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Abstract—We consider the Gaussian multiple-access
channel with two critical departures from the classical
asymptotics: a) number of users proportional to block-
length and b) each user sends a fixed number of data bits.
We provide improved bounds on the tradeoff between
the user density and the energy-per-bit. Interestingly, in
this information-theoretic problem we rely on Gordon’s
lemma from Gaussian process theory. From the engi-
neering standpoint, we discover a surprising new effect:
good coded-access schemes can achieve perfect multi-user
interference cancellation at low user density.

In addition, by a similar method we analyze the limits
of false-discovery in binary sparse regression problem
in the asymptotic regime of number of measurements
going to infinity at fixed ratios with problem dimension,
sparsity and noise level. Our rigorous bound matches
the formal replica-method prediction for some range of
parameters with imperceptible numerical precision.

I. INTRODUCTION

In this paper we consider the following two prob-
lems. First is the K-user AWGN multiple-access chan-
nel (MAC). The classical information theory analysis
assumes K fixed and takes the users’ data payload and
blocklength both growing to infinity. Following [1] we,
instead, consider fixed size of the payload and take
both K and blocklength growing to infinity (the case
of all three growing to infinity has been considered
in [2] under the name of many-user MAC). For this
problem we derive a new achievability bound, which
outperforms the one in [1] and (essentially) matches
the converse bound for a range of parameters. Our
bounds lead us to confirm the effect suggested in [1]:
there exists a critical density of users below which the
optimal decoder is able to completely “tune-out” all
other users and achieve performance as if each user
operated in isolation. This perfect multi-user interfer-
ence cancellation disappears for high user densities.

The second problem we address is sparse regression,
where (Gaussian) random linear combinations of an
unknown binary sparse vector are observed in (Gaus-
sian) noise and the goal is to reconstruct the vector
subject to bounds on probability of mis-detection and
false-detection rate. (As explained in [1] this problem
may be seen as the random-access version of the first
problem.) For this well-studied problem we prove new
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reconstruction bounds which almost match (i.e., in-
distinguishable numerically) the non-rigorous replica-
method prediction in a range of parameters. Note that
replica predictions for MMSE and mutual information
have recently been made rigorous [3]. Here we study
more singular metrics, probability of mis-detection
and false-discovery rates, where, to the best of our
knowledge, such rigorous results are not known.

We mention that all of our bounds are based on
exponential-time-complexity decoders, and as such are
not practically relevant except as benchmarks. For
benchmarking, the bounds have to be possible to
evaluate non-asymptotically, a property all our bounds
share, but replica-predictions in principle are not.
Other practical aspects of these problems, practical
motivation, and detailed discussion of prior work can
be found in [4]–[8].

Our proof proceeds by reducing either problem to
that of bounding the extrema of a certain Gaussian
process. We then proceed to bound the latter via the
use of Gordon’s lemma [9]. A lot of work on sparse
regression have been similarly reducing the analysis
to question of Gaussian width of tangent cones via
application of Gordon’s lemma. However, we consider
our approach novel for the following reasons.

Gordon’s inequality has been previously used to
study the performance of non-smooth convex opti-
mization methods (e.g. `1-minimization) in structured
signal recovery. The relevance of Gordon’s result to
such problems was first noted in [10] and was pop-
ularized mainly due to the works of Stojnic [11],
[12]. Since then it has been successfully used in a
series of papers, e.g. [13]–[18] under many different
settings. Most of these, involve analysis of the mean-
squared error, but more general error criteria (such as
bit-error rate) have been recently studied [19]. The
aforementioned literature is concerned with convex
decoders; in contrast, in this work (similar to [20])
we are interested in analyzing non-convex decoders.
In fact, we show in Section II that a “straightforward”
application of Gordon’s inequality as suggested in the
recent literature may yield suboptimal bounds on the
probability of error of our (non-convex) decoders. We
manage to get improvement by, instead, appropriately
combining Gordon’s inequality with Chernoff bounds.

Notation: Let φ(·) denote the Gaussian pdf and
Q−1(·) denote the inverse of the standard tail func-
tion Q(·) of the Gaussian distribution, i.e., Q(t) =∫∞
t
φ(s)ds. Also, for any χ ∈ R, we denote (χ)+ =

max{χ, 0} and, for ε ∈ (0, 1), we write h(ε) =
−ε ln(ε)− (1− ε) ln(1− ε) for the entropy function.



II. PROOF TECHNIQUES: BOUNDING EXTREMA OF
GAUSSIAN PROCESSES

To illustrate the technical tools needed, we consider
a simpler guiding problem. Let G ∈ Rεn×n with
entries i.i.d. N (0, 1) and u ∈ Rn fixed. Define

Vα , min
x∈Sα

1

n
‖Gx+ u‖2, (1)

where Sα , {x ∈ {0, 1}n : ‖x‖0 = αn} . Our
goal is to get tight lower bounds on the asymp-
totic lim infn→∞ E[Vα]. The map G 7→ Vα is

√
α
n -

Lipschitz; thus by concentration of measure instead
of bounding E[Vα] we look for r = r(α, ε, u) such
that Pr(Vα ≤ r) → 0 as n → ∞. Lemma 1 and 2
below show two ways to get such lower bound: a
more straightforward way using Chernoff inequality
and union bounds and a more sophisticated way using
Gordon’s inequality. It turns out neither method dom-
inates the other and for this reason both are used to
obtain our main results in Secs. III and IV.

Lemma 1 (Union bound & Chernoff). Fix α, ε ∈
(0, 1). Let r ∈ (0, αε] such that

r2E(
‖u‖22
r2n

,
√
αε) > h(α) (2)

where for v, a > 0

E(v, a) = min
λ≥0
{λ− 1

2
ln(1+2λa2)− λv

1 + 2λa2
}. (3)

Then for some c > 0, P [Vα ≤ r] ≤ e−cn as n→ +∞.

Remark 1. The minimizing λ for E(v, a) defined
in (3) equals λ∗ =

∣∣∣a2−2+√a4+4v
4a2

∣∣∣
+

.

Proof. First, for H ∼ N (0, Iεn) it follows from union
bound that

P[Vα ≤ r] ≤
(
n

αn

)
P[‖
√
αH + u‖2 ≤ r

√
n] (4)

To bound the last probability recall the identity

E
[
e−λ‖aZ+u‖22

]
= e
− λ‖u‖22

1+2a2λ /(1 + 2a2λ)
m
2 (5)

∀γ, a > 0, u ∈ Rm, Z ∼ N (0, Im). Applying Cher-
noff bound, thus, we get in the same notation:

P[‖aZ + u‖22 ≤ m] ≤ emE(‖u‖2/m,a) , (6)

where E(v, a) is as in (3). Plugging (6) into (4) and
using

(
n
αn

)
= e(1+o(1))h(α)n completes the proof.

Define

γ(s) ,
1√
2π
e−(Q

−1(s))2/2 , (7)

with a useful (and asymptotically tight as s→ 0) upper
bound γ(s) ≤ s

√
−2 ln s.

Lemma 2 (Gaussian process (GP) bound). For any

r <

√
αε+

‖u‖22
n
− γ(α) , (8)

where γ(·) was defined in (7), there exists C > 0 such
that P[Vα ≤ r] ≤ e−Cn for all n.

Proof. The proof is based on Gordon’s inequality [9].
By a now standard argument (we omit the details for

brevity but see e.g. [13, Cor. 3.3]) it holds that for all
values r such that

r <

√
α
E[‖h‖22]

n
+
‖u‖22
n
− 1

n
E[max
x∈Sα

gTx],

there exists constant C > 0 such that P [Vα ≤ r] ≤
e−Cn. Here, h ∼ N (0, Iεn) and g ∼ N (0, In). Note
that maxx∈Sα g

Tx =
∑αn
i=1 h

↓
i , where we denote the

entries of h sorted in decreasing order as h↓1 ≥ h↓2 ≥
. . . ≥ h↓n. It can be shown that E

[∑αn
i=1 h

↓
i

]
= γ(α)+

Oα(n−1/2) [20]. Moreover, E[‖h‖22] = (1 + o(1)) εn.
These combined with (8) complete the proof.

III. MULTIPLE-ACCESS CHANNEL

A. Problem formulation
Consider n channel uses of a standard K-user Gaus-

sian multiple-access channel (GMAC, cf. [21, Section
4.7]) with K = µn users, and where each user is send-
ing log2M bits. In coding-theoretic terms each user j
has a codebook of M vectors c(j)1 , . . . , c

(j)
M ∈ Rn, and

the receiver observes Y given by, Y =
∑K
j=1 c

(j)
Wj

+

Z, Z ∼ N (0, In) , where Wj
iid∼ Unif[M ] correspond

to user messages. Receiver’s task is to find estimates
Ŵj of true messages Wj with a per-user probability
of error (PUPE):

1

K

K∑
j=1

P[Wj 6= Ŵj ] ≤ ε . (9)

Notice that by linearity of expectation, (9) is equivalent
with at most εK expected number of estimate errors.
Designing the codebooks is crucially constrained by
the energy requirement:
‖c(j)m ‖22 ≤ 2E · log2M ∀j ∈ [K],m ∈ [M ] , (10)

where E is the energy-per-bit, or Eb
N0

. If
{c(j)m }j∈[K],m∈[M ] satisfy (10) and there exists
decoder satisfying (9), we say that {c(j)m }j∈[K],m∈[M ]

is an (n,M, ε, E ,K)-code. Our goal is to characterize
the following quantity
E∗(M,µ, ε) = lim

n→∞
inf{E : ∃(n,M, ε, E , µn)-code} ,

(11)
where as usual the limit is understood as lim inf or
lim sup depending on whether an upper or a lower
bound is given. The practical meaning of the quan-
tity E∗ is the fundamental energy requirement for
a massive number of (frame-synchronized and pre-
identified) users sharing the same spectrum at density
of µ users per real degree of freedom (rdof) and
communicating with fixed-size packets of log2M data
bits per packet.

Remark 2 (Finite payload). The idea of scaling K
with n has appeared before as many-user channel
formulation in [2]. However, the analysis there was
done for the fixed power per user (i.e. ‖c(j)m ‖22 = nP
for a fixed P > 0 and n→∞). This always results in
E → ∞ and log2M → ∞, and thus did not capture
neither the effects of finite payload size log2M nor
the stringent energy-per-bit requirements of IoT.

Remark 3 (Reasonable value of µ). Consider a
metropolitan area with 106-107 devices. The sub-GHz



ISM band is about 20 MHz wide. Therefore, if each
of the devices is active a few times per hour, we get
the ratio of 103-104 rdof per active user at any given
moment, i.e. µ = 10−4 to 10−3. Note that this number
is unlikely to vary significantly in the near future.

Remark 4 (Block-sparse regression formulation). We
can describe equivalently the encoding strategy by a
n × KM matrix X where columns M(j − 1) + 1
to Mj correspond to codewords of user j ∈ [K],
c
(j)
1 , . . . , c

(j)
M . For a certain vector β ∈ {0, 1}KM the

receiver observes Y = Xβ+Z where Z ∼ N (0, In) .
The vector β is uniformly distributed on the subset TM
of block-sparse vectors defined as{
β ∈ {0, 1}KM :

∑Mj

i=M(j−1)+1
βi = 1, ∀j ∈ [K]

}
The receiver’s task is to produce a block-sparse vector
β̂ ∈ TM with E[dH(β, β̂)] ≤ 2εK.

B. New bound based on Gaussian process inequalities
In Theorem 3 below, we present our main result,

which is an upper bound on E∗ (cf. (11)). Let us first
define the following function,

ψ(b, θ, µ) ,
(√

1 + b2θµ− bµγ(θ)
)
+
, (12)

where γ(·) is defined in (7).

Theorem 3 (Bound-MAC). Fix M,µ and ε. Then

E∗(M,µ, ε) ≤ inf
b2

2 log2M
,

where infimum is over all b > 0 such that for all θ ∈
[ε, 1] it holds that

θµ lnM + µh(θ) < max
λ≥0
{1
2
ln(1 + 2b2θµλ)+

λ
ψ(b, θ, µ)2

1 + 2b2θµλ
− λ} , (13)

where ψ is defined in (12).

Remark 5. It can be checked that the optimal value

of λ in the RHS of (13) is λ∗ = r+
√
r2+4ψ2−2
4r with

r = b2θµ and ψ = ψ(b, θ, µ).

Proof sketch of Thm. 3 The bound is achieved via
an appropriate random coding scheme. Specifically, we
generate KM codewords c(j)m

i.i.d.∼ N (0, P In), P = b2

n .
For analysis, we adopt the equivalent description of
Remark 4 of the block-sparse regression setting. We
have X = b√

n
G, where G is an n × (µM)n matrix

with iid N (0, 1) entries. For a decoder, we use the
maximum likelihood estimator β̂:

β̂ = argmin
β′∈TM

‖Y −Xβ′‖22 , (14)

over all the possible messages of the K users. (Note
that the decoder is in principle suboptimal from the
point of view of error criterion (9)). We prove that
for any b satisfying (13) there is a c > 0 such that
P[dH(β̂, β) = 2t] ≤ e−cn for all t ≥ εK. To that
end, condition on β = β0 for any fixed β0 ∈ TM
and decompose β′ = β′0 + β′1 with β′0 = β′ ∩ β0
(where we view the 0/1-vectors as subsets of [KM ]).
Denote W = {β0 − β′ : β′ ∈ TM} and Wt = {β0 −
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Fig. 1. Bounds on the range of feasible µ and Eb/N0 for k = 100
bits per packet and PUPE= 10−3.

β′ : dH(β′, β0) = 2t, β′ ∈ TM}. Then we have self-
evident bounds
P[dH(β̂, β) = 2t]

≤ P[ min
w∈Wt

‖Xw + Z‖2 ≤ min
w∈W\Wt

‖Xw + Z‖2]

≤ P[ min
w∈Wt

‖Xw + Z‖2 ≤ ‖Z‖2] . (15)

We next show that when t = θK = θµn this
probability is upper bounded by enE where E =
LHS − RHS of (13). We first easily prove that by
rotational invariance of X and concentration of ‖Z‖2
it suffices to show

P[ min
w∈Wt

‖bGw +
√
n1‖2 ≤ n]

is at most enE where 1 denotes the all-1 vector. In this
way, we reduce the problem to computing extrema of
a Gaussian process. The particular bound we employ
next is the following. Note that any vector w ∈ Wt

consists (besides zero values) of exactly t entries +1
and same number of −1’s, and so we decompose w =
w−+w+ accordingly. There are only

(
K
t

)
choices for

w+, as they correspond to a t-subset of the support of
β0, and to each such choice there are (M−1)t choices
of w−. Thus, for each w− we can use Chernoff bound
to lower bound minw+ ‖Gw+ + v‖2 in terms of ‖v‖22
(Lemma 1), where v = Gw− +

√
n1. We then use

Lemma 2 for u = 0 to lower-bound minw− ‖Gw−‖2.

Remark 6 (Comparison to bounds of [1]). The new
bound uniformly outperforms the bounds in [1] (see
Section III-C). In [1] two bounds were proposed,
denoted by pt and qt. pt is based on “error-exponent”
type analysis and is the one evaluated in Section III-C.
qt similar to this paper requires extreme value analysis
of certain Gaussian process. The bound of this work
significantly tightens qt via using a combination of
Chernoff bound and Gordon’s lemma instead of the
standard information-density based change of measure.

C. Discussion and Plots
We evaluate the bound from Thm. 3 for k = 100 and

PUPE = 10−3 on Fig. 1. We plot and compare with
one converse bound and three achievability bounds.

a) Converse bounds: We compare ourselves with
two converse bounds from [1]. For large user-density
we use that any code with parameters (M,µ, ε) must



satisfy: (1 − ε)ρ ≤ 1
2 log(1 + Ptot) + µh(ε) , where

Ptot is the total power in each channel use, Ptot =
2µE log2M and ρ is the total spectral efficiency
ρ = µ log2M . This bound follows from Fano’s in-
equality, the sum-rate for the GMAC, and the rate-
distortion function for M -ary source reconstructed
with Hamming-like distortion. Notice that our up-
per bound meets tightly this converse bound when
µ > 0.008. For small user density we use log2M ≤
− log2Q(

√
Ptot
µ + Q−1(1 − ε)) which follows from

the fact that each user only transmits finitely many
bits and then standard bounds connecting probability
of error and packet size log2M [22, Theorem 2]. Our
upper bound has the vertical behavior of the converse
bound and lessens its achievable distance to it.

b) Achievability Bounds: TDMA/FDMA, TIN and
Achievability from [1]: In [1] three upper bounds
were discussed, one based on orthogonalization
(TDMA/FDMA), one by treating interference as noise
(TIN) and an original bound from [1]. Notice that our
bound improves upon all of them for all but extremely
small values of µ.

Vertical Slope for small µ: Both the converse and the
achievability bounds strongly suggest that the optimal
Eb/N0 is invariant for small values of µ. In other
words, for µ less certain critical value optimal coding
systems are able to decode multiple users as if each
of them were alone in the frame, i.e. as if µ ∼ 0.
That is, there is a perfect cancellation of the multi-user
interference. Note that it is a significant improvement
to orthogonalization, since each user gets a whole
frame for itself, not just 1

K portion of it. See also the
relevant discussion in the regression section about this
effect from the statistical physics point of view. Finally,
let us point that there is a statistical-physics replica
prediction for the predicted optimal PUPE and MAC-
relevant definition of sparsity in [23]. Nevertheless
we do not plot as computing it requires numerical
evaluations over a 2k-dimensional space.

IV. SPARSE LINEAR REGRESSION

Let µ, ε ∈ (0, 1), M, b > 0 and for n ∈ N, K =
µn and p = Mµn. Consider n noisy linear samples
Y = Xβ + Z ∈ Rn of an (unknown) u.a.r. chosen
K-sparse binary vector β ∈ {0, 1}p. Assume X ∈
Rn×p has iid N (0, b

2

n ) entries and Z has iid N (0, 1)
entries. The task of interest is given (Y,X) to produce
an estimator K-sparse binary vector β̂ = β̂(Y,X) of
β with expected Hamming error at most ε, that is

E[dH(β̂, β)]/2K ≤ ε. (16)

Our goal will be to identify the minimum possible
signal level b = b(M,µ, ε) so that for some β̂ the crite-
rion (16) is satisfied asymptotically as n→ +∞. Note
that exactly because β̂ is constrained to be K-sparse,
dH(β̂, β)/2K simultaneously equals to both the False
Discovery Rate FDR(β̂) as well as the complement of
the True Positive Rate 1−TPR(β̂) of the estimator β̂.
For this reason we refer to (16) as FDR of the estima-
tor. Similar to the previous section we can equivalently
focus on minimizing ER = b2/2 log2M the energy
per-bit in the regression problem. As explained in [1]

this problem can be understood as a random-access
version of the MAC problem.

A. Result
Theorem 4 (Bound-Regression). We use γ and ψ
from (7), (12) respectively. Fix M,µ and ε. For any
b = b(M,µ, ε) such that for all θ ∈ [ε, 1] one of the
following two statements hold, either√

2θb2µ+ 1

√
1

µM
−
√
µb2

M
γ̃ > 1, (17)

with γ̃ , (M − 1)γ( θ
M−1 ) + γ(θ), or, (see also

Remark 5)

(M − 1)µh(
θ

M − 1
) + µh(θ) <

max
λ≥0
{1
2
ln(1 + 2b2θµλ) + λ

ψ(b, θ, µ)2

1 + 2b2θµλ
− λ}. (18)

there exist binary K-sparse β̂ = β̂(Y,X) s.t.
1

2KE[dH(β̂, β)] ≤ ε+ o(1).

The proof is on the same lines as in Theorem
3. Specifically, our “Chernoff+Gordon” bound yields
(18). Moreover, for the problem described in this
section, we strengthen the result by combining it
with a bound that follows by a direct application of
Gordon’s lemma, which as explained next leads to
(17). Recall from Section II that neither of the two
methods (Lemma 1 or 2) universally dominates each
other, thus we need both in Theorem 4.

Proof sketch: Set BK = {β′ ∈ {0, 1}p : ‖β′‖0 =
K} the set of binary K-sparse vectors. For a decoder,
we use the maximum likelihood estimator β̂:

β̂ = argmin
β′∈BK

‖Y −Xβ′‖22 (19)

and prove that for any b satisfying the theorem’s
conditions there is a c > 0 such that P[dH(β̂, β) =
2t] ≤ e−nc for all t ≥ εK. Similar to the proof of
Theorem 3 we condition β = β0 for some fixed β0
and then it suffices to show that for all t = θK ≥ εK:

P[ min
w∈Wt

‖bGw +
√
n1‖2 ≤ n] ≤ e−nc, (20)

under (18) or (17). Here, G ∈ Rn×p has i.i.d. N (0, 1)
entries and Wt , {β0 − β′ : dH(β′, β0) = 2t}.
First, the proof under (17) proceeds by high probability
lower bounding the extrema of the Gaussian Process
minw∈Wt

1
n‖bGw +

√
n1‖2 via a direct application

of Gordon’s Lemma. This requires a little more ef-
fort compared to the proof of Lemma 2 due to the
additional constraints in Wt, but it can be shown
that the minimization above is lower bounded with
exponentially high probability by the LHS of (17)
scaled by n; we omit the details for brevity. Next, the
proof under (18) is shown by repeating the argument
in the proof of Theorem 3, mutatis mutandis, with
the only difference that now there are exactly

(
p−K
t

)
choices for w− and for each,

(
K
t

)
choices of w+.

B. Comparison to replica prediction and converse
Consider the following one-dimensional setting :

β ∼ Bern(1/M), we observe Y =
√
Eβ + Z,

Z ∼ N (0, 1). Denote I1(E) = I(β;Y ) the mutual
information between signal and observation. We want
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to produce an estimator β̂(Y ) ∈ {0, 1} with minimum
probability of error (PE) P[β̂ 6= β] subject to P[β̂ =
1] = 1/M . Via standard arguments the minimal PE
ε∗1(E) satisfies

√
E = Q−1( 1

M−1ε
∗
1) + Q−1(ε∗1) . Re-

turning to sparse regression, we recall that statistical-
physics methods, e.g. [24], (non-rigorously) predict
an asymptotic decoupling phenomenon. Namely, that
inferring β from the observations (Y,X) behaves
asymptotically as the one dimensional task described
above with E = η∗(µ)b2, where η∗ ∈ [0, 1] is
the minimizer of the free energy potential: η∗ =
argminη∈[0,1] µMI1(ηb

2)+ 1
2 (η−1−ln η) , Combining

the above, the replica method predicts that the optimal
FDR (LHS of (16)) for the sparse regression setting
with fixed b2 asymptotically converges to ε∗1(η

∗(µ)b2).
We compare the replica prediction against our bounds
on Fig. 2. In terms of this prediction, the existence
of the vertical line in the plot corresponds to the fact
that as b increases (under fixed µ) the efficiency η
experiences a step transition to 1. Thus for sufficiently
large b the replica FDR is independent of µ and is
given by ε∗1(b

2), which in turn means that the minimal
b required for a certain level of FDR is constant in
µ. (We note that discontinuous jump of η∗ to 1 is
unrelated to sparsity, cf. [24, Fig. 10c].) Fig. 2 also
depicts the converse (impossibility) bound, which is
a combination of two simple bounds. First, if genie
reveals to decoder K − 1 entries of β, then we
get list-decoding problem (with list size K) over n
channel uses of an AWGN channel, for which we
have from [22] a firm non-asymptotic bound: b ≥
Q−1(1/M) +Q−1(ε) (almost coincides with ε∗1(b

2)).
Using I(Y ;β|X) ≤ n

2 ln(1+b2) and comparing it with
the rate-distortion function of the K-out-of-p source
with 2εK Hamming-distortion gives the second bound.
(We omit straightforward expressions.)

Finally, we plot the exact performance of LASSO
(subject to (16), where FDR is set equal to 10−3)
which for iid inputs is known exactly [18], [25], [26].
(Weaker LASSO bounds are in [10], [13], [27].)
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