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Abstract—We consider the classic joint source-channel
coding problem of transmitting a memoryless source over a
memoryless channel. The focus of this work is on the rate of
convergence of the smallest attainable expected distortion
to its asymptotic value, as a function of blocklength n.
Our main result is that in general the convergence rate is
not faster than n−1/2. In particular, we show that for the
problem of transmitting i.i.d uniform bits over a binary
symmetric channels with Hamming distortion, the smallest
attainable distortion (bit error rate) is at least Ω(n−1/2)
above the asymptotic value, if the “bandwidth expansion
ratio” is above 1.

I. INTRODUCTION

We consider the classical point-to-point joint source-
channel coding (JSCC) problem, depicted in Figure 1.
In this setup, an encoder observes a sequence Sm =
(S1, . . . , Sm) of i.i.d. samples generated according to the
distribution PS , and would like to convey this sequence
using n uses of a memoryless channel QY |X . To that
end, an encoding function E : Sm 7→ Xn is used. The
channel input Xn is transmitted through the channel
Q⊗n

Y n|Xn(y
n|xn) =

∏n
i=1 QY |X(yi|xi) and the decoder

that observes the channel output Y n, generates an esti-
mate Ŝm = (Ŝ1, . . . , Ŝm) of the source sequence, using
a decoding function D : Yn 7→ Ŝm. Let d : S × Ŝ 7→ R
be some distortion measure, and define

d(Sm, Ŝm) =

m∑
i=1

d(Si, Ŝi). (1)

For a given source-channel pair, one is interested in
the statistics of the distortion d(Sm, Ŝm) that may be
obtained, as a function of the blocklengths m and n. It
is convenient to think of the bandwidth expansion ratio
ρ = n/m as fixed (ignoring rounding effects), and then
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consider the performance as a function of n. As the full
statistics of the distortion are complicated, usually one of
two figures of merit is considered: the expected distortion

D =
1

m
Ed(Sm, Ŝm),

or the excess-distortion probability, which for any thresh-
old D is given by

ϵ(D) = Pr

[
1

m
d(Sm, Ŝm) > D

]
.

For expected distortion, we define the fundamental
limit for the JSCC problem by the function

D∗
n ≜ D∗(n, ρ, PS , QY |X) ≜ 1

m
min

E:Sm 7→Xn

D:Yn 7→Ŝm

Ed(Sm, Ŝm).

By the separation principle [1], we have that

D∗
∞ ≜ lim

n→∞
D∗(n, ρ, PS , QY |X) = DPS

(ρC(QY |X)),

where DPS
(R) is the distortion-rate function of a source

with distribution PS , and C(QY |X) is the capacity of the
channel QY |X .

In terms of excess distortion, many facts are known
about the convergence of the distortion, in terms of large-
deviation and second-order asymptotics, as well as finite-
blocklength bounds [2]–[4]. This work, on the contrary,
studies the convergence of the expected distortion, which
is a much less understood quantity. To that end, we define
and study the quantity

∆∗
n ≜ ∆∗(n, ρ, PS , QY |X) ≜ D∗

n −D∗
∞.

A special case of the JSCC problem is the lossy source
coding problem, obtained by taking the channel QY |X
as a clean bit-pipe of rate R. In this case, it is known [5],
[6] that ∆∗

n = O
(

logn
n

)
for any discrete source and rate

R > 0. It is therefore natural to ask whether this holds
in general for the JSCC problem.

For some source-channel pairs, e.g. for the problem
of sending a binary symmetric source (BSS) over a



Sm E(Sm)
Xn

Q⊗n
Y |X

Y n

D(Y n) Ŝm

Fig. 1. The (n, ρ, PS , QY |X) joint source channel coding problem.
It is assumed that n = ρm.

binary symmetric channel (BSC) under expected Ham-
ming distortion with ρ = 1, the optimal asymptotic
distortion is already achievable using a scalar scheme.
In light of this, one might hope that a low redundancy
is possible in general. However, this work proves that it
is not the case, by showing that there exist distributions
PS and channels QY |X for which ∆∗

n = Ω
(

1√
n

)
. In

particular, we study the very same symmetric binary-
Hamming problem mentioned above, but with ρ > 1,
and derive a lower bound on D∗

n. We note that it is still
not clear whether this is the correct scaling in general.
A straightforward separation approach only suffices to

show that ∆∗
n = O

(√
logn
n

)
, and to the best of our

knowledge no general JSCC coding scheme that achieves
better scaling in general is known. See [7] for a more
comprehensive discussion.

II. MAIN RESULT

We study the binary symmetric joint source-channel
coding problem, depicted in Figure 2, which is a special
case of the general problem introduced above. The
source is binary symmetric S ∼ Ber(1/2), the channel
QY |X is BSC(δ) with δ < 1/2, the reconstruction
alphabet is Ŝ = {0, 1} and the distortion measure is
Hamming, i.e., d(S, Ŝ) = 1{S ̸=Ŝ}, such that

d(Sm, Ŝm) =
1

m

m∑
i=1

1{Si ̸=Ŝi}.

We define the binary entropy function1

hb(x) = −x log x− (1− x) log(1− x)

and its inverse restricted to the interval [0, 1/2] as h−1
b (·).

For 0 ≤ a, b ≤ 1 we also define the binary convolution

a ∗ b = a(1− b) + b(1− a).

For two binary variables, or vectors, the notation + is
to be understood as addition modulo-2.

Consider the BSS-BSC above and let Zn ∼ Ber(δ)⊗n

independent of Xn. The minimum expected Hamming
distortion is given by

D∗(n, ρ, δ) ≜ 1

m
min
E,D

EdH(Sm,D(E(Sm) + Zn)),

1Throughout, logarithms are taken to the natural base.
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Fig. 2. The n(ρ, δ) binary joint source-channel coding problem. it is
assumed that n = ρm.
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Fig. 3. Binary spherical noise JSCC broadcast problem.

where the minimization over all mappings E :
{0, 1}m 7→ {0, 1}n and D : {0, 1}n 7→ {0, 1}m. The
redundancy is

∆∗
n = ∆∗(n, ρ, δ) ≜ D∗(n, ρ, δ)−D(ρ, δ),

where

D(ρ, δ) ≜ h−1
b (log 2− ρ(log 2− hb(δ))), (2)

is the asymptotic value of D∗(n, ρ, δ).
In this problem, it is well known that ∆∗

n = 0 for all
n, when ρ = 1. Here, we will give a non-trivial lower
bound for ρ > 1. The result is expressed in terms of the
function η(ρ, δ) which is explicitly stated in the sequel.

Theorem 1: In the binary JSCC problem defined
above, for all ρ > 1 we have that

∆∗
n ≥

√
δ(1− δ)

2πn
η(ρ, δ) +O(n−3/4 log n), (3)

where η(ρ, δ) is strictly positive whenever ρ > 1, 0 <
δ < 1/2 and D(ρ, δ) > 0.
In particular, this binary symmetric example serves to
show that in general,

∆∗(n, ρ, PS , QY |X) = Ω

(
1√
n

)
.

III. PROOF SKETCH: REDUCTION TO JSCC
BROADCAST

The proof of Theorem 1 relies upon the reduction of
the binary JSCC problem to the problem of sending a
binary source over a broadcast channel, for which we
then derive outer bounds on the achievable distortions
region. We now outline this reduction. The details are
straightforward but cumbersome, and are therefore omit-
ted in this extended abstract, but can be found in [7].
Here we use approximated equality or inequality, to say



that the correction terms will be below the 1/
√
n order

of interest.
We restrict our attention to δ such that δn is an

integer; this reduction is insignificant in our scale of
interest. We define the integer-valued random variable
K = wH(Zn)−δn, where wH(·) is the Hamming weight
of a vector. For a given encoder/decoder pair (E ,D) we
define

Ψ(k) ≜ E
[
1

m
dH (Sm,D (E(Sm) + Zn))

∣∣∣∣ K = k

]
= E

[
1

m
dH (Sm,D (E(Sm) + Un))

]
, (4)

where Un ∼ Uniform(Snδ+k,n), and where Sx,n is the
set of all length-n binary sequences with weight 0 ≤
x ≤ n, although the dependence is not made explicit.
We can then use iterated expectation to assert

E
[
1

m
dH (Sm,D (E(Sm) + Zn))

]
= E [Ψ(K)]

= E
[
E
[
Ψ(K)

∣∣∣∣ |K|
]]

.

We then show that it is enough to consider a range of K
around 0 that scales no faster than

√
n, and that within

this range

E
[
Ψ(K)

∣∣∣∣ |K| = k0

]
≈ 1

2
Ψ(k0) +

1

2
Ψ(−k0).

That is, we take A = |K|/
√
n and consider bounded A.

Thus,

2E [Ψ(K)||K|] ⪆ E
[
1

m
dH (Sm,D (E(Sm) + Un

1 ))

]
+ E

[
1

m
dH (Sm,D (E(Sm) + Un

2 ))

]
,

where Un
1 ∼ Uniform

(
S
n
(
δ− A√

n

)
,n

)
and Un

2 ∼

Uniform

(
S
n
(
δ+ A√

n

)
,n

)
.

We now make the following relaxations: we let the
encoder and decoder vary as a function of A, and further
for any value of A we allow different decoders for the
channel with additive noise Un

1 and the channel with
additive noise Un

2 . Thus we have that

2D∗(n, ρ, δ) ⪆ E [D(A)] ,

where

D(a) ≜ 1

m
min

E,D1,D2

E [dH (Sm,D1 (E(Sm) + Un
1 ))]

+ E [dH (Sm,D2 (E(Sm) + Un
2 ))] .

This last quantity is the sum-distortion in a problem
of JSCC broadcast with spherical noise. We study that
JSCC broadcast problem, and prove that

D(a) ⪆ 2D(ρ, δ) +
a√
n
η(ρ, δ). (5)

Thus,

D∗(n, ρ, δ) ⪆ D(ρ, δ) +
E[A]

2
√
n
η(ρ, δ).

The result of the theorem follows since A is approxi-
mately the absolute value of a normal variable with zero
mean and variance δ(1− δ), thus

E[A] ≈
√

2δ(1− δ)

π
.

IV. BACKGROUND: JSCC BROADCAST

In this section we bring the general results we use
regarding the problem of sending a source over a broad-
cast channel, from [8]. Then, we will specialize them for
the additive spherical noise broadcast channel, in order
to derive (5).

Consider the problem of sending a source over a
broadcast channel, or simply, the JSCC broadcast prob-
lem. In this setup, an encoder observes a sequence Sm =
(S1, . . . , Sm) of m i.i.d. samples generated according to
the distribution PS , and would like to send this sequence
through the broadcast channel QY n

1 ,Y n
2 |Xn , which may

not be memoryless, nor degraded. To that end, the
encoder maps the source sequence Sm to the channel
input Xn using an encoding function E : Sm 7→ Xn.
The channel input Xn is transmitted through the channel
and the first receiver, which observes the channel output
Y n
1 , generates an estimate Ŝm

1 of the source sequence,
using a decoding function D1 : Yn

1 7→ Ŝm, whereas the
second receiver, which observes the channel output Y n

2 ,
generates an estimate Ŝm

2 of the source sequence, using
a decoding function D2 : Yn

2 7→ Ŝm. For simplicity we
assume that the reconstruction alphabets Ŝ1, Ŝ2 are iden-
tical, and that the quality of the two reconstructions are
measured with respect to the same separable distortion
measure d : S × Ŝ 7→ R as

Di =
1

m
Ed(Sm, Ŝm

i ), i = 1, 2, (6)

but the results easily extend to the more general case.
For given m, n, PS , and QY n

1 ,Y n
2 |Xn , a distortion

pair (D1, D2) is said to be achievable if there exist
(E ,D1,D2) such that E[d(Sm, Ŝm

i )] ≤ Di for i = 1, 2.
We use ρ = n/m as in the point-to-point setting. Our
goal is to establish an outer bound on the achievable
pairs (D1, D2).

For our results, we need the following functions of
the source. We define an auxiliary variable U via a
conditional distribution PU |S . By combining with the



given PS we obtain P = PS,U . With respect to this
distribution, we define:

FP (t) ≜ min
V : U−S−V
I(S;V )≥t

I(S;V |U), (7)

R̄P (D) ≜ min
Ŝ : U−S−Ŝ
Ed(S,Ŝ)≤D

I(U ; Ŝ). (8)

Notice that when U = S the function R̄P (D) reduces
to the rate-distortion function RPS

(D) of the source S.
Furthermore, we define the following function of the
channel Qn = QY n

1 ,Y n
2 |Xn(yn1 , y

n
2 |xn),

GQn(t) ≜ max
W,Xn : W−Xn−Y n

1 −Y n
2

I(Xn;Y n
1 |W )≥t

I(Y n
2 ;W ). (9)

The following theorem is proved in [8], and is based
on generalizing a technique developed by Reznic, Feder
and Zamir [9] for the Gaussian joint source-channel
coding broadcast problem.

Theorem 2: Consider the problem of transmitting m
realizations of the i.i.d. source S ∼ PS , over the n-letter
broadcast channel Qn. If (D1, D2) is achievable, then
for any PU |S we have that

R̄P (D2) ≤
1

m
·GQn (mFP (RPS

(D1))) , (10)

where P = PSPU |S is the joint distribution on (S,U)
induced by the choice of PU |S .

For the memoryless degraded case, the bound (10)
single-leterizes [8], and can be obtained as a special
case of [10, Theorem 5]. For example, consider trans-
mission of a BSS over a degraded memoryless BSC,
with crossover probabilities δ1 and δ1 ∗ δ2. Evaluating
the quantities involved in the bound requires choosing
an auxiliary test channel PU |S . Choosing a binary sym-
metric test channel with crossover probability q yields:

FP (t) = t− log 2 + hb

(
q ∗ h−1 (log 2− t)

)
, (11a)

R̄P (D) = log 2− hb(q ∗D), (11b)

while the channel function single-letterizes as:

1

n
GQn(nt) = log 2− hb

(
δ2 ∗ h−1

b (hb(δ1) + t)
)

≜ GBSC(t). (12)

These quantities can be substituted in (10) to obtain an
explicit bound.

V. JSCC BROADCAST WITH SPHERICAL NOISE

Next, we would like to specialize the bound from
Theorem 2 to the binary spherical noise JSCC broadcast
problem. The functions FP (t) and R̄P (D) tensorize
and for a binary-symmetric S are given by (11) for
PU |S = BSC(q). The function GQn , on the other hand,
requires solving, or bounding the solution of, an n-letter

optimization, which is in general a challenging task.
Nevertheless, for the additive spherical noise broadcast
channel (which is neither memoryless, nor degraded),
we derive an upper bound on 1

nGQn(nt) that, up to
some correction terms, agrees with the function GBSC(t)
corresponding to a memoryless additive noise broadcast
channel with the same marginal noise distribution, i.e.,
a BSC(δ1, δ1 ∗ δ2) broadcast channels. In particular, we
prove the following.

Lemma 1: Let Qn = QY n
1 ,Y n

2 |Xn(yn1 , y
n
2 |xn) be the

additive spherical-noise broadcast channel Y n
1 = Xn +

Un
1 , Y2 = Xn+Un

2 , where Un
1 ∼ Uniform (Snδ1,n) and

Un
2 ∼ Uniform

(
Sn(δ1∗δ2),n

)
, (Un

1 , U
n
2 ) ⊥⊥ Xn. Then

1

n
GQn(nt) ≤ GBSC(t) + Γ(n, δ2),

where GBSC(t) is given by (12), and

Γ(n, δ2) ≜
√

δ2
n

log

(
n

δ2

)
+

log n+ 1

2n
. (13)

Proof. Let (W,Xn) satisfy the Markov chain W−Xn−
(Y n

1 = Xn+Un
1 , Y

n
2 = Xn+Un

2 ). We begin by writing

H(Y n
2 |W ) = H(Xn + Un

1 + Zn
3 |W ) + κ (14)

where
κ = H(Xn + Un

2 |W )−H(Xn + Un
1 + Zn

3 |W ),

and where Zn
3 ∼ Ber(δ2)

⊗n. We will upper bound the
absolute value of κ via coupling. Consider the following
joint distribution on (Un

2 , U
n
1 + Zn

3 ):

• Let Π be a uniform random permutation on [n] =
{1, . . . , n}.

• Let T = T0 + T1 where T0 ∼ Binomial(n(1 −
δ1), δ2) and T1 ∼ Binomial(nδ1, 1− δ2) are inde-
pendent.

• Set U2,Π(i) = 1 for i = 1, . . . , (δ1 ∗ δ2)n and
UΠ(i) = 0 for i = (δ1 ∗ δ2)n+ 1, . . . , n.

• Set U1,Π(i) + Z3,Π(i) = 1 for i = 1, . . . , T and
U1,Π(i) + Z3,Π(i) = 0 for i = T + 1, . . . , n.

Clearly Un
2 and Un

1 + Zn
3 have the correct marginal

distributions. Moreover, the expected Hamming distance
between these vectors satisfies

EwH(Un
2 + (Un

1 + Zn
3 )) = E|T − n(δ1 ∗ δ2)|

= E
√
(T − n(δ1 ∗ δ2))2

≤
√
Var(T )

=
√
Var(T1) + Var(T2)

=
√
nδ2(1− δ2) ≤

√
nδ2,



where the first inequality follows from Jensen’s in-
equality and the fact that E(T ) = n(δ1 ∗ δ2). Now,
applying [11, Proposition 8], we obtain for δ2 < 1/2

|κ| = |H(Xn + Un
2 |W )−H(Xn + Un

1 + Zn
3 |W )|

≤
√

nδ2 log

(
n

δ2

)
.

Thus, we can use Mrs. Gerber’s Lemma (MGL) to lower
bound (14) as

H(Y n
2 |W ) ≥ H(Xn + Un

1 + Zn
3 |W )−

√
nδ2 log

(
n

δ2

)
≥ nφδ2

(
H(Xn + Un

1 |W )

n

)
−
√
nδ2 log

(
n

δ2

)
,

where φδ2(x) = hb(δ2 ∗ h−1(x)) is the MGL function.
Further bounding, we have

φδ2

(
H(Xn + Un

1 |W )

n

)
= φδ2

(
H(Un

1 ) + I(Xn;Y n
1 + |W )

n

)
≥ φδ2

(
nhb(δ1)− 1

2 (log n+ 1) + I(Xn;Y n
1 |W )

n

)
= φδ2

(
hb(δ1) +

I(Xn;Y n
1 |W )

n
− log n+ 1

2n

)
where for the inequality we substitute [12, Chapter 10,
Lemma 7] to lower-bound H(Un

1 ). Therefore

H(Y n
2 |W ) ≥ nφδ2

(
hb(δ1) +

I(Xn;Y n
1 |W )

n

)
.

− log n+ 1

2
φ′
δ2

(
hb(δ1) +

I(Xn;Y n
1 |W )

n

)
−
√
nδ2 log

(
n

δ2

)
,

where we have defined the MGL derivative φ′
δ2
(x) =

d
dxφδ2(x), and used the convexity of x 7→ φδ2(x) [13].
Recalling that φ′

δ2
(x) ≤ 1 due to [14, Theorem 2.6], the

claim now follows since H(Y n
2 ) ≤ n log 2.

Using Lemma 1, and (11), we can now apply Theo-
rem 2 for obtaining an outer bound on the achievable
(D1, D2) pairs for the binary spherical noise JSCC
broadcast problem.

Theorem 3: Consider the binary spherical noise JSCC
broadcast problem of transmitting a memoryless sym-
metric binary source Sm over the channels Y n

1 =
Xn + Un

1 , Y n
2 = Xn + Un

2 under Hamming dis-
tortion, where Un

1 ∼ Uniform (Snδ1,n) and Un
2 ∼

Uniform
(
Sn(δ1∗δ2),n

)
, (Un

1 , U
n
2 ) ⊥⊥ Xn. If (D1, D2) is

achievable, then for any 0 < q < 1/2

log 2− hb(q ∗D2) ≤ ρΓ(n, δ2)

+ ρ

[
log 2− hb

(
δ2 ∗ h−1

b

(
hb(δ1) +

βq(D1)

ρ

))]
,

where Γ(n, δ2) is as defined in (13), and βq(t) ≜ hb(q ∗
t)− hb(t).
Obtaining the lower bound (5) on D(a) from Theorem 3
is now merely a matter of considering the local properties
of the functions and performing algebraic manipulations.
See [7] for details. The constant η(ρ, δ) is given by:

η(ρ, δ) = 2ρ
log

(
1−δ
δ

)
log

(
1−D(ρ,δ)
D(ρ,δ)

) · 1 + f(ρ, δ)

f(ρ, δ)

· D(ρ, δ) (1− f(ρ, δ))
2

2f(ρ, δ) + 4D(ρ, δ) (1− f(ρ, δ))
,

where

Φ(δ) ≜ 2

(1− 2δ) log
(
1−δ
δ

) +
1

δ(1− δ) log2
(
1−δ
δ

)
f(ρ, δ) ≜ 1

ρ

Φ(δ)

Φ(D(ρ, δ))
.
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