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Abstract—Motivated by questions of data stabilization in
emerging magnetic storage technologies, we study the retention
of information in interacting particle systems. The interactions
between particles adhere to the stochastic Ising model (SIM)
on the two-dimensional (2D)

√
n ×

√
n grid. The measure of

interest is the information capacity In(t) , maxpX0
I(X0;Xt),

where the initial spin configuration X0 is a user-controlled input
and the output configuration Xt is produced by running t steps
of Glauber dynamics. After the results on the zero-temperature
regime reported last year, this work focuses on the positive
but low temperature regime. We first show that storing more
than a single bit for an exponential time is impossible when the
initial configuration is drawn from the equilibrium distribution.
Specifically, if X0 is drawn according to the Gibbs measure,

then I(X0;Xt) ≤ 1 + o(1) for t ≥ exp

(

cn
1
4
+ǫ

)

. On the other

hand, when scaling time with β, we propose a stripe-based coding
scheme that stores order of

√
n bits for exp(β) time. Key to the

analysis of the scheme is a new result on the survival time of
a single plus-labeled stripe in a sea of minuses. Together, the 1-
bit upper bound and the striped-based storage scheme constitute
initial steps towards a general analysis of In(t) for β > 0.

I. INTRODUCTION

The increasing demand for high-capacity storage devices

inspired new methods for magnetic storage, such as shingled

magnetic recording (SMR) [1], heat assisted magnetic record-

ing (HAMR) [2] and bit-patterned media (BPM) [3]. The

latter two, for instance, drastically reduce the area magnetic

mediums allocate for storing each bit: from roughly 20-30

magnetic grains per bit in today’s off-the-shelf hard-drives to

a single magnetic grain per bit via BPM or HAMR. While

shrinking of magnetization domains increases storage capacity,

it also entails new challenges in stabilizing the written data

long enough to allow later recovery. Specifically, in the time

between writing and reading, the stored data (a configuration

of states at which the particles comprising the medium are

initiated) dissipates due to interparticle interactions driven by

quantum/thermal fluctuations. The significance of this physical

phenomenon for future hard-drive designs is the motivation for

this work.

To address the stabilization of stored data we adhere to

the perspective of [4], [5] and study information retention

in locally-interacting particle systems. Specifically, a planar

grid comprising n particles models the magnetic hard-drive.
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The encoder chooses an initial spin (+1 or −1) configuration

X0, in which to store the data. The read configuration Xt

is produced by running t steps of the Glauber dynamics [6]

for the Ising model [7] at inverse temperature β ≥ 0. Fig. 1

visualizes the model in a block diagram. The amount of bits

that can be stored for t time inside a
√
n×√

n grid is measured

by the information capacity In(t) , maxpX0
I(X0;Xt).

While [5] focused on the zero-temperature Glauber dynam-

ics, here we consider the more practically-relevant positive

temperature regime. At the extreme case of infinite tempera-

ture (β = 0), interactions are eliminated and, upon selection,

particles flip with probability 1
2 , independently of their locality.

Taking t = cn, the grid essentially becomes an n-fold binary-

symmetric channel (BSC) with flip probability 1
2

(

1− e−c/4
)

,

which is arbitrarily close to 1
2 for large c. Thus, the per-

site capacity is almost zero. Cooling the system to finite

temperatures (β > 0) introduces interactions between particles

and changes the behavior of In(t). Classical results on the

2D Ising model phase transition and mixing times [8] imply

the following: for β < βc , 1
2 log

(

1 +
√
2
)

, we have

In
(

poly(n)
)

= 0, while for β > βc, In
(

exp(
√
n)
)

≥ 1.1

Our first interest is whether anything beyond a single bit

can be stored in the SIM on the 2D grid at β > βc for

exponential time. To gain understanding consider two (stochas-

tic) trajectories with one started from an all-plus configuration

and another one from a fixed configuration σ. Evolving them

jointly using the standard synchronous coupling, we let pt(σ)
be the probability that the trajectories have coupled by time

t. [9] shows that pt(σ) averaged over all σ sampled from

the Gibbs distribution conditioned on positive magnetization

converges to one for t ≥ ecn
1
4
+ǫ

. This time corresponds

to the mixing time of a SIM on a 2D grid with a plus

boundary condition, recently improved by [10] to nO(logn),

and conjectured to be order n (possibly up to logarithmic

terms). We point out that this does not resolve the question

we posed, but suggests that if a state that does not couple

with the all-plus trajectory exists, it should not be a typical

one with respect to the Gibbs distribution. To quantify this

statement, we use the result from [9, Proposition 5.2] to show

that for sufficiently large β > 0 (i.e., at low temperature)

I(X0;Xt) ≤ log 2 + o(1), if X0 is distributed according to

the Gibbs measure and t ≥ ecn
1
4
+ǫ

. This result is stated and

1The 2D SIM on the grid mixes within O(n logn) time when β < βc,

and exhibits exponential mixing time of eΩ(
√

n), when β > βc [8].
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Fig. 1: Data storage inside interacting particle systems: The encoder
maps the data m into the initial configuration X0. The dynamics
evolves X0 by t time steps. The decoder recovers m from Xt.

proven in Section III.

The positive temperature regime also enables scaling time

with β (instead of n). It turns out that much more that a single

bit can stored in the SIM at low temperature β for exp(β) time.

Specifically, we show that
√
n bits stored into monochromatic

horizontal or vertical stripes, will be decodable via majority

decoding after t ∼ ecβ (Section IV). Key to the analysis of the

scheme is a novel result showing that a single stripe of pluses

surrounded by minuses at the bottom of an
√
n×√

n retains

at least half of its original
√
n pluses for at least ecβ time,

where c is a numerical constant. The storage results provided

here constitute first steps towards a comprehensive analysis of

the positive-but-low temperature regime.

II. THE STOCHASTIC ISING MODEL

For k ∈ N, we set [k] , {1, . . . , k}. Let Gn = (Vn, En) be

a square grid of side
√
n ∈ N, where Vn =

{

(i, j)
}

i,j∈[
√
n]

. 2

The neighborhood of v is Nv , {w ∈ Vn|{v, w} ∈ En}.

Fix
√
n ∈ N and let Ωn , {−1,+1}Vn . Denote by ⊞,⊟ ∈

Ωn the all-plus and all-minus configurations, respectively. For

every σ ∈ Ωn and v ∈ Vn, σ(v) is the value of σ at v. The

Hamiltonian for the Ising model on Gn is given by

H(σ) , −
∑

{u,v}∈En

σ(u)σ(v), σ ∈ Ωn. (1)

The Gibbs measure over Gn at inverse temperature β > 0 and

free boundary conditions is

π(σ) =
1

Z(β)
e−βH(σ), σ ∈ Ωn (2)

where Z(β) is the partition function (a normalizing constant).

The SIM is a discrete-time Markov chain (MC) on the state

space Ωn that is reversible with respect to π, for any β > 0.

At each time step, a vertex v ∈ Vn is chosen uniformly at

random; the spin at v is refreshed to a new value s ∈ {−1,+1}
by sampling the conditional Gibbs measure

πv(s) , π
(

s
∣

∣{σ(u)}u6=v

)

= π
(

s
∣

∣{σ(u)}u∈Nv

)

. (3)

Let P be the induced transition kernel and (Xt)t∈N0
be

the MC. If X0 ∼ pX0
, then (X0, Xt) ∼ pX0,Xt

(σ, η) ,

pX0
(σ)P t(σ, η), where P t is the t-step kernel. The mutual

information I(X0;Xt) is taken with respect to pX0,Xt
.

Remark 1 (Continuous-Time Dynamics) The SIM can be

also set up in continuous-time by assigning with each v ∈ Vn

2For convenience, we assume
√
n ∈ N; if

√
n /∈ N, simple modification of

some of the subsequent statements using ceiling and/or floor operations are
needed. Regardless, our focus is on the asymptotic regime of large n, and the
assumption that

√
n ∈ N has no affect on the asymptotic behavior.

an independent Possion clock of rate 1. When the clock at v
rings, its spin is redrawn via (3). The continuous- and discrete-

time versions are equivalent in terms of their information ca-

pacity when the Poisson rate is thinned to 1
n [11, Proposition

4]. Nonetheless, in Section IV we consider the vanilla rate 1

version when studying In(t) for exp(β) time scales.

III. 1-BIT UPPER BOUND UNDER GIBBS INITIALIZATION

We show that for sufficiently large β > βc, it is impossible

to store more than a single bit in the SIM for t ≥ ecn
1
4
+ǫ

time

by drawing the initial configuration from the Gibbs distribu-

tion. This result leverages Proposition 5.2 from [9] which we

restate in the following.3 Some preliminary definition are due.

Fix β ∈ (0,∞) and let (Xt)t≥0 be the discrete-time

dynamics with X0 ∼ π. We use (Xσ
t )t≥0 for the dynamics

initiated at X0 = σ. The case when staring from the all-plus

state ⊞ is distinguished by denoting Yt , X⊞
t . Finally, denote

the magnetization of σ ∈ Ωn by m(σ) , 1
n

∑

v∈Vn
σ(v).

To state the result of [9, Proposition 5.2] we first need to

set up the Markov chains
{

(Xσ
t )t≥0

}

σ∈Ωn

over the same

probability space. Let
{

Vt
}

t∈N
be an i.i.d. process of random

variables uniformly distributed over Vn. Also let
{

Ut

}

t∈N

be an i.i.d. process with Ut ∼ Unif[0, 1]. For each initial

configuration σ ∈ Ωn, we construct (Xσ
t )t≥0 as follows. At

each time t ∈ N, Xσ
t (Vn \ {Vt}) = Xσ

t−1(Vn \ {Vt}), while

for spin at Vt we set

Xσ
t (Vt) =

{

+1, if Ut ≤ π
(

+ 1
∣

∣Xt(VN \ {Vt})
)

−1, otherwise
, (4)

where Xt(A) is the restriction of Xt to A ⊆ Vn. Let P be the

probability measure associated with this probability space.

Proposition 1 (Coupling with All-Plus Phase [9]) Fix√
n ∈ N, ǫ ∈

(

0, 12
)

and γ > 0. There exist β0, C < ∞ such

that for any β ≥ β0 and t ≥ n · eCβn
1
4
+ǫ

, we have
∑

σ: m(σ)>0

π(σ)P
(

Xσ
t 6= Yt

)

≤ e−γ
√
n. (5)

In words, the proposition states that if the initial configuration

is distributed according to the restriction of the Gibbs measure

to
{

σ ∈ Ωn

∣

∣m(σ) > 0
}

, by time t ≥ n · eCβn
1
4
+ǫ

, the

dynamics become indistinguishable from those initiated at the

all-plus state. Thus, in this time scale, the only thing the

chain remembers is the positive magnetization of the initial

configuration, rather than the exact starting point.

Based on Proposition 1, we show that for X0 ∼ π,

I(X0;Xt) is at most 1 bit for the aforementioned time scale.

Corollary 1 (1-bit Upper Bound on Mutual Information)

Let ǫ, γ, β0 and C be as in Proposition 1. For any β > β0
there exist c(β) > 0 such that

I(X0;Xt) ≤ log 2 + ǫn(β), ∀t ≥ n · eCβn
1
4
+ǫ

, (6)

3The restatement adapts the original continuous-time claim from [9] to the
discrete-time dynamics.



where limn→∞ ǫn(β) = 0 for all β values as above.

Proof: We recall that in the phase coexistence regime, zero

magnetization is highly improbable under π [12]. Namely, for

each β > βc there exists c(β) > 0 such that

π
(

{

σ
∣

∣m(σ) = 0
}

)

≤ e−c(β)
√
n. (7)

Now, fix β > β0 (which, in particular, is larger than βc) and

define E = 1{m(X0)=0}. Let t ≥ n · eCβn
1
4
+ǫ

and bound

I(X0;Xt)≤h
(

e−c(β)
√
n
)

+ne−c(β)
√
n+I(X0;Xt|E=0) (8)

where the last step uses (7), with h as the binary entropy func-

tion. Let S = sign(m0), m0 , m(X0), and further consider

I(X0;Xt|E = 0)

≤ H(S|E = 0) + I(X0;Xt|S,E = 0)

(a)

≤ log 2 + 2P
(

S = 1
∣

∣E = 0
)

I(X0;Xt|S = 1, E = 0)

(b)

≤ log 2 + I(X0;Xt|m0 > 0) (9)

where (a) uses P
(

S = 0
∣

∣E = 0
)

= 0 and the symmetry

with respect to a global spin flip of the Gibbs measure and

the SIM with free boundary conditions, while (b) is because

{S = 1} ∩ {E = 0} =
{

m0 > 0
}

and P
(

S = 1
∣

∣E = 0
)

≤ 1
2 .

Next, define G = 1{Xt=Yt} and use the shorthand P+(A) ,
P(A|m0 > 0), for A ⊆ Ωn. We have

I
(

X0;Xt

∣

∣m(X0) > 0
)

≤H(G|m0 > 0) + P+(G = 0)I(X0;Xt|G = 0,m0 > 0)

+ P+(G = 1)I(X0;Xt|G = 1,m0 > 0)

≤h
(

P+(Xt=Yt)
)

+P+(Xt 6=Yt)I
(

X0;Xt

∣

∣Xt 6=Yt,m0>0)

+ P+(Xt = Yt)I(X0;Xt|Xt = Yt,m0 > 0). (10)

We control P+(Xt 6= Yt) using (5) and (7) as follows:

P+(Xt 6= Yt) =
∑

σ∈Ωn

P+(X0 = σ,Xt 6= Yt)

(a)
=

(

P(m0 > 0)
)−1 ∑

σ: m(σ)>0

π(σ)P
(

Xσ
t 6= Yt

)

(b)

≤ 2
(

1− e−c(β)
√
n
)−1 ∑

σ: m(σ)>0

π(σ)P
(

Xσ
t 6= Yt

)

(c)

≤ 2e−γ
√
n

1− e−c(β)
√
n

(11)

where (a) uses the Markov property, (b) is due to π(m > 0) =
1
2π(m 6= 0) and (7), and (c) uses (5). Denoting the RHS of

(11) by pn and inserting back into (10) gives

I(X0;Xt|m0 > 0)
(a)

≤ h(pn) + npn + I
(

X0;Yt
∣

∣G,m0 > 0
)

≤ 2h(pn) + npn + I(X0;Yt|m0 > 0)

(a) uses the non-negativity of mutual information.

We conclude the proof by establishing I(X0;Yt|m0 >
0) = 0. Indeed, Yt can be represented as a determin-

(a)

...

(b)

Fig. 2: (a) Initial configuration, with blue and red squares marking
plus- and minus-labeled sites, respectively; (b) A partitioning of
the grid into monochromatic striped regions of width 1 on the top
and bottom and width 2 in between (shown in white). The regions
are separated by all-minus walls of width 2. Red squares represent
negative spins, while white squares stand for unspecified spins.

istic function of Y0 = ⊞, the i.i.d. site-selection pro-

cess
{

Vt
}

t∈N
and i.i.d. uniform process

{

Ut

}

t∈N
. However,

(

Y0,
{

Vt
}

t∈N
,
{

Ut

}

t∈N

)

is independent of X0, and therefore,

so is Yt. Thus, I(X0;Xt|m0 > 0) ≤ 2h(pn) + npn, which

together with (8) and (9) concludes the proof. �

IV. STORING
√
n BITS FOR EXPONENTIAL IN β TIME

We propose analyze a scheme for storing order of
√
n bits

for exp(β) time. We first argue that a single stripe of plus-

labeled sites (in a sea of minuses) at the bottom of the grid

retains at least half of its original
√
n pluses for at least ecβ

time, for a numerical constant c. This result generalizes to

stripes of width 2 inside the grid (i.e., not at the borders).

Together, the two claims enable encoding information into

sufficiently separated monochromatic stripes and extracting the

written data after ecβ time via majority decoding.

A. Single Stripe at the Bottom

We start with the single stripe analysis. Consider the

continuous-time dynamics at inverse temperature β > 0 with

Poisson clocks of rate 1 associated with each v ∈ Vn.

Calculating the update distribution from 3, if the current

configuration is σ and vertex v is selected, then the chance

the spin at v is updated to −1 is p(σ, v) = φ
(

S(σ, v)
)

, where

φ(a) , eaβ

eaβ+e−aβ and S(σ, v) ,
∑

w:w∼v σ(w) =
∣

∣

{

w ∼
v
∣

∣σ(w) = −1
}
∣

∣−
∣

∣

{

w ∼ v
∣

∣σ(w) = +1
}
∣

∣.

Abusing notation, we reuse (Xt)t≥0 for the continuous-time

MC. Let X0 = σ, with σ
(

(i, 1)
)

= +1, for all i ∈ [
√
n], and

σ(v) = −1 otherwise; the initial configuration is shown in Fig.

2(a). Define B ,
{

(i, 1)
}

i∈[
√
n]

, N
(+)
1 (σ) ,

∣

∣

{

v ∈ B
∣

∣σ(v) =

+1
}∣

∣ and N
(+)
1 (t) , N

(+)
1 (Xt), for all t ≥ 0. In words,

N
(+)
1 (t) is the number of plus-labeled sites at the bottom strip

after time t. We next present a bound on EN
(+)
1 (ecβ).

Theorem 1 (Exponential Survival Time at the Bottom)

Fix any c,′ c ∈ (0, 1). There exist β0 > 0 such that for any

β ≥ β0 there exists n0 ∈ N such that for all n > n0, we have

EN
(+)
1 (ecβ) ≥ c′

√
n. (12)



A full proof of Theorem 1 is too cumbersome for this short

paper, and is available in [4, Appendix G ]. Here we only

outline the main challenges and our proof strategy.

Challenges & Strategy: The proof comprises two parts:

the phase separation part and the analysis part. To explain

each, we first stress the challenges in analyzing the evolution

of N
(+)
1 (t). Since β < ∞, pluses may in general spread out

to the portion of Gn above the bottom stripe. However, since

β is large, such flips are highly unlikely (exponentially small

probability in β). To circumvent this first complication we

simply restrict minus-labeled vertices from flipping. Doing

so can only speed up the shrinking of N
(+)
1 (t), and thus,

establishing (12) under this restricted dynamics suffices.

Even with this simplification, the main difficulty in ana-

lyzing N
(+)
1 (t) is the unordered fashion in which flips of

pluses into minuses at the bottom stripe occur. We distinguish

between two main types of flips:

• Sprinkle: A flip of a plus-labeled vertex whose all

horizontal neighbours are also pluses. The probability of

a sprinkle update in the bulk of the bottom strip (i.e.,

excluding the two corners) is φ(−1).
• Erosion: A flip of a plus-labeled vertex with at least one

horizontal minus-labeled neighbor. The probability of an

erosion update in the bulk of the bottom strip is either

φ(1) or φ(3), depending on whether the updated site has

one or zero plus-labeled neighbors, respectively.

These two types of updates are interleaved as the dynamics

evolves. However, noting that sprinkles have exponentially

small probability (in β), while erosion updates have proba-

bility exponentially close to 1, one would expect that during

some initial time interval the system stays close to X0 with

occasional occurrences of sprinkles. Each sprinkle in the bulk

results in two contiguous runs of pluses (abbreviated as a

‘contigs’) to its left and right. After a sufficient number of

sprinkles, the drift of N
(+)
1 (t) is dominated by the erosion

of the formed contigs. Arguing that the interleaved dynamics

can be indeed separated into two pure phases of sprinkling

and erosion is the first main ingredient of our proof. Once we

are in the phase-separated dynamics, the analysis of N
(+)
1 (t)

first identifies the typical length and number of contigs, and

then studies how fast these contigs are eaten up.

B. Width-2 Stripe in the Bulk

Our coding scheme also needs a result similar to Theorem

1, but for one monochromatic stripe of width 2 in the bulk of

the grid. Specifically, consider an initial state X0 = σ, where

σ
(

(i, j0)
)

= σ
(

(i, j0 + 1)
)

= −1, for all i ∈ [
√
n] and some

j0 ∈ [2 :
√
n − 2]. Letting N

(+)
j0

(t) be the number of pluses

in this stripe at time t, we have the following corollary.

Corollary 2 (Exponential Survival Time in the Bulk) Fix

any c,′ c ∈ (0, 1). There exist β1 > 0 such that for any

β ≥ β1 there exists n0 ∈ N such that for all n > n0, we have

EN
(+)
j0

(ecβ) ≥ c′
√
n. (13)

This result follows by the same analysis as in the proof of

Theorem [4, Appendix G]), but with an additional preliminary

step, as described next. The idea is to speed up the dynamics so

that they correspond to the evolution of the system when initi-

ated with a single bottom stripe (as in Fig. 2(a)). Like before,

we first forbid minus-labeled sites to flip. To avoid dealing

with the width dimension, every time a site is flipped we

immediately also flip its vertical plus-labeled neighbor. Thus,

flips occur in vertical pairs, with sprinkling and (modified)

erosion probabilities as described below:

• Sprinkling: The sprinkling rate is φ(−2) (each site has

3 plus neighbors and one minus). Note that flipping the

vertical neighbor of a sprinkle-flipped site only speeds

up the elimination of pluses, without affecting the time

scale. This is since the manually flipped sites have flip

probability φ(0) = 1
2 (balanced neighborhood) in the

original dynamics, which is much higher than φ(−2).
Sprinkling in the modified dynamics is similar to sprin-

kling in the bottom stripe dynamics, as they both happen

with probability exponentially small in β.

• Erosion: Every sprinkle produces two contigs. However,

the sites at the borders of these contigs have flip rate φ(0),
which is too slow compared to the bottom stripe case,

where the erosion flip probability was φ(1). Since we

may keep speeding up the dynamics, we simply replace

these φ(0) rates with φ(1). This modification produces

erosion rates similar to the bottom stripe case.

With these modification one may repeat the arguments from

the proof of Theorem 1 to produce the result of Corollary 2.

C. Stripe-Based Achievability Scheme

To analyze our achievability scheme, we first convert the

expected value results from Theorem 1 and Corollary 2 into

claims on the probability of a successful majority decoding.

Corollary 3 (Exponential Survival Time Probability)

For sufficiently large β and n (taken from Theorem 1 and

Corollary 2), we have

P

(

N
(+)
j0

(t0) >

√
n

2

)

≥ 2

3
, ∀j0 ∈ [1 :

√
n− 2]. (14)

By symmetry to the j0 = 1 case, this also holds for a horizontal

stripe of width 1 at the top of the grid.

The proof follows by Chebyshev’s inequality and is omitted.

We now show that Ω(
√
n) bits can be stored in the SIM at

low temperature for time ecβ . Let I
(β)
n (t) be the information

capacity of the
√
n×√

n grid at inverse temperature β.

Theorem 2 (Storing
√
n Bits) There is β⋆ > 0 such that for

any β ≥ β⋆ there is n0 ∈ N such that for all n > n0, we have

I(β)n (t) = Ω(
√
n), ∀t ≤ ecβ , (15)

where c ∈ (0, 1).

Proof: Partition the grid into monochromatic horizontal

stripes (whose spins are specified later) such that:



1) the top and bottom stripes are of width 1;

2) intermediate stripes are of width 2;

3) the stripes are separated by all-minus walls of width 2.4

The partitioning is illustrated in Fig. 2(b). Let K be the total

number of such stripes, and associate an index j ∈ [K] with

each from bottom to top. Clearly, K = Θ(
√
n). For j ∈ [K],

let Sj be the set of vertices in the j-th stripe (the white squares

in Fig. 2(b)). Further set Dj , Sj ∪
{

u ∈ Vn

∣

∣d(u,Sj) = 1
}

.

Let Cn be the collection of all configurations whose topol-

ogy corresponds to Fig. 2(b) with monochromatic spin as-

signments to each of the K stripes. Let X0 ∼ pX0
with

supp(pX0
) = Cn and such that pX0

assigns an independent

and symmetric probability for each stripe to have +1 or −1
as its collective spin. For each σ ∈ Ωn, denote by σ(j) the

restriction of σ to Sj . For J ⊆ [K], we write σ(J ) for
(

σ(j)
)

j∈J . Similarly, we write σ̄(j) for the restriction of σ

to Dj , and define σ̄(J ), for J ⊆ [K], analogously. With

some abuse of notation, let N
(+)
j (σ) be the number of plus-

labeled sites inside Sj . Furthermore, for each j ∈ [K], let

ψj : Ωn → Sj be the majority decoder inside Sj , i.e.,

ψj(σ) =

{

+1. N
(+)
j (σ) ≥

√
n
2

−1, N
(+)
j (σ) <

√
n
2

. (16)

Note that X0 and ψj(Xt) are related through a binary

channel that inputs a monochromatic stripe X
(j)
0 (equiprob-

ably all-minus or all-plus), and outputs +1 if N
(+)
j (t) ,

N
(+)
j (Xt) ≥

√
n
2 and −1 if N

(+)
j (t) <

√
n
2 . If X0 = σ

with σ(j) = ⊞ ∈ {−1,+1}Sj , then the crossover probability

is p
(j)
+ (σ, t) , Pσ

(

N
(+)
j (t) <

√
n
2

)

, while if X0 = σ′ with

σ′(j) = ⊟, then it is p
(j)
− (σ′, t) , Pσ′

(

N
(+)
j (t) ≥

√
n
2

)

. The

transition probabilities are specified by the initial configuration

through the entire region outside of Sj . Thus, for each j ∈ [K],
any σout

j , σ[K]\{j} ∈ {−1,+1}V\Sj defines a binary (in

general, asymmetric) channel from {⊟,⊞} ⊂ {−1,+1}Sj to

{−1,+1} with the crossover probabilities given above.

For a each j ∈ [K], let Tj : {−1,+1}Sj → Ωn be a

transformation defined by

(

Tjσ
(j)

)

(v) =

{

σ(j)(v), v ∈ Sj ,

−σ(j)(u), v /∈ Sj

. (17)

where u is the bottom left vertex in Sj .5 By monotonic-

ity of the SIC (see [4, Appendix F]), we have that for

any j ∈ [K], t ≥ 0 and σ ∈ Cn, if σ(j) = ⊞

then p
(j)
+ (σ, t) ≤ p

(j)
+ (Tjσ

(j), t), while if σ(j) = ⊟ then

p
(j)
− (σ, t) ≤ p

(j)
− (Tjσ

(j), t). This means that among all con-

figurations σ ∈ Cn that agree on σ(j), Tjσ
(j) is the one that

induces the highest crossover probability in the corresponding

4Technically, we allow a wider separation between the two top stripes (to
get a minimal distance of at least 2); for simplicity of notation, we henceforth
assume all these widths are exactly 2

5This choice is arbitrary because subsequently Tj is only applied on
portions of configuration from Cn and for σ ∈ Cn, the Sj regions are
monochromatic.

binary channel when σ(j) is transmitted. Furthermore, Corol-

lary 3 states that for t = t0 , ecβ , where c ∈ (0, 1), both

these probabilities are upper bounded by 1
3 , which implies

that the worst binary channel for each Sj region is the BSC

with crossover probability 1
3 . The latter has a positive capacity

of CBSC

(

1
3

)

= 1− h
(

1
3

)

, with Ber
(

1
2

)

achieving capacity.

Combining these pieces we have

I(β)n (t) ≥ I(X0;Xt0)

(a)
=

∑

j∈[K]

I
(

X̄
(j)
0 ;Xt0

∣

∣

∣
X̄

[j−1]
0

)

(b)

≥
∑

j∈[K]

I
(

X̄
(j)
0 ;ψj(Xt0)

∣

∣

∣
X̄

[j−1]
0

)

(c)

≥ K · CBSC

(

1

3

)

(18)

where (a) is the mutual information chain rule, (b) uses

I(A;B) ≥ I
(

A; f(B)
)

for any deterministic function f , while

(c) is because the capacity of a binary (asymmetric) channel

is a monotone decreasing function of both its crossover

probabilities. We conclude by recalling that K = Θ(
√
n). �
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