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Abstract—We revisit the problem of broadcasting on d-ary
trees: starting from a Bernoulli(1/2) random variable X0 at
a root vertex, each vertex forwards its value across binary
symmetric channels BSCδ to d descendants. The goal is to
reconstruct X0 given the vector XLh of values of all variables
at depth h. It is well known that reconstruction (better than a
random guess) is possible as h → ∞ if and only if δ < δc(d).
In this paper, we study the behavior of the mutual information
and the probability of error when δ is slightly subcritical. The
innovation of our work is application of the recently introduced
“less-noisy” channel comparison techniques. For example, we
are able to derive the positive part of the phase transition
(reconstructability when δ < δc) using purely information-
theoretic ideas. This is in contrast with previous derivations,
which explicitly analyze distribution of the Hamming weight of
XLh (a so-called Kesten-Stigum bound).

I. INTRODUCTION

We consider the following problem, also known as broad-
casting on trees (BOT). Consider an infinite rooted d-ary tree,
in which every vertex v has d descendants v1, . . . , vd. Let Lh
denote all vertices at depth h, so that |Lh| = dh. To each
vertex v we associate a binary random variable Xv , whose
joint distribution is described inductively as follows. The root
variable X0 ∼ Ber(1/2) is an unbiased Bernoulli. Given
all random variables XLh at depth h the variables at depth
h + 1 are generated conditionally independently as follows.
If (u, v) is an edge in the tree with u ∈ Lh and v ∈ Lh+1

the (conditioned on XLh ) we set Xv = Xu with probability
(1− δ) and Xv = 1−Xu otherwise. We define the following
quantities1:

Pe(δ) = lim
h→∞

P[X0 6= X̂0(XLh)],

X̂0(yh) = argmax
a∈{0,1}

P[X0 = a|XLh = yh] , (1)

I(δ) = lim
h→∞

I(X0;XLh) . (2)
When Pe < 1/2 (equivalently, I > 0) we say that recon-

struction is possible. The foundational work [1] established
that the reconstruction is possible if and only if

δ < δc ,
1

2

(
1− 1√

d

)
.

We note that the positive part (that Pe < 1/2 when δ < δc)
follows from a so-called Kesten-Stigum bound, cf. [2], which
in fact proves that reconstruction can be done by a sub-optimal
detector

X̂0,maj(yh) = 1{‖y‖H > dh−1/2} , (3)
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1Throughout this paper, we use log to denote binary logarithm, and ln to
denote natural logarithm. Mutual information I is defined with base 2.

where ‖y‖H = |{j : yj 6= 0| is the Hamming weight. The
extension to general (non-regular) trees was done in [2] and
beyond trees in [3]. There are deep connections between BOT
and other problems. In statistical physics it arises in the study
of the free-boundary Gibbs measure for the Ising model on
a tree [1], problems on random graphs [4] and in random
constraint satisfaction [5]. It was a key step for establishing
the sharp thresholds for the problem of community detection
(stochastic block model) [6]. It can be seen as a simple model
for genetic mutations [7] and noisy computations [8].

We note that various theories (starting from Ginzburg-
Landau) in statistical physics predict the type of behavior
of various quantities in the vicinity of the phase transition
(the so-called critical exponents). However, to the best of our
knowledge, the behavior of I(δ) and Pe(δ) near the critical
point δ = δc − τ with τ � 1 is not understood. In particular,
the best results available in the literature show that for some
0 < c1 < c2 and c3, c4 > 0 we have

c1τ + o(τ) ≤ I(δc − τ) ≤ c2τ + o(τ), (4)
1
2 − c3

√
τ + o(

√
τ) ≤ Pe(δc − τ) ≤ 1

2 − c4τ + o(τ) . (5)
The main open question is establishing the critical exponent
in (5). This can be phrased equivalently as follows: The upper
bound in (5) can only be tight if in the regime δ ↑ δc the
induced (BMS) channel X0 7→ XLh resembles an erasure
channel, whereas the lower bound can only be tight if the
channel resembles “more diffuse” BMS channel, akin to
binary-input AWGN one. Thus, settling the exponent in (5)
can be rephrased as the question of understanding the kind of
residual uncertainty about X0 remaining after observing the
leaves XLh .

Our contributions are as follows:
1) We adapt the channel comparison technique from [9] to

the study of I and Pe and show in particular that the
positive part can be established without analyzing either
the suboptimal decoder (3) (as in Kesten-Stigum) or the
belief propagation (as in [1]).

2) We improve available estimates on c2.
3) We develop a sequence of numerically computable

bounds, each provably upper and lower bounding I and
Pe, whose evaluation allows us to make the following
two conjectures for binary trees.

Conjecture 1. I(δc − τ) = 4
√

2
ln 2 τ + o(τ) bit.

Conjecture 2. Pe(δc − τ) = 1/2−Θ(
√
τ).

A. Channel comparison lemmas

We quickly review the channel comparison lemmas of [9]
and discuss how they relate to broadcasting. We start with
reviewing some key information-theoretic notions.



Definition 1 ( [10, §5.6]). Given two channels PY |X and
PY ′|X with common input alphabet, we say that PY ′|X is
• less noisy than PY |X , denoted by PY |X �l.n. PY ′|X , if

for all joint distributions PUX we have
I(U ;Y ) ≤ I(U ;Y ′)

• more capable than PY |X , denoted by PY |X �m.c. PY ′|X ,
if for all marginal distributions PX we have

I(X;Y ) ≤ I(X;Y ′).

• less degraded than PY |X , denoted by PY |X �deg PY ′|X ,
if there exists a Markov chain Y − Y ′ −X .

We refer to [11, Sections I.B, II.A] and [12, Section 6] for
alternative useful characterizations of the less-noisy order.

For an arbitrary pair of random variables we define
Iχ2(X;Y ) = χ2(PX,Y ‖PX ⊗ PY ) ,

where PX⊗PY denotes the joint distribution on (X,Y ) under
which they are independent.

Let W be a BMS channel (cf. [9], Definition 7),
X ∼ Ber(1/2) and Y = W (X) be the output induced by X .
We define W ’s probability of error, capacity, and χ2-capacity
as follows

Pe(W ) =
1− TV(W (·|0),W (·|1))

2
, (6)

C(W ) = I(X;Y ), (7)
Cχ2(W ) = Iχ2(X;Y ) . (8)

Lemma 1. [9, Lemma 2] The following holds:
1) Among all BMS channels with the same value of Pe(W )

the least degraded is BEC and the most degraded is BSC,
i.e.

BSCδ �deg W �deg BEC2δ , (9)

where �deg denotes the (output) degradation order.
2) Among all BMS with the same capacity C the most

capable is BEC and the least capable is BSC, i.e.:
BSC1−h−1

b (C) �mc W �mc BEC1−C , (10)
where �mc denotes the more-capable order, and
h−1
b : [0, 1] → [0, 1/2] is the functional inverse of the

(base-2) binary entropy function hb : [0, 1/2]→ [0, 1].
3) Among all BMS channels with the same value of χ2-

capacity η = Iχ2(W ) the least noisy is BEC and the
most noisy is BSC, i.e.

BSC1/2−√η/2 �ln W �ln BEC1−η , (11)
where �ln denotes the less-noisy order.

The next lemma states that if the incoming messages to BP
are comparable, then the output messages are comparable as
well.

Lemma 2. [9, Lemma 3] Fix some random transfor-
mation PY |X0,Xm1

and m BMS channels W1, ...,Wm. Let
W : X0 7→ (Y, Y m1 ) be a (possibly non-BMS) channel defined
as follows. First, X1, ..., Xm are generated as i.i.d Ber(1/2).
Second, each Yj is generated as an observation of Xj over
the Wj , i.e. Yj = Wj(Xj) (observations are all conditionally
independent given Xm

1 ). Finally, Y is generated from X0, X
m
1

via PY |X0,Xm1
(conditionally independent of Y m1 given Xm

1 ).

Define the W̃ channel similarly, but with Wj’s replaced with
W̃j’s. The following statements hold:

1) If W̃j �deg Wj then W̃ �deg W .
2) If W̃j �ln Wj then W̃ �ln W .

Remark 1. An analogous statement for more capable chan-
nels does not hold (see Example 2 in [9]).

Definition 2 (Erasure function). Consider a single layer of
a d-ary tree with source X0. Suppose that each boundary
node is observed through a (memoryless) BEC channel, i.e.,
Y (j) = BECq(X

(j)) where q is the probability of erasure.
The function

EBEC(q) , E[P(X0 = 1|Y (1), · · · , Y (d))|X0 = 0].

is called the erasure function of the tree. Here the expectation
is taken with respect to the randomization over bits as well as
the noise in the observations.

Definition 3 (Error function). In the setup of Definition 2, let
Y (j) = BSCq(X

(j)) where q is the crossover probability. The
function

EBSC(q) , E[P(X0 = 1|Y (1), · · · , Y (d))|X0 = 0].

is called the error function of the tree. Here the expectation is
taken with respect to the randomization over bits as well as
the noise in the observations.

Definition 4 (χ2-entropies). Take the setup of Definition 2.
Let Yi’s be BEC induced observations as before. Define the
erasure χ2-entropy function to be

HBEC(q) , E[1− Iχ2(X0;Y (1), · · · , Y (d))].

The corresponding error χ2-entropy HBSC is defined in an
analogous manner to Definition 3.

The next proposition shows that the broadcasting problem
can be cast into the setting of comparison lemmas.

Proposition 1. Consider a single layer of a d-ary tree with
source X0 and independent observations Xi = BSCδ(X0)
along the edges. Consider the channels W : X0 7→ Y d1 with
Yi = Wi(Xi) and W̃ : X0 7→ Ỹ d1 with Ỹi = W̃i(Xi). The
following statements hold:

1) If W̃j �deg Wj then W̃ �deg W .
2) If W̃j �ln Wj then W̃ �ln W .

Proof. Let X ′ ∼ Ber(1/2)⊗d. Define the parity codes
Y ′i = X0 +X ′i . Note that the channel X0 → Xi is equivalent
to X0 → (Y ′i ,BSCδ(X

′
i)). Likewise, the channels Wi are

equivalent to X0 → (Y ′i ,Wi(BSCδ(X
′
i))). This latter map

is of the form in Lemma 2, from which both statements
follow.

As a consequence we have the following propositions for
the broadcasting problem.

Proposition 2. Consider the dynamical systems
qBEC
t+1 (x) = 2EBEC(qBEC

t (x)), (12)

qBSC
t+1 (x) = EBSC(qBSC

t (x)), (13)



initialized at qBEC
0 (x) = qBSC

0 (x) = x. Let Pe(T`) be the
probability of error under BP after broadcasting on a d-ary
tree of depth `. Then

qBEC
` (0)

2
≤ Pe(T`) ≤ qBSC

` (0).

Proof. The proof follows from that of [9, Proposition 9] upon
replacing Lemma 2 with Proposition 1.

Proposition 3. Consider the dynamical systems
qBEC
t+1 (x) = HBEC(qBEC

t (x)), (14)

qBSC
t+1 (x) = 1/2− 1/2

√
1−HBSC(qBEC

t (x)), (15)
initialized at qBEC

0 (x) = qBSC
0 (x) = x. Let I(X0; T`) be the

mutual information between root and observed leaves at depth
`. Then

1− qBEC
` (0) ≥ I(X0; T`) ≥ 1− h(qBSC

` (0)),

where h is the binary entropy function.

Proof. The proof follows easily from that of [9, Proposition
9] upon replacing Lemma 2 with Proposition 1.

II. THE RECONSTRUCTION THRESHOLD

In this section we prove the reconstruction threshold using
the channel comparison method.

Proposition 4. If d(1− 2δ)2 > 1, then recovery (better than
random guess) is possible on d-ary trees.

Proof. By Proposition 3, it suffices to show that the χ2-
dynamics for BSC expand the information in a neighborhood
of 0. Consider a d-ary tree with source X0. Suppose that
its children X1, . . . , Xd are observed with some probability
λ through a BSC channel. Let Y1, . . . , Yd be the observa-
tions. Because we work in a neighborhood of 0, we write
λ = 1

2 − ε with ε > 0 very small. For simplicity, write
κ := δ ∗ λ = 1

2 − (1− 2δ)ε. Then by definition we have
Iχ2(X0;Y )

=
∑

x0∈{0,1}

∑
y∈{0,1}d

P(X0 = x0, Y = y)2

P(X0 = x0)P(Y = y)
− 1

= 2
∑

0≤i≤d

(
d

i

)
κ2i(1− κ)2(d−i)

κi(1− κ)d−i + κd−i(1− κ)i
− 1.

Using the formula
κa(1− κ)b + κb(1− κ)a

= 21−a−b(1 + (

(
a

2

)
+

(
b

2

)
− ab)4(1− 2δ)2ε2 +O(ε4)),

we can expand in terms of ε and get
Iχ2(X0;Y )

=
∑

0≤i≤d

(
d

i

)
2−d(1 + (

(
2i

2

)
+

(
2(d− i)

2

)
− 4i(d− i)

−
(
i

2

)
−
(
d− i

2

)
+ i(d− i))4(1− 2δ)2ε2) +O(ε4)− 1

= 4d(1− 2δ)2ε2 +O(ε4).

Note that the input χ2-information into the local neighborhood
is 4ε2 under our parametrization. Thus denoting by Itχ2 the

amount of χ2-information between a target node and its leaves
left after t iterations, we get

Itχ2 = d(1− 2δ)2It−1
χ2 (1 + o(1))

This means that if d(1 − 2δ)2 > 1, then for small enough
ε the dynamics expand the information and hence the input
information cannot contract to 0 no matter how small it is.

Likewise, BEC comparisons recover the following result:

Proposition 5. If d(1 − 2δ)2 ≤ 1 and (d, δ) 6= (1, 0), then
recovery (better than random guess) is impossible on d-ary
trees.

Proof. By Proposition 3, we need to show that BEC dy-
namics contracts information. Let X1, . . . , Xd be the chil-
dren of X0 and Y1, . . . , Yd be their observations through a
BEC1−ε channel Applying Lemma 2 to the composed channel
X → Xi → Yi, we see that we can replace Yi with Y ′i , where
each X → Y ′i is an independent copy of BEC1−(1−2δ)2ε. We
have

Iχ2(X0;Y ′) = 1− (1− (1− 2δ)2ε)d.
The input information is ε under our parametrization. Consider
the function f(ε) = 1− (1− (1− 2δ)2ε)d. We have f(0) = 0
and

f ′(ε) = d(1− 2δ)2(1− (1− 2δ)2ε)d−1.

So f ′(ε) ≤ 1 for ε ∈ [0, 1], and equality is only achieved at
ε = 0. So f has only one fixed point in [0, 1], which is 0.
Therefore χ2-information contracts to 0.

Remark 2. In the proof of Proposition 4, we showed that
when the input information is close to 0, in the limit the
information would contract to a non-zero value. Therefore
our proof in fact shows that robust reconstruction (a stronger
condition than reconstruction) on such trees is possible. By
[13], for broadcasting on trees, the robust reconstruction
threshold coincides with the Kesten-Stigum bound. It is shown
in [14] that when the alphabet size is at least five, the Kesten-
Stigum bound is never tight for the (non-robust) reconstruction
problem. So for large alphabet size, our method does not yield
tight reconstruction threshold.

III. BOUNDS ON MUTUAL INFORMATION

Proposition 6. Let d ≥ 2 and δ = δc − τ where d(1 −
2δc)

2 = 1. Let T` be the d-ary tree channel as in above.
Then

2d
√
d

(d− 1) ln 2
τ + o(τ) ≤ lim

`
I(X0;T`)

≤ 4(d+ 1)
√
d

d− 1
τ + o(τ).

Proof. The proof is by analyzing the recursion in the proof of
Proposition 4 and 5 more carefully.

In the setting of proof of Proposition 4, expanding every-
thing to the order of ε4 and computing a binomial sum, we
get
Iχ2(X0;Y )

= 4d(1− 2δ)2ε2 + 16d(d− 1)(1− 2δ)4ε4 +O(ε6)

= 4(1 + 4
√
dτ + oτ (τ))ε2 + 16(

d− 1

d
+ oτ (1))ε4 +O(ε6).



The input information is 4ε2 under this parametrization. Solv-
ing the dynamics, we get

ε∗ = (

√
d
√
d

d− 1
+ o(1))

√
τ .

This gives

lim
`
I(X0;T`) ≥ 1− h(

1

2
− (

√
d
√
d

d− 1
+ o(1))

√
τ)

=
2d
√
d

(d− 1) ln 2
τ + o(τ).

Following the proof of proof of Proposition 5, let us
consider the function f(ε) = 1 − (1 − (1 − 2δ)2ε)d. Now
the function f(ε) is concave on [0, 1], and there is a unique
fixed point in (0, 1). By expanding in terms of ε, we have

f(ε) = d(1− 2δ)2ε−
(
d

2

)
(1− 2δ)4ε2 +O(ε3)

= (1 + 4
√
dτ + oτ (τ))ε− (

d− 1

2d
+ oτ (1))ε2 +O(ε3).

So the unique fixed point is at

ε∗ =
8d
√
d

d− 1
τ + o(τ).

This gives

lim
`
I(X0;T`) ≤

8d
√
d

d− 1
τ + o(τ).

In fact, knowing that the limit is linear in τ , we can improve
this upper bound. Instead of considering I(X;Y ′) in the proof
of Proposition 5, let us consider I(X;Y ) directly. We can
compute that

Iχ2(X0;Y ) =
∑

x0∈{0,1}

∑
y∈{0,1,∗}d

P(X0 = x0, Y = y)2

P(X0 = x0)P(Y = y)
− 1

= 2
∑

0≤j≤i≤d

(
d

i

)
εi(1− ε)d−i

(
i

j

)

· (1− δ)2jδ2(i−j)

(1− δ)jδi−j + (1− δ)i−jδj
− 1.

Let us call this function g(ε). Note that by Lemma 2, we
always have g(ε) ≤ f(ε) on [0, 1]. So the largest fixed point
of g is upper bounded by the non-trivial fixed point of f , which
is of order Θ(τ). This justifies performing series expansion in
ε.
g(ε) = (1− ε)d + 2d((1− δ)2 + δ2)ε(1− ε)d−1

+ d(d− 1)(
(1− δ)4 + δ4

(1− δ)2 + δ2
+ (1− δ)δ)ε2(1− ε)d−2

+O(ε3)− 1

= d(1− 2δ)2ε− d(d− 1)
(1− 2δ)4

(1− 2δ)2 + 1
ε2 +O(ε3)

= (1 + 4
√
dτ + oτ (τ))ε− (

d− 1

d+ 1
+ oτ (1))ε2 +O(ε3).

We see that the largest fixed point of g must satisfy

ε∗ =
4(d+ 1)

√
d

d− 1
τ + o(τ).

In this way we get

lim
`
I(X0;T`) ≤

4(d+ 1)
√
d

d− 1
τ + o(τ).

Remark 3. We compare the above lower bound with (7) in
[2].2 We note that the lower bound of [2] can in the limit be
simplified into

lim
`→∞

Iχ2(X0;T`) ≥
1

1 + 1−(1−2δ)2

d(1−2δ)2−1

.

Near the critical threshold, RHS behaves as 4d
√
d

d−1 τ . So they
obtained the the same χ2-information lower bound, thus the
same mutual information lower bound, as in Proposition 6.

[2] did not state explicitly an upper bound on mutual
information. Nonetheless, their upper bound is by comparison
with percolation, and that leads to an upper bound of

lim
`→∞

I(X0;T`) ≤
8d
√
d

d− 1
τ + o(τ).

In this case we see that channel comparison leads to a better
upper bound.

In the case of binary trees, we perform a more refined
analysis to improve the upper bound.

Proposition 7. Let δ = δc − τ with 2(1 − 2δc)
2 = 1. Let T`

be the binary tree channel as in above. Then

lim
`
I(X0;T`) ≤ 8(

√
2 + 1)(1− h(

1

2
−

√
1√
2
− 1

2
))τ + o(τ).

Proof. Suppose the input distribution is a mixture of BSC∆

for ∆ supported at {1/2− αt, 1/2}. We iterate the dynamics
of Proposition 3 while finding the best (w.r.t the less noisy
order) channel within this family. This family contains BEC
(corresponding to α = 1/2), so this approach may lead to a
better bound. We define

δ̄ := (1/2− α) ∗ δ = 1/2− α(1− 2δ).

The output distribution has support { δ̄2

δ̄2+(1−δ̄)2)
, δ̄, 1/2}. Us-

ing Lemma 1, we replace BSCδ̄ with a mixture of BSC1/2 and
BSC δ̄2

δ̄2+(1−δ̄)2)

, while preserving χ2-information. Therefore

1/2− αt+1 =
δ̄2

δ̄2 + (1− δ̄)2
.

Solving this, we get that in the ` limit

α∗ =

√
1− 4δ

2(1− 2δ)
.

For α = α∗, we have
Cχ2(BSCδ̄) = (1− 2δ)2Cχ2(BSC δ̄2

δ̄2+(1−δ̄)2
).

So when applying Lemma 1, every unit weight for the former
becomes (1− 2δ)2 weight for the latter.

Let εt be the weight of BSC1/2 in iteration t. Then in the
` limit ε should satisfy

1− ε = (1− ε)2(δ̄2 + (1− δ̄)2) + 2ε(1− ε)(1− 2δ)2.
Solving this we get ε∗ = 1− 8(

√
2 + 1)τ + o(τ).

So an upper bound for mutual information is
(1− ε∗)(1− h(1/2− α∗))

= 8(
√

2 + 1)(1− h(
1

2
−

√
1√
2
− 1

2
))τ + o(τ).

2 [2] contains an error stating that I ≥ Iχ2 , which should be I ≥ 1
2
Iχ2 .

(Note that they define mutual information with natural logarithm.) This leads
to lower bounds on I (e.g., (4)(28) in [2]) to be off by a factor of 2. (7) in
[2] is correct as stated.



Remark 4. The same method can be applied to the lower
bound, leading to α∗ = (

√
3
√

2+o(1))
√
τ and ε∗ = 1

3 +o(1),
giving

lim
`
I(X0;T`) ≥

4
√

2

ln 2
τ + o(τ).

Surprisingly, although we lower bound using a larger family,
and the limiting distribution is different, we get the same lower
bound as Proposition 6.

We have shown that I(X0;T`) = cτ + o(τ) for some
c ∈ [8.16, 14.21]. The improvement over Proposition 6 can be
attributed to a finer “quantization” since we try to work with
less noisy channels while staying closer to the true output of
BP. We shall explore this idea further in Section IV and show
(numerically) that the correct slope is c ≈ 8.16.

IV. IMPROVED BOUNDS VIA LOCAL COMPARISONS

One advantage of the comparison method is that it allows us
to analyze BP, rather than some suboptimal algorithm. On the
other hand, we incur some loss in each step of the analysis
due to the crude approximations that are made to the input
distribution in order to simplify the analysis. In some cases
these losses can be significant. For instance, a naive application
of the comparison method while matching probabilities of
error (i.e., using least degraded channels and Proposition 2)
does not even recover the right threshold. One way to avoid
this issue is to do local comparisons. We first define a few
quantizing operators.

Definition 5 (Q-Operators). Consider a binary random vari-
able X with probability law µ along with quantization in-
tervals (ai, bi). Define the quantized BSC operator QBSC(X)
as follows: replace the support of µ along each (ai, bi) with

a single point at δi :=

∫ bi
ai
δdµ∫ bi

ai
dµ

with probability mass
∫ bi
ai
dµ.

Likewise, define the quantized BEC operator QBEC(X) as fol-
lows: replace the support along (ai, bi) with two quantization
points ai, bi with probabilities pai := αipi, pbi = (1− αi)pi,
where pi =

∫ bi
ai
dµ and αi =

bi−
∫ bi
ai
δdµ/

∫ bi
ai
dµ

bi−ai . Further-
more, define QBSC

χ2 (resp. QBEC
χ2 ) similarly by matching the

χ2-information along each interval while contracting (resp.
spreading) probability masses.

The main idea is presented in the next proposition:

Proposition 8. Consider broadcasting on a tree with pa-
rameter δ. Suppose that µBSC

0 (the law at the boundary
of the tree) is induced by BSCδ0 , where δ0 is chosen so
that δ0 ≥ lim` Pe(T`). Let µBSC

t = QBSC(BP(µBSC
t−1 ))

be obtained by quantizing the output of BP operat-
ing on µBSC

t−1 . Let qBSC
t be the corresponding probabil-

ity of error qBSC
t :=

∑
i δaibiµ

BSC
t,i . Similarly, define

νBSC
t = QBSC

χ2 (νBSC
t−1 ). Let ιBSC

t be the corresponding mutual
information. Likewise, define µBEC

t = QBEC(BP(µBEC
t−1 )) with

probability of error qBEC
t with P (µ0 = 0) = 1. Define

νBEC
t , ιBEC

t similarly. The following statements hold:

−9 −8 −7 −6 −5
log(τ)

−4.0

−3.5

−3.0

−2.5

−2.0

lo
g(
1/
2−

P e
)

BEC  pper bo nd
BSC lower bo nd
linear approximation

Fig. 1: Bounds on probability of error using local comparisons
for δ = δc − τ . The linear approximation has a slope of 1/2.

1) qBEC
` ≤ lim` Pe(T`) ≤ qBSC

` .
2) ιBEC

` ≥ lim` I(T`) ≥ ιBSC
` .

Remark 5. To choose δ0 < 1
2 we may, for example, use

a Kesten-Stigum upper bound on Pe, corresponding to a
suboptimal algorithm as in (3).

Proof. Note that QBSC(µ) is obtained from µ by the transfor-
mation

(y, δ) 7→
{

(y, δi) δ ∈ [ai, bi],
(y, δ) o.w.

The probabilities of error match by construction. This shows
that QBSC(µt) is a degradation of µt. This proves the upper
bound since if the initial input is degraded w.r.t T` then all the
subsequent iterations remain degraded. For the lower bound,
we note that a probability distribution with its masses at the
center of an interval is a degradation of one with two spikes at
the boundaries. Note that indeed when the original distribution
has a single atom in some interval this follows directly from
the above transformation. The general case follows since if
there are more than one atoms, we can degrade sequentially.
This proves the first statement. The second statement can be
proved similarly.

Using uniform quantization in the [0, 1/2] interval with
1024 points, we were able to show that

I(X0; T`) = cτ + o(τ)

with c ≈ 8.16. This is the basis of our Conjecture 1.
Using a degradation argument (or Fano’s inequality), one

can also show
1/2− c′

√
τ + o(

√
τ) ≤ Pe(T`) ≤ 1/2− cτ + o(τ).

It is natural to ask what is the correct exponent for Pe. Using
the same approach we were able to show (see Fig. 1)

log(1− 2Pe) ≥ 0.504 log τ + c.

We thus conjecture that
√
τ is the correct exponent.
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