such code will suffer from non-

gracefulness. This is shown by the two-point converse curve on

the right. It plots evaluation of Theorem 1, which lower bounds

BER of any linear systematic code achieving BER ≤ 0.2501
over BEC(0.75). In all, LDMCs are superior to any other

linear systematic code whose curve passes through point B.

{0, 1}k generated by (f,P∆) is the family of random codes

f∆ : s 7→ (f(sT ))T∈∆ obtained by sampling ∆ ∼ P∆. Here

sT is the restriction of s to the coordinates indexed by T .

Given x ∈ {0, 1}d, we consider the d-majority function

d-maj(x) = 1{
∑

i
xi>

d

2
}.

We have the following definition:

Definition 2. Let U∆ = Unif⊗n({d-subsets of [k]}) be the

uniform product distribution on the d-subsets of [k]. The

ensemble of codes generated by (d-maj,U∆) is called the

Low Density Majority Code (LDMC) ensemble of degree

d and denoted by LDMC(d). Furthermore, define the event

A := ∪ij{
∑

T∈∆ 1{i∈T} =
∑

T∈∆ 1{j∈T}}, i.e., the event

that each i appears in the same number of d-subsets T . Then

the ensemble generated by (d-maj,U∆|A) is called a regular

LDMC(d) ensemble.

B. Two point converses for graceful degradation

1) General codes: The results on broadcast channels [12,

Theorem 1], [13, Section V.B] give the following bound shown

in [14, Section II.C2]:

Proposition 1 ( [12]–[14]). Consider a sequence of codes of

rate R encoding iid Ber(1/2) bits and achieving the per-letter

Hamming distortion δ∗(R,W ), cf. (1), when W = BECǫ.

Then over W = BECτ their distortion is lower bounded by
δ ≥ 1{τ≥ǫ}η(δ

∗, ǫ, τ) + 1{τ<ǫ} inf
y
{y : η(y, τ, ǫ) ≤ δ∗},

where

η(δ∗, ǫ, τ) , supq∈[0,1/2]

h−1

b ((1−(1−τ)/R)+ 1−τ

1−ǫ
(hb(q∗δ

∗)−hb(δ
∗)))−q

1−2q .

Remark 1. We note that the above result is rate independent

in the sense that it can be re-parametrized in terms of the

capacity-to-rate ratios only. Proposition 7 below gives a new

(rate dependent) bound for general systematic codes that in

some regimes improves the above.

Systematic linear codes form the vast majority of the codes

that are used in practice. In this section, we work towards

proving a two-point converse bound for this class of codes.

In the following, by ker(A) we refer to the left kernel of

A, that is the subspace of vectors x satisfying xA = 0.

Definition 3. Given a matrix A define 4

hrank(A) , |{j : ker(A) ⊂ {x : xj = 0}}| .

Definition 4. Given a matrix A, define Ã(p, q) to be a random

sub-matrix of A that is obtained by sampling each row of A
with probability p and each column of A with probability q
independently of other rows/columns.

The following proposition is well known (cf. [15]).

Proposition 2. Consider a system of equations xG = y
over F2. If ker(G) ⊂ {x : xi = 0}, then xi is uniquely

determined from solving xG = y. Otherwise, there is a

bijection between the set of solutions {x : xG = y, xi = 0}
and {x : xG = y, xi = 1}. In particular, if exactly t
coordinates are uniquely determined by the above equations,

then hrank(G) = t.

Our next proposition relates BER and hrank.

Proposition 3. Let G = [I A] be the generator matrix of a

systematic linear code f . Then BERf (ǫ) ≤ δ if and only if

E[hrank
(

Ã(ǫ, 1− ǫ)
)

] ≥ (ǫ− 2δ)k.

4Equivalently, hrank(A) , k − |{j : ∃x ∈ ker(A) s.txj 6= 0}| .



Proof. If BER is bounded by δ, there are, on average, at most

2δk bits that are not uniquely determined by solving xG̃(1, 1−
ǫ) = y. For a systematic code, the channel returns Bin(k, 1−ǫ)
systematic bits. The remaining systematic bits sr are to be

determined from solving srÃ(ǫ, 1 − ǫ) = ỹ where ỹ is some

vector that depends on the channel output y and the returned

systematic bits. If t additional systematic bits are recovered,

then hrank(Ã(ǫ, 1−ǫ)) = t by Proposition 2. Since on average

at least (ǫ− 2δ)k additional systematic bits are recovered, the

claim on the average hrank follows.

The next proposition shows how matrices with positive

hrank behave under row sub-sampling. Our main observation

is that row sub-sampled matrices of a (thin) matrix with large

hrank have bounded rank. In particular, if a (thin) matrix has

full hrank, its sub-sampled matrices cannot have full rank.

Proposition 4. Consider an arbitrary field F and let ǫ1 > ǫ2.

Given a k ×m matrix A,

E[rank
(

Ã(ǫ2, 1)
)

] ≤ rank(A)−(1−
ǫ2
ǫ1
)E[hrank

(

Ã(ǫ1, 1)
)

],

and

E[hrank
(

Ã(ǫ2, 1)
)

] ≥
ǫ2
ǫ1
E[hrank

(

Ã(ǫ1, 1)
)

].

Therefore, if E[rank
(

Ã(ǫ2, 1)
)

] = rank(A) − o(k), then

E[rank
(

Ã(ǫ1, 1)
)

] = o(k).

Proof. Suppose that hrank
(

Ã(ǫ1, q)
)

= t. This means that

there are at least t rows aj in Ã(ǫ1, q) such that aj is not in the

span of {ai : i 6= j}. Let B be the row-submatrix of Ã(ǫ1, q)
associated to these t rows, and Bc be its complement, i.e.,

the matrix with rows {aj : aj ∈ Ã(ǫ1, q), aj 6∈ B}. We claim

that the complement of B is a matrix of rank rank(A)− t. To

see this, note that Im(B) ∩ Im(Bc) = {0}, for otherwise we

get linear dependencies of the form h =
∑

i αibi 6= 0 where

bi ∈ B and h ∈ Im(Bc), which contradicts the construction

of B. This means that rank(Bc) + rank(B) = rank(A).
The claim now follows since rank(B) = t. Under row sub-

sampling, each row of B is selected with probability ǫ2/ǫ1
independently of other rows. Thus,

E[hrank
(

Ã(ǫ2, q)
)

|hrank
(

Ã(ǫ1, q)
)

= t] ≥
ǫ2
ǫ1
t

The rows selected from Bc can contribute at most rank(A)−t
to the rank of Ã(ǫ2, q). Hence

E[rank
(

Ã(ǫ2, q)
)

|hrank(Ã(ǫ1, q)) = t] ≤
ǫ2
ǫ1
t+rank(A)−t

Taking the average over the hrank of Ã(ǫ1, q) proves the first

two results. The last inequality follows by re-arranging the

terms.

The next Proposition shows that rank is well behaved under

column sub-sampling.

Proposition 5. Consider an arbitrary field F and let p > q.

Given a k ×m matrix A over F,

E[rank
(

Ã(1, p)
)

] ≤ min{pm,
p

q
E[rank

(

Ã(1, q)
)

]}.

Proof. Pick a column basis for Ã(1, p). We can realize Ã(1, q)
by sub-sampling columns of Ã(1, p). In this way, each column

in the basis of Ã(1, p) is selected with probability q/p inde-

pendently of other columns. In other words,

E[rank
(

Ã(1, q)
)

] ≥
q

p
E[rank

(

Ã(1, p)
)

].

The desired result follows.

We are now ready to prove our main result.

Theorem 1 ( [1, Theorem 1]). Let f : s 7→ sG be a systematic

linear code of rate 1/ρ with generator matrix G = [I A] over

F2. Fix ǫ1 > ǫ2 and δ1 ≤ ǫ1
2 . If BERf (ǫ1) ≤ δ1, then

BERf (ǫ2) ≥ κ(ρ, δ1, ǫ2, ǫ1)

,
ǫ2 −

1−ǫ2
1−ǫ1

[

ǫ2
ǫ1
γ + (ρ− 1)(1− ǫ1)− γ

]

2

(3)

with γ = ǫ1 − 2δ1. If ǫ2 > ǫ1 then

BERf (ǫ2) ≥
ǫ2
2
−

ǫ2
ǫ2 − ǫ1

1

1− ǫ1

(

δ1 −
1

2
(1− ρ(1− ǫ1))

)

.

(4)

In particular, if BER(ǫ1) = 1
2 (1 − ρ(1 − ǫ1)) + o(1), then

BER(ǫ2) =
ǫ2
2 − o(1) for all ǫ2 > ǫ1.

Proof. By Proposition 3, we have

E[hrank
(

Ã(ǫ1, 1− ǫ1)
)

] ≥ γk. By Proposition 4, we

have

E[rank
(

Ã(ǫ2, 1− ǫ1)
)

] ≤ (
ǫ2
ǫ1
γ + (ρ− 1)(1− ǫ1)− γ)k.

By Proposition 5, we have

E[rank
(

Ã(ǫ2, 1− ǫ2)
)

] ≤
1− ǫ2
1− ǫ1

(
ǫ2
ǫ1
γ+(ρ−1)(1−ǫ1)−γ)k.

The first result now follows from Proposition 3 upon observing

that hrank(Ã) ≤ rank(Ã).
For the second case, we trivially have the following estimate

(by interchanging the roles of ǫ1 and ǫ2 and applying the first

part):

BERf (ǫ2) ≥ inf
δ2
{δ2 : κ(ρ, δ2, ǫ1, ǫ2) ≤ δ1}.

The estimate (4) then follows by evaluating this infimum

(which is a minimization of a linear function).

One simple application of Theorem 1 demonstrates that

no linear systematic code can uniformly dominate 2-fold

repetition.

Proposition 6 ( [1, Proposition 7]). Let g be the 2-fold

repetition code with bit-MAP decoder and f be a linear

systematic code of rate 1/2. If there exists ǫ2 such that

BERf (ǫ2) < BERg(ǫ2), then there exists some ǫ∗ > ǫ2 such

that for all ǫ1 ∈ (ǫ∗, 1) we have BERf (ǫ1) > BERg(ǫ1).
Moreover, if BERf (ǫ2) = tBERg(ǫ2) for some t < 1, then

we can pick ǫ∗ = max(ǫ2, 1−
(1−t)ǫ2

2

1−ǫ2
).

C. Bounds via area theorem

The lower bound of Theorem 1 states that a linear system-

atic code cannot have small BER for all erasure probabilities.

In this sense, it has the flavor of a “conservation law”. In



coding theory, it is often important to understand how a code

behaves over a family of parametrized channels. The main

existing tool in the literature to study such questions is the so

called area theorem. Here we introduce the theorem and study

its consequences for two point bounds on BER. It is shown

in [1, Section III] that the bound in Theorem 1 is tighter

than what can be inferred from the area theorem for linear

codes. However, the area theorem gives rise to new bounds

for general systematic codes that are in some regimes tighter

than the best previously known bounds (see [1, Section III]).

Following [15], we define the notion of an extrinsic infor-

mation transfer (EXIT) function.

Definition 5. Let X be a codeword chosen from an (n, k)
code C according to the uniform distribution. Let Y (ǫ) be

obtained by transmitting X through a BEC(ǫ). Let

Y∼i(ǫ) = (Y1(ǫ), · · · , Yi−1(ǫ), ?, Yi+1(ǫ), · · · , Yn(ǫ))

be obtained by erasing the i-th bit from Y (ǫ). The i-th EXIT

function of C is defined as

hi(ǫ) = H(Xi|Y∼i(ǫ))

The average EXIT function is

h(ǫ) =
1

n

n
∑

i=1

hi(ǫ)

The area theorem states that for a binary code of rate R we

have R =
∫ 1

0
h(ǫ)dǫ. Let us now find the implications of the

area theorem for the input BER of linear systematic codes. To

this end we define the average systematic EXIT function

hsys(ǫ) =
1

k

k
∑

i=1

hi(ǫ).

Likewise we can define the non-systematic EXIT function as

follows:

hnon−sys(ǫ) =
1

n− k

n
∑

i=k+1

hi(ǫ).

We first give a lemma to show that the coded bit error rate

converges to 0 continuously as the input bit error rate vanishes.

Lemma 1 (Data BER vs EXIT function [1, Lemma1]). Fix

ǫ < ǫ0. Let f be a binary code of rate R.

(a) If f is linear, then

h(ǫ) ≤
2R

ǫ0 − ǫ
BERf (ǫ0). (5)

(b) If f is general we have

h(ǫ) ≤
R

ǫ0 − ǫ
hb(BERf (ǫ0)),

where hb is the binary entropy function.

Proposition 7 ( [1, Proposition 8]). Let ǫ2 < ǫ1. Let f be a

binary code of rate R with BER(ǫ2) ≤ δ2. Define

ζ(x, ǫ2, ǫ1) , sup
{ǫ0:ǫ0<ǫ2}

1

R

(

1

(ǫ1 − ǫ0)
(R− (1− ǫ1)

− ǫ0
xR

ǫ2 − ǫ0
)− 1 +R

)

.

(6)

The following hold:

(a) If f is linear systematic then

BER(ǫ1) ≥
ǫ1
2
ζ(2δ2, ǫ2, ǫ1).

In particular, if BER(ǫ2) = o(1), then

BER(ǫ1) ≥
ǫ1
2R

(

1

(ǫ1 − ǫ2)
(R− (1− ǫ1))− 1 +R

)

+o(1)

(b) If f is systematic (but possibly non-linear), then

BER(ǫ1) ≥ ǫ1h
−1
b (ζ(hb(δ2), ǫ2, ǫ1)) .

Proof. To prove the lower bound on h(ǫ2), we may approx-

imate h(ǫ1) in a worst-cast fashion as a piece-wise constant

function. To do this, note that h(ǫ) ≤ h(ǫ2) for all ǫ ≤ ǫ2, and

h(ǫ) ≤ h(ǫ1) for all ǫ ∈ (ǫ2, ǫ1], and h(ǫ) ≤ 1 for all ǫ > ǫ1.

Then the area theorem gives that

1− ǫ1 + h(ǫ1)(ǫ1 − ǫ2) + h(ǫ2)ǫ2 ≥ R
We note that

h(ǫ) = Rhsys(ǫ) + (1−R)hnon−sys(ǫ) (7)

Using the above two relations, we have

Rhsys(ǫ1) ≥
R− (1− ǫ1)− h(ǫ2)ǫ2

ǫ1 − ǫ2
− (1−R)hnon−sys(ǫ1)

Using hnon−sys ≤ 1, we get

hsys(ǫ1) ≥
1

R(ǫ1 − ǫ2)
(R−(1−ǫ1)−h(ǫ2)ǫ2)−(

1

R
−1). (8)

(a) Applying Lemma 1a to bound h(ǫ2) we get from (8)

hsys(ǫ1) ≥ ζ(2δ2, ǫ1, ǫ2).
The bounds on BER follow from noticing that for a linear

systematic code

BER(ǫ) =
ǫhsys(ǫ)

2
.

(b) Applying Lemma 1b to bound h(ǫ2) in (8) gives

hsys(ǫ1) ≥ ζ(hb(δ2), ǫ1, ǫ2). (9)

Let X̃i = X̃i(Y∼i(ǫ1)) be the MAP decoder of Xi given

Y∼i(ǫ1). From Fano’s and Jensen’s inequalities we have

hsys(ǫ1) =
1

k

k
∑

i=1

H(Xi|Y∼i(ǫ1)) ≤
1

k

k
∑

i=1

hb(P[Xi 6= X̃i])

≤ hb

(

1

k

k
∑

i=1

P[Xi 6= X̃i]

)

.

Now, notice that P[Xi 6= X̃i] = ǫ1P[Xi 6= X̃i] and, thus,

hsys(ǫ1) ≤ hb(
1

ǫ1
BER(ǫ1)) .

The proof is concluded by applying (9).

We end with a brief discussion to advocate for use of

non-linear codes. Fig. 2b shows evaluation of Theorem 1. It

also shows that in the higher noise regime LDMC codes can

outperform any linear code that has comparable performance

at some lower values of C/R. Fig. 1 shows that LDMC

codes can uniformly dominate repetition. By Proposition 6, no

linear systematic code can dominate repetition. It should thus

be expected that LDMCs (and non-linear codes in general)

can achieve certain perfomance levels that are fundamentally

unattainable by linear codes. It is shown in [1] that indeed

using non-linearities in certain settings can uniformly improve

the performance and convergence rate of LDGMs. It is also

shown (see [1, Fig. 3]) that any systematic code of high

rate that achieves low BER at rates closed to capacity will

not degrade gracefully and hence is not suitable for error

reduction. However, we cannot rule out the existence of

non-systematic nonlinear codes that would simultaneously be

graceful and almost capacity-achieving.
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