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Abstract—We study a distributed hypothesis testing problem
where two parties observe i.i.d. samples from two ρ-correlated
standard normal random variables X and Y . The party that
observes the X-samples can communicate R bits per sample to
the second party, that observes the Y -samples, in order to test
between two correlation values. We investigate the best possible
type-II error subject to a fixed type-I error, and derive an upper
(impossibility) bound on the associated type-II error exponent.
Our techniques include representing the conditional Y -samples
as a trajectory of the Ornstein-Uhlenbeck process, and bounding
the associated KL divergence using the subadditivity of the
Wasserstein distance and the Gaussian Talagrand inequality.

I. INTRODUCTION

We study the problem of distributively testing between two
possible correlation values ρ0 or ρ1 of a bivariate Gaussian
vector (X,Y ) from i.i.d. samples, where the party observing
the X-samples can send a message of rate R bits per sample
to the party observing the Y -samples. We investigate the best
possible type-II error exponent, under the constraint that the
type-I error is small.

The problem of hypothesis testing with communication
constraints was introduced by Berger in [1] and was addressed
by several authors where the vast majority of works deals with
achievability schemes, e.g., [2], [3], [4], [5], [6], [7]. Several
extensions where proposed e.g. distributed hypothesis testing
with interaction [8], feedback [9], security considerations
[10] and noisy channels [11]. The first work that introduced
nontrivial upper (converse) bounds to the error exponent of
the general problem of distributed hypothesis testing was by
Rahman and Wagner [12]. They applied their general result to
the Gaussian case and showed (numerically) that the obtained
upper bound is close to the lower bound of Ahlswede and
Csiszár [2]. A related setup was addressed by the present
authors in a recent work [13] in the context of distributed
correlation estimation, which is reduced to hypothesis testing
with vanishing |ρ1 − ρ0|. In that work we obtained lower
bounds on the minimax mean squared error in a regime where
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the amount of communication is fixed (i.e. R → 0) and
interaction is allowed.

In this work we obtain a new upper bound on the error
exponent that holds for all positive correlation values, and im-
proves upon [12] for certain values of ρ0, ρ1, including regions
where [12] is not defined. Loosely speaking, our approach
is the following. We represent the Y -samples, conditioned
on the message, as a trajectory of the Ornstein-Uhlenbeck
process Yt, where the process time-index t corresponds to a
correlation value of ρ = e−t. The error exponent can be upper
bounded using the data processing inequality, by controlling
the expectation of the KL divergence D(Yt0‖Yt1). We are
therefore interested in relating D(Yt0‖Yt1) to the communi-
cation constraint, which is shown to be upper bounded by
the expectation of D(Y0‖Y∞). The aforementioned relation
is established by first upper bounding the KL divergence
using the quadratic Wasserstein distance W2(Yt0 , Yt1), then
relating W2(Yt0 , Yt1) to W2(Y0, Y∞) via subadditivity of the
Wassertein distance, and finally by applying the Gaussian
Talagrand inequality to bound the Wasserstein distance by
the KL divergence. We further optimize the obtained bound
using a device of shifting the correlation values by introducing
common randomness, similarly to the method proposed in
[12].

Let us proceed to formally define the problem. Alice ob-
serves Xn and Bob observes Y n, where {Xk, Yk}nk=1 are
i.i.d. pairs of correlated Gaussian r.v.s. It is known that the
correlation is either ρ0 or ρ1. Alice can send Bob a message
W of rate R bits per sample, i.e., such that W − Xn − Y n
and H(W ) ≤ nR. We call such a message a rate-R encoding.
Bob in turn decides between ρ0 and ρ1, based on (W,Y n).
His binary decision is denoted here by U ∈ {0, 1}, where
U − (Y n,W ) − Xn. Below, we use P and Q to denote
probabilities of r.v.s under correlations ρ0 and ρ1, respectively.
Define

γ∗(n,R, ε) , inf QU (0) (1)

where the infimum is taken over all rate-R encodings W and
all binary decisions U satisfying PU (1) ≤ ε. Namely, γ∗ is
the minimal possible false alarm probability for a misdetect
probability of at most ε.

We are interested in the Stein exponent, defined as

s(R) , inf
ε>0

lim sup
n→∞

− 1

n
log γ∗(n,R, ε). (2)

The case where ρ1 = 0 corresponds to the so-called special
setup of testing against independence, namely where X and



Y are independent under the alternative hypothesis (with the
same marginals under both hypotheses). This problem was
introduced and completely solved by Ahlswede and Csiszár
for general distributions [2] yielding

s(R) = max I(U ;Y ) (3)

where the maximization is taken over all U such that U −
X − Y , and I(X;U) ≤ R. This exact characterization, and
in particular the upper (converse) bound, is facilitated by the
fact that the KL divergence associated with the type-II error
becomes a mutual information in this special case.

The general case of testing between two arbitrary distribu-
tions is notoriously difficult. In the same paper [2], Ahlswede
and Csiszár obtained a lower (achievability) bound given by

s(R) ≥ max{D(PX‖QX) +D(PUY ‖QUY )} (4)

where the maximization is over all r.v.s U satisfying
I(U ;X) ≤ R and U − X − Y . This was later improved
in [3] and [4]. Specializing to our Gaussian case and using
a Gaussian channel PU |X (this was not shown to be the
maximizer) yields

s(R) ≥ 1

2
log

1− ρ21(1− 2−2R)

1− ρ20(1− 2−2R)
(5)

− ρ1(ρ0 − ρ1)(1− 2−2R) log e

1− ρ21(1− 2−2R)
.

Note that the rates and log in this paper have base 2. As
mentioned in [12], one can use the lower bounds of [3], [4],
but they are quite complicated, and Ahlswede and Csiszár’s
lower bound is close to the upper bound of [12] for some
cases.

To the best of our knowledge, the only nontrivial upper
bound in the general setting, as well as in the Gaussian
setup we consider here, is by Rahman and Wagner [12]
(building on an original converse technique of introducing
conditional independence by Wagner and Anantharam [14]
in the context of distributed source coding). In that work,
the authors cleverly augment the probability space with an
additional side-information Z supplied to both Alice and Bob,
such that X − Z − Y holds under the alternative hypothesis.
They then proceed to solve this new problem of testing against
conditional independence, again utilizing the fact that the KL
divergence reduces to a mutual information, and finally they
optimize over the choice of Z to obtain the tightest upper
(impossibility) bound on the Stein exponent with no side-
information. As an example, they applied their bound to the
Gaussian case considered in this paper. In the case where both
correlations have the same sign (say, positive), which is the
case we handle in this paper, their bound is nontrivial in the
region 0 ≤ ρ1 ≤ ρ0+1

2 , where it is given by

s(R) ≤ 1

2
log

1

1−
(
ρ0−ρ1
1−ρ1

)2
(1− 2−2R)

. (6)
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Fig. 1. Bounds for the error exponent. Depicted as a function of ρ1 for fixed
values of ρ0 and R is our bound (8) along with the centralized (7), Rahman
and Wagner’s (6) (wherever it is defined) and the lower bound of Ahlswede
and Csiszár (5).

Outside that region, the only known upper bound is the trivial
centralized bound, i.e. where R =∞, which is easily obtained
using Stein‘s lemma to yield (see [12])

s(∞) =
1

2
log

1− ρ21
1− ρ20

− ρ1(ρ0 − ρ1) log e
1− ρ21

(7)

II. MAIN RESULT

Our main result is a new upper bound on the Stein exponent
in the Gaussian setup. We stress that while tailored to the
Gaussian case, our approach attacks the problem of general
correlations without resorting to a direct reduction to a case
of independent samples.

Theorem 1. For any ρ0, ρ1 ≥ 0, the Stein exponent satisfies

s(R) ≤ R(
1−min{ρ0,ρ1}

ρ1−ρ0

)2
− 1

. (8)

We prove Theorem 1 in Section III. Our proof makes use of
dimension-independent arguments, hence our bound is natu-
rally nontrivial only for very small rates, but can nevertheless
improve upon the known bounds in such regions. This is
demonstrated in Figure 1, which depicts our upper bound for
R = 0.01 as a function of ρ1, along with the centralized
upper bound as well as Rahman and Wagner’s upper bound
(wherever it holds), and also Ahlswede and Csiszár’s lower
bound. Figure 2 shows these bounds as a function of R for
fixed correlations values.

The result we obtained for the Gaussian case can be applied
to the case where X,Y are ρ′-correlated binary r.v.s, i.e. where

Pr(X = x, Y = y) =
1 + (−1)1(x 6=y)ρ′

4
. (9)
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Fig. 2. Bounds for the error exponent. Depicted as a function of the rate R for
fixed values of ρ0 and ρ1 (for which Rahman and Wagner’s bound is defined)
is our bound (8) along with the centralized (7), Rahman and Wagner’s (6) and
the lower bound of Ahlswede and Csiszár (5).

This is done by having both terminals take the signs of
their local Gaussian measurements to obtain binary ones with
correlation ρ′ = 2

π arcsin ρ. This immediately implies the
following.

Corollary 2. Theorem 1 holds for the case where X,Y are ρ-
correlated binary with (ρ0, ρ1) replaced by (sin πρ0

2 , sin πρ1
2 ).

III. PROOF OF MAIN RESULT

The following Lemma is key in proving Theorem 1.

Lemma 3. For any ρ0, ρ1 ≥ 0 and any encoding W of Xn,

ED(PY n|W (·|W )‖QY n|W (·|W )) (10)

≤ (ρ0 + ρ1)
2

1−max{ρ20, ρ21}
·H(W ). (11)

Before we prove Lemma 3 we need the following result.
Recall that in one dimension, the Ornstein-Uhlenbeck process
is a continuous-time Markov process with generator

Lf(x) = f ′′(x)− xf ′(x) (12)

and corresponding semigroup operator

Ptf(x) = Ef
(
e−tx+

√
1− e−tZ

)
, Z ∼ N (0, 1). (13)

It admits N (0, 1) as a stationary distribution. As can be seen,
the connection to our setup is that the induced channel at
time t is Gaussian Y = e−tX +

√
1− e−tZ, with e−t as the

correlation parameter. The associated n-dimensional Ornstein-
Uhlenbeck semigroup over Rn is the product semigroup P⊗nt .

Lemma 4. Let µt be the distribution at time t of the
Markov process associated with the n-dimensional Ornstein-
Uhlenbeck semigroup. Then for any t, τ ≥ 0,

W2(µt, µτ ) ≤ (e−t + e−τ )W2(µ0, µ∞). (14)

Proof. In the following we consider the scalar case (i.e.
n = 1), which extends to the vector case by applying it per
coordinate. Let X ∼ µ0, Z ∼ µ∞ = N (0, 1) and Z ′ an
independent copy of Z. For any 0 ≤ s ≤ t, using the triangle
inequality we have

W2(µs, µt) (15)

=W2(e
−sX +

√
1− e−2sZ, e−tX +

√
1− e−2tZ) (16)

≤W2(e
−sX +

√
1− e−2sZ,Z)

+W2(e
−tX +

√
1− e−2tZ,Z). (17)

From the subadditivity of the Wasserstein distance (see
e.g. [15, Proposition 7.17]), we can further bound

W2(e
−sX +

√
1− e−2sZ,Z) (18)

=W2(e
−sX +

√
1− e−2sZ, e−sZ +

√
1− e−2sZ ′) (19)

≤W2(e
−sX, e−sZ) (20)

= e−sW2(X,Z). (21)

Thus

W2(µs, µt) ≤ (e−s + e−t)W2(X,Z). (22)

Remark 5. We can also bound W2(µt, µτ ) using Otto-
Villani’s short-time estimates for gradient flows [16, eq.
(24.21)],

W2(µt, µτ ) ≤ min

{
|τ − t|

min{t, τ}
,

√
|τ − t|

min{t, τ}

}
W2(µ0, µ∞).

(23)

However, this does not further improves our bound.

Proof of Lemma 3. We use the natural base for the divergence
in this proof. Let Z ∼ N (0, σ2In×n), and let (A,B) be
any jointly distributed vectors in Rn, independent of Z. The
divergence between two normal distributions is given by

D(N (a, σ2In×n)‖N (b, σ2In×n)) =
‖a− b‖2

2σ2
. (24)

From the joint convexity of D(P‖Q) in P and Q, we have

D(pA+Z‖pB+Z) ≤ ED(N (A, σ2In×n)‖N (B, σ2In×n))

(25)

=
E‖A−B‖2

2σ2
. (26)

Let µt(w) be the distribution at time t of the Markov process
associated with the Ornstein-Uhlenbeck semigroup initialized
with µ0(w) = pX|W=w. Recall that pXW does not depend on
the correlation, and that the process is ergodic, with µ∞ = µ



where µ = N (0, 1)⊗n is the stationary distribution. Recall
also that the correlation at time t is e−t.

Now, set

t = − lnmax{ρ0, ρ1} (27)
τ = − lnmin{ρ0, ρ1} (28)

and pick any 0 ≤ α < t. Set the marginals A ∼ µτ−α and
B ∼ µt−α, and the noise level σ2 = 1− e−2α. Then

D(µτ‖µt) = D(pe−αA+Z‖pe−αB+Z) (29)

≤ e−2αE‖A−B‖2

2(1− e−2α)
. (30)

Minimizing over all the couplings (A,B) with these
marginals, we obtain

D(µτ‖µt) ≤
e−2α

2(1− e−2α)
W 2

2 (µt−α, µτ−α). (31)

where W2 is the 2-Wasserstein metric induced by the Eu-
clidean metric (Bound (30) was the basis of [17]).

Applying Lemma 4, followed by the well-known Gaussian
Talagrand inequality (see e.g. [18, Theorem 8.10]), which
states

W 2
2 (µ0, µ∞) ≤ 2D(µ0‖µ∞), (32)

yields

D(µτ‖µt) ≤
(e−(t−α) + e−(τ−α))2

e2α − 1
D(µ0‖µ∞), (33)

which is minimized at α = t.
Recalling that pXW does not depend on the correlation, we

have

I(X;W ) = D(pXW ‖pXpW ) (34)
= ED(µ0(W )‖pX) (35)
= ED(µ0(W )‖µ∞(W )). (36)

Thus, using (33), we obtain

ED(µτ (W )‖µt(W )) ≤ (e−t + e−τ )2

1− e−2t
I(X;W ). (37)

The claim now follows due to the symmetry of (29) in t, τ ,
and since I(X;W ) ≤ H(W ).

We can now prove our main result.

Proof of Theorem 1. Let W be a rate-R encoding of Xn on
Alice’s side, and U be a binary decision using (W,Y n) on
Bob’s side, such that PU (1) = ε′ ≤ ε. Write γ = QU (0),
and d(·‖·) for the binary KL divergence. Then by the data
processing inequality,

d(1− ε′‖γ) = D(PU‖QU ) (38)
≤ D(PY nW ‖QY nW ). (39)

We now introduce common randomness in order to shift
the correlations, similar to the method proposed in [12], as

follows. Let Zn be i.i.d. N (0, 1) independent of (Xn, Y n),
and let, for every i ∈ [n] and some λ ∈ [0, 1],

X ′i = λZi +
√
1− λ2Xi (40)

Y ′i = λZi +
√
1− λ2Yi. (41)

It follows that if (Xi, Yi) are bivariate standard normal with
correlation ρ then (X ′i, Y

′
i ) are bivariate standard normal with

correlation λ2 + (1 − λ2)ρ. For any λ2 ≤ min{ρ0, ρ1}
denote by Pλ, Qλ the respective distributions with correlations
ρ0−λ2

1−λ2 ,
ρ1−λ2

1−λ2 . Then

d(1− ε′‖γ) ≤ ED(PY nW |Zn‖QY nW |Zn) (42)

= D(PλY nW ‖QλY nW ) (43)

= ED(PλY n|W ‖Q
λ
Y n|W ) (44)

≤
(ρ0−λ

2

1−λ2 + ρ1−λ2

1−λ2 )2

1−max{(ρ0−λ
2

1−λ2 )2, (ρ0−λ
2

1−λ2 )2}
·H(W ) (45)

by Lemma 3, which can be shown to be minimized by λ2 =
min{ρ0, ρ1} to yield

d(1− ε′‖γ) ≤ (ρ1 − ρ0)2

(1−min{ρ0, ρ1})2 − (ρ1 − ρ0)2
·H(W ).

(46)

On the other hand, we have

d(1− ε′‖γ) ≥ (1− ε′) log(1/γ)− h(ε′). (47)

Hence

log(1/γ) ≤
(ρ1−ρ0)2

(1−min{ρ0,ρ1})2−(ρ1−ρ0)2nR+ h(ε′)

1− ε′
(48)

and the claim follows.
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