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Abstract—We discuss the problem of designing channel access
architectures for enabling fast, low-latency, grant-free and unco-
ordinated uplink for densely packed wireless nodes. Specifically,
we extend the concept of random-access code introduced at
ISIT’2017 by one of the authors to the practically more relevant
case of the AWGN multiple-access channel (MAC) subject to
Rayleigh fading, unknown to the decoder. We derive bounds on
the fundamental limits of random-access coding and propose an
alternating belief-propagation scheme as a candidate practical
solution. The latter’s performance was found to be surprisingly
close to the information-theoretic bounds. It is curious, thus, that
while fading significantly increases the minimal required energy-
per-bit Eb/N0 (from about 0-2 dB to about 8-11 dB), it appears
that it is much easier to attain the optimal performance over the
fading channel with a practical scheme by leveraging the inherent
randomization introduced by the channel. Finally, we mention
that while a number of candidate solutions (MUSA, SCMA,
RSMA, etc.) are being discussed for the 5G, the information-
theoretic analysis and benchmarking has not been attempted
before (in part due to lack of common random-access model).
Our work may be seen as a step towards unifying performance
comparisons of these methods.

I. INTRODUCTION

Presently, wireless networks are starting to see a new type
of load (a so called mMTC or machine-type communication),
in which hundreds of thousands of devices are serviced by
a single base station, each communicating very small and
infrequent data payloads. In the interest of reducing hardware
complexity, reducing latency and improving energy consump-
tion, the conceptual paradigm shift is to move to the grant-
free access management, in which uplink communication is
not orthogonalized by the base-station (as is done in today’s
systems). This requires new kind of codes that can be decoded
from uncoordinated and colliding transmissions.

An information theoretic formulation of this problem was
done in [1] where the author considered an additive white
Gaussian noise (AWGN) random access channel (RAC) model.
In this formulation the random access is modeled as follows:
each of Ka active users encodes his k-bit message into an n-
symbol codeword. The receiver observes superposition of Ka

codewords corrupted by the AWGN. There are a number of
challenges in this model: finite blocklength (FBL) effects due
to small payload size, massive number of users (comparable to
blocklength), sparsity due to random access and incorporating
accurate channel models. However, the most crucial departure
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from canonical MAC is that the users are required to share
the same codebook (i.e. they are unindentifiable, unless they
desire to put their identity as part of the k-bit payload), and
the decoder is only required to provide an unordered list of
user messages. In the follow-up works, this problem has also
been called unsourced random access [2–4]. Another important
aspect of this new formulation is the notion of per-user
probability of error (PUPE) which is defined as the average
(over the active users) fraction of the transmitted messages
that are misdecoded. (Recall that classical definition declares
error even if any one of the messages decoded incorrectly.)

A brief summary of the AWGN-RAC work is as follows:
[1] provided bounds on fundamental limits and identified
tremendous energy-inefficiency of existing schemes (like slot-
ted ALOHA [5] which is used for the LTE PRACH channel
[6]). In [2, 3, 7–10] various (progressively better) practical
schemes were proposed, with the latest being within a few
dB of the fundamental limits. In [4] the approach of [3] was
extended to quasi-static MIMO fading RAC.

The goal of this paper is to study the more practically
relevant model of quasi-static fading AWGN-RAC in which
different user’s transmissions are attenuated by random fading
gains, unknown to the receiver. We will discuss both the fun-
damental limits and a practical low-complexity LDPC scheme
with surprisingly good performance.

The structure of the paper is as follows. In section II, we
state the definition of the random-access code and formally
define the system model; in section III, we state our main
achievability result and discuss T-fold ALOHA from [7]; in
section IV, a converse bound is presented based on the meta-
converse theorem from [11]; in section V, the low complexity
iterative decoding scheme is discussed along with the alternat-
ing belief propagation decoder; in section VI, numerical results
are presented along with possible future research directions.

II. SYSTEM MODEL

We follow the definition of a code from [1]. Fix an integer
Ka ≥ 1 – the number of active users. We consider the single
antenna quasi-static fading MACs:

Y n =

Ka∑
i=1

HiX
n
i + Zn (1)

where Zn ∼ CN (0, In), and Hi
iid∼ CN (0, 1) are the fading

coefficients which are independent of {Xn
i } and Zn. We call

this the Ka–MAC. We assume that there is a maximum power
constraint on the inputs:

‖Xi‖2 ≤ nP (2)



Definition 1 ([1]). An (M,n, ε) random-access code for the
MAC (1) is a pair of (possibly randomized) maps f : [M ]→
Cn (the encoder) and g : Cn →

(
[M ]
Ka

)
such that if W1, ...,WKa

are chosen independently and uniformly from [M ] and Xj =
f(Wj) then the average (per-user) probability of error (PUPE)
satisfies

Pe =
1

Ka

Ka∑
j=1

P [Ej ] ≤ ε (3)

where Ej , {Wj /∈ g(Y n)} ∪ {Wj = Wi for some i 6= j}
and Y is the channel output.

From this definition, all users use the same codebook and
the receiver outputs a list of Ka codewords. We emphasize
that there can be potentially an unbounded number of users,
but only Ka of them are active. If each user has a message of
size k and transmits at power P per symbol, then the energy-
per-bit is given by Eb/N0 = nP

k . Lastly we assume that the
knowledge of channel gain realizations is unknown at both
transmitters and receiver. In the rest of the paper we drop the
superscript n unless it is unclear.

III. Ka–MAC FBL ACHIEVABILITY BOUNDS

A. T-fold ALOHA [7]
In this section, we discuss our main achievability bound

based on T–fold ALOHA protocol [7]. The idea is the follow-
ing. Let T, n1 ∈ N be such that T < Ka and n1 < n. The time
slot or frame of length n is partitioned into L = n/n1 sub-
frames of length n1. The common codebook is of blocklength
n1. Each user chooses a slot to send his message uniformly at
random independently of other users. Suppose there is a code
such that if there are at most T users transmitting in a given
block, the decoder can decode all the messages but if more
than T users are transmitting then nothing is decoded. With
this protocol, we have the following achievability bound on
PUPE.

εT ≤ 1−
T∑
r=1

P̄e(M,n1, r, LP )

(
Ka − 1

r − 1

)(
1

L

)r−1(
1− 1

L

)Ka−r

(4)

where 1 − P̄e(M,n1, r, P ) = Pe(M,n1, r, P ) = ε of an
(M,n1, ε) code used over the r active user fading RAC with
power constraint P .

For evaluations, we will use (4) with actual simulated
numbers for Pe from an LDPC code, or we will use Pe,genie
from a random coding bound presented in (5) in the next
subsection. We note here that, to use (5) in (4), a genie needs
to inform the decoder about the active number if users in a
subframe. Hence Pe,genie is not a true bound and is plotted
only for reference. In the non-fading (AWGN) setting [7] the
problem of infering the number of active users in subframe can
be easily resolved by simply measuring the average energy of
the signal. This method is not applicable in the presence of
fading – see section VI for more. Also note that LDPC-based
scheme performs true blind decoding, i.e. it determines the
number of users in a slot and decodes the messages. So we do
not assume the knowledge of the number of users in a slot in
this case.

B. FBL Achievability bounds
Here, we present a random coding achievability bound for

the channel when the decoder knows the number of active
users. So, in the T–fold ALOHA setting, this would be a
genie–aided FBL bound since a genie provides provides the
decoder with the number of active users in each slot. We set
up some notation. If C ⊂ Cn then denote PC as the orthogonal
projection operator onto the subspace spanned by C.

Theorem III.1. Fix P ′ < P . Let K1 ≤ K2. Then there exists
an (M,n, ε) (with ε ≥ K2−K1

K2
) random access code for the

K2–MAC (1) satisfying power constraint P (see (2)) and

ε ≤ K2 −K1

K2
+

1

K2

K1∑
t=1

K1,tpt + p0 (5)

with p0 =
(K2

2 )
M + K2P

[
P ′

2

∑
i∈[2n]W

2
i > nP

]
, Wi

iid∼
N (0, 1) and

pt ≤ inf
δ>0

((
K2

K1,t

)
e−(n−K1)δ+

P

 ⋃
S0⊂[K2]
|S0|=K1,t

{G(Y, S0, cS0
, t) ≥ Vn,t}


 (6)

where

G(Y, S0, cS0
, t) =

‖Y ‖2−maxS2⊂S0

|S2|=t

∥∥∥Pc[S2∪([K2]\S0)]
Y
∥∥∥2

‖Y ‖2−
∥∥∥Pc[[K2]\S0]

Y
∥∥∥2 (7)

K1,t = K2 −K1 + t (8)

Vn,t = e
−
(
δ+

ln (M−K2
t )

n−K1
+

ln (n′−1
t−1 )

n−K1

)
(9)

n′ = n−K1 + t (10)

and, C = {ci : i ∈ [M ]} denotes the Gaussian codebook,
{ci : i ∈ [K2]} are the transmitted codewords, cS = {ci : i ∈
S} and Y is the received vector.

Proof idea: The idea is to use random coding using
Gaussian codebook. For decoding, we use a projection based
decoder inspired from [12]. The idea is that the received vector
will lie in the subspace spanned by the sent codewords in the
absence of additive noise. Formally, fix an output list size K1.
Let C denote the common codebook. Then, upon receiving Y
from the channel, the decoder outputs a list of K1 codewords
which form a subspace, such that projection of Y onto this
subspace is maximum i.e., it outputs g(Y ) given by

g(Y ) = {f−1(c) : c ∈ Ĉ}
Ĉ = arg max

C⊂C:|C|=K1

‖PCY ‖2 (11)

where f is the encoding function.
The projection decoding is also called nearest-subspace

decoding, and has been used in the compressed sensing lit-
erature [13, 14]. One might prefer to view it as a kind of
maximum likelihood (ML) decoding as well for the likelihood
PY |X,H(y, {xi}, {hi}) = 1

πn e
−‖y−∑i hixi‖2 .

Further projection decoding achieves ε–capacity of the
vanilla Ka–user quasi static fading MAC (with different code-
book and the usual joint probability of error) [15, 16].



We make the following observation about K1. When K2

is large, it is hard to decode messages of users with the least
|Hi|2 since its expectation is 1

K2
. So, as observed in [17], it

makes sense to drop a fraction of users which have low channel
gains and decode the rest.

As discussed in section VI below, the computation of the
bound in the theorem is done using MCMC methods for small
values of K2. Further, this bound holds even when using
spherical codebook i.e., codewords distributed uniformly on

the (complex) power shell (with p0 =
(K2

2 )
M ). For larger values

of K2, a computable bound is presented in [18].

IV. CONVERSE BOUND
In this section we describe a simple converse bound based

on results from [12] and the meta-converse from [19].

Theorem IV.1. Let

Ln = n log(1 + PG) +

n∑
i=1

(
1− |

√
PGZi −

√
1 + PG|2

)
(12)

Sn = n log(1 + PG) +

n∑
i=1

(
1− |

√
PGZi − 1|2

1 + PG

)
(13)

where G = ‖H‖2 and Zi
iid∼ CN (0, 1). Then for every n and

0 < ε < 1, any (M,n − 1, ε) code for the quasi static Ka

MAC satisfies

log(M) ≤ log(Ka) + log
1

P [Ln ≥ nγn]
(14)

where γn is the solution of
P [Sn ≤ nγn] = ε. (15)

V. LOW-COMPLEXITY ITERATIVE CODING SCHEME
In this section we present a low-complexity iterative coding

scheme based on LDPC codes, which allows one to decode
user messages in a slot.

Recall, that the users utilize the same codebook. Let us
denote it by C and explain how to construct it. We start
with a binary [n, k] LDPC codebook and replace each 0 with
+
√
P and each 1 with −

√
P . Let us show the bit-wise MAP

decoding rule for the j-th bit of the i-th user below

X̂i,j = arg max
Xi,j∈±

√
P

E

[ ∑
∼Xi,j

pY |X

(
Y |

T∑
k=1

HkXk

)
T∏
k=1

1Xk∈C

]
(16)

where the expectation is taken over H1, H2, . . . ,HT . Follow-
ing [20], the summation “∼ Xi,j” means that we sum over all
positions in all user codewords, except Xi,j .

The aim of the decoder is to recover all the codewords
based on the received vector Y . The decoder employs a low-
complexity iterative belief propagation (BP) decoder that deals
with a received soft information presented in log likelihood
ratio (LLR) form. The decoding system can be represented as
a graph (factor graph, [21]), which is shown in Fig. 1.

There are four types of nodes in the graph. User LDPC
codes are presented with use of Tanner graphs with variable
(red color) and check nodes (blue color). At the same time
there is a third kind of nodes in the figure – functional nodes
(marked with green color). These nodes correspond to the
elements of the received sequence Y . The fourth kind of
nodes (magenta nodes) correspond to fading coefficients. We
note, that the decoder also performs an estimation of fading
coefficients (latent variables for our decoder).

C C

p (H1) p (H2)

Message 4

Message 3

Message 1

Message 2

Fig. 1: Iterative joint decoding algorithm (alternating BP-
decoder), factor graph

The decoding algorithm is based on the iterative message
passing procedure. There are two types of iterations in our sys-
tem: inner iterations, which are used for LDPC code decoding
and outer iterations used for fading coefficients estimation. In
what follows we mean an outer iteration in all the cases where
the type of iteration is not specified. Within the iterations we
decode all the users in a sequential manner. Let us consider a
single user decoding. This process consists of calculation and
passing of four message types marked by arrows and number
in Fig. 1. We note, that both fading coefficients and LLRs for
another users remain fixed during this process. Every message
is described in details below:

a) Message type 1 (from functional nodes to fading
nodes): Without loss of generality let us consider the first
functional node. Assume we received a symbol y. By xi =
Xi,1 ∈ {+

√
P ,−

√
P}, i = 1, . . . , T , we denote symbols sent

by the users. Let us show how to calculate a posterior pdf of
H1 from the first functional node. We denote this message by
R

(1)
1 and calculate it as follows

R
(1)
1 (h1) ∝ E

[ ∑
x1,x2,...xT

p(y|
T∑
j=1

Hjxj)
T∏
j=2

Pr(xj)

]
, (17)

where the expectations are taken over H2, . . . ,HT . Such
updates are calculated at every functional node and denoted by
R

(i)
1 , i = 1, . . . , n. In order to construct the practical imple-

mentation one needs an efficient method of fading coefficients
pdf approximation. This can be done by means of Gaussian
mixtures [18].

b) Message type 2 (from fading nodes to functional
nodes): We denote the message from j-th fading node to i-th
functional node by Q(i)

j , this message is a pdf. In order to find
it we need to calculate the product of incoming messages.
Let us consider a message from the first fading to the first
functional node, we have

Q
(1)
1 (h1) =

n∏
i=1

R
(i)
1 (h1), (18)

In a conventional message passing algorithm the outgoing
message is calculated based on messages which come through
all the edges except its own edge. But here to reduce the
complexity we approximate the complicated message update
at fading nodes via the product of a few randomly selected
incoming messages.

c) Message type 3 (from functional nodes to LDPC
codes): Again let us consider the first functional node. Assume



we received a symbol y. By xi = Xi,1 ∈ {+
√
P ,−

√
P},

i = 1, . . . , T , we denote symbols sent by the users. Let us
note, that a posterior LLR for x1 can be calculated as follows

L(x1) = log

E

 ∑
x1=+

√
P,x2,...xT

p(y|
T∑

j=1
Hjxj)

T∏
j=2

Pr(xj)


E

 ∑
x1=−

√
P,x2,...xT

p(y|
T∑

j=1
Hjxj)

T∏
j=2

Pr(xj)

 ,

where the expectations are taken over H1, H2, . . . ,HT and
p(y|a) = 1√

π
exp(−(y − a)2). Note, that for practical imple-

mentation the Monte-Carlo sampling method can be used for
expectations.

d) Message type 4 (LDPC decoding): After functional
nodes decoding one needs to upgrade the LLR for given user
with LDPC iterative decoder. This part is standard, i.e. each
user utilizes standard BP decoding algorithm (Sum-Product or
Min-Sum, [20]) to decode an LDPC code.

As soon as the iterative decoder operates as an optimization
task which is split between two groups of variables (user
LLRs and fading coefficients), one can expect this algorithm
to converge to some local maximum of (16). This can be
a source of error floor and this error floor was observed
during numerical experiments. To overcome this problem one
can start the decoding algorithm multiple times and handle
functional nodes in random order at every decoding iteration.
As soon as GMs are merged and pruned, this provides some
source of randomness and pushes the decoding procedure to
possibly different local maxima. This approach eliminates the
error floor problem and allows another opportunity – blind
user decoding, i.e. we determine the number of active users
in a slot and recover their messages. Let us give a short
description. Given multiple decoding attempts, one can select a
set of unique codewords that were successfully decoded (have
zero syndrome). Every attempt can detect different codewords
combinations. The final output of the decoder is the union of
such sets. We note that the approach presented here is similar
to the approach from [22]. Nevertheless, the main differences
are: a) we consider same codebook case, b) we perform blind
user decoding.

VI. NUMERICAL RESULTS AND DISCUSSION

In this section we present the plots of the minimum energy
per bit required to achieve a probability of error ε = 0.1
as a function of Ka for the channel (1). Fig. 2 shows plots
of various schemes. The parameters used for evaluation are
blocklength n = 30000 and message size k = 100 bits. Note
that we assume the fading coefficients to remain constant only
within the slot of length n1. Next we describe how each of
these curves was obtained.

For T -fold ALOHA using FBL+genie bound, we use the
bound for pt given in (6). For each Ka we find the optimum
L (as an optimization over both L and P ) that minimizes
Eb/N0 such that εT in (4) is less than 0.1. For computational
reasons, we approximate PUPE for the fading channel by
the sum capacity [11]. Then we use the spherical codebook
i.e., codewords uniformly and independently sampled from
the (complex) power shell in dimension n1 = bn/Lc to
compute the probability of error according to (4) where
Pe(M,n1, r, LP ) is computed using brute-force Monte-Carlo
simulation of (6) with the choice K1 = K2 = r. Since r ≤ T
is small it would not make sense to drop an user. To this
end, we produce 2000 samples, from which we construct the

kernel density approximation of the cumulative distributive
function (CDF) of the statistic maxS0⊂[r]

|S0|=t
G(Y, S0, cS0 , t) for

each t ≤ r. Then this smooth approximation is used to
optimize over δ in (4).

For T -fold ALOHA using the iterative coding scheme, we
have used (n1, k) LDPC codes with k = 100 and blocklength
n1 ∈ {200, 400}. We note, that two codes are enough to cover
the interval 1 ≤ Ka ≤ 250. For each of these codes, we get
PUPE vs Eb/N0 curves and choose the best code (the best
code requires the smallest Eb/N0 in order to achieve PUPE ≤
ε = 0.1) for each value of Ka. The best waterfall curves for
the different number of users are presented in Fig. 3. Note
again, that in LDPC-based scheme we perform honest blind
slot decoding (without assuming the knowledge of user count
in a slot). It can be seen from Fig. 2 that the performance of
T–fold ALOHA for iterative decoding scheme is very close
to that of T–fold ALOHA with random coding bounds for
small Ka. The gap increases with Ka because of our limited
choices of LDPC codes, i.e. due to BPSK modulation, we are
constrained by n1 ≥ k.

We have also plotted the result of treat interference as noise
(TIN) decoding. Here we have used standard second order
capacity approximation [11]. It is easy to get an actual random
coding bound for TIN similar to theorem III.1, but we don’t
expect it to be better.

Also presented for reference is the Shamai-Bettesh capacity
bound from [17]. It is an asymptotic bound (n→∞) for the
probability of error per-user in the case of symmetric rate and
large Ka. It, however, applies to the case of different user
codebooks and full knowledge of the CSI at the decoder. (The
decoder decodes the largest set of users whose rate tuple vector
is inside the corresponding (instantaneous) capacity region by
considering the dropped users as additive noise. The ratio of
this largest set with the total number of users determines the
per-user error.)

We have also plotted performance of optimal decoder
which requires the computation of true posteriors. This is
computed using results in the asymptotic regime [18, 23]
where Ka and M scale linearly with blocklength. Although
asymptotic, we suspect this predicts the FBL performance
quite well since it was indeed the case in the AWGN setting
as shown in [1, 24]. The converse from (14) and (15) is also
plotted. This is in essence a single user based converse bound.
A Fano type converse is possible but it is worse than this bound
for the parameter range we work with. The converse presented
here illustrates the fact the Eb/N0 requirements are necessarily
higher compared to the AWGN channel in [1]. See [18] for
more plots and details.

In all, we observe that even at Ka = 100, the random
coding based 4–fold ALOHA performance is off from the
converse bounds (and asymptotic n → ∞ predictions from
Shamai-Bettesh or replica method) by only a few dB. This is
in dramatic contrast with currently dominant schemes treating
interference as noise or employing a (slotted) ALOHA.

In terms of future work, one of the most important things
is to relax the assumption on the knowledge of the number of
users in a slot in T–fold ALOHA, for instance, by changing
the RAC model to account for unknown but bounded number
of users (similar to support recovery with unknown sparsity
in compressed sensing). Another important factor is frame-
synchronization which we have assumed. It is interesting to
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Fig. 3: Eb/N0 vs PUPE for n = 30000, k = 100 bits
see how the performance is affected when frame synchrony is
lost. In terms of bettering the performance, it is necessary to
consider a MIMO scenario with the receiver having multiple
antennas. We leave these to future work.
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