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Abstract—We study a generalization of the problem of broad-
casting on trees to the setting of directed acyclic graphs (DAGs).
At time 0, a source vertex X transmits a uniform bit along binary
symmetric channels (BSCs) to a set of vertices called layer 1. Each
vertex except X has indegree d. At time k ≥ 1, vertices at layer k
apply d-input Boolean processing functions to their received bits
and send out the results to vertices at layer k + 1. We say that
broadcasting is possible if we can reconstruct X with probability
of error bounded away from 1

2
using the values of all vertices

at an arbitrarily deep layer k. This question is closely related to
models of reliable computation and storage, probabilistic cellular
automata, and information flow in biological networks.

In this work, we analyze randomly constructed DAGs and
demonstrate that broadcasting is only possible if the BSC noise
level is below a certain (degree and function dependent) critical
threshold. Specifically, for every d ≥ 3, we identify the critical
threshold for random DAGs with layers of size Ω(log(k)) and
majority processing functions. For d = 2, we establish a similar
result for the NAND processing function. Furthermore, for odd
d ≥ 3, we prove that the identified thresholds cannot be improved
by other processing functions if reconstruction is required from a
single vertex. Finally, for any BSC noise level, in quasi-polynomial
or randomized polylogarithmic time in the depth, we construct
deterministic bounded degree DAGs with layers of size Θ(log(k))
that admit reconstruction using lossless expander graphs.

I. INTRODUCTION

We study a generalization of the problem of broadcasting
on trees to the setting of directed acyclic graphs (DAGs). In
the broadcasting on trees problem, we are given a noisy tree T
whose vertices are Bernoulli random variables and edges are
independent binary symmetric channels (BSCs) with common
crossover probability δ ∈

(
0, 12
)
. Given that the root is an

unbiased random bit, the goal is to decode the root from the
bits at the kth layer of the tree as k →∞. It is well-known that
(1 − 2δ)2 br(T ) > 1 if and only if the minimum probability
of error in decoding is bounded away from 1

2 for all k, where
br(T ) denotes the branching number of the tree [1]–[3]. A
consequence of this result is that reconstruction is impossible
for trees with sub-exponentially many vertices at each layer.

In our problem of broadcasting on bounded indegree DAGs,
where all vertices are Bernoulli random variables and all edges
are BSCs as before, there are two principal differences: (a)
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unlike trees, layer sizes are sub-exponential in the depth for
DAGs; (b) a DAG vertex has several incoming signals, and its
value is obtained by applying a Boolean processing function.
The latter aspect enables the possibility of information fusion
at the vertices, and our main goal is to understand whether the
benefits of (b) overpower the shortcoming of (a) and permit
reconstruction of the root bit with sub-exponential layer size.

This work has two main contributions. Firstly, via a prob-
abilistic argument using random DAGs (defined in subsection
I-B), we demonstrate the existence of bounded degree DAGs
with layer size Ω(log(k)) in the depth k which permit recovery
of the root bit for sufficiently low δ’s in section II. Secondly,
we provide explicit deterministic constructions of such DAGs
using regular bipartite lossless expander graphs in section III.
In particular, the constituent expander graphs for the first k lay-
ers can be constructed in either deterministic quasi-polynomial
time or randomized polylogarithmic time in k. Together, these
results imply that in terms of economy of storing information,
DAGs are doubly-exponentially more efficient than trees.

A. Motivation

Broadcasting on DAGs has several natural interpretations.
Perhaps most pertinently, it captures the feasibility of reliably
communicating through Bayesian networks in the field of com-
munication networks. Indeed, suppose a sender communicates
a sequence of bits to a receiver through a large network. If
broadcasting is impossible on this network, then the “wave-
front of information” for each bit decays irrecoverably through
the network, and the receiver cannot reconstruct the sender’s
message regardless of the coding scheme employed.

Broadcasting on DAGs is also a close variant of the model of
reliable computation using noisy circuits, cf. [4], [5]. Suppose
we want to remember a bit using a noisy circuit. The “von
Neumann approach” is to take multiple perfect clones of the
bit and recursively apply noisy gates in order to reduce the
overall noise [6], [7]. In contrast, the broadcasting perspective
is to start from a single bit and repeatedly create noisy clones
and apply perfect gates to these clones so that one can recover
the bit reasonably well. Thus, the broadcasting model can be
construed as a noisy circuit with perfect gates at the vertices
and edges or wires that independently make errors.

Furthermore, the broadcasting model plays a role in various
discrete probability questions. For example, the special case of
trees corresponds to ferromagnetic Ising models in statistical
physics. Specifically, reconstruction is impossible on a tree if
and only if the free boundary Gibbs state of the corresponding



Ising model is extremal [2], [3, Section 2.2]. On a different
front, broadcasting on 2D regular grids can be perceived as 1D
probabilistic cellular automata (see e.g. [8, Section 1] for a
definition) with boundary conditions that limit the layer sizes,
and the feasibility of broadcasting on 2D grids is closely relat-
ed to questions of ergodicity of probabilistic cellular automata.

Finally, special cases of the model have also found appli-
cations in theoretical computer science. Indeed, broadcasting
on trees plays a crucial role in understanding ancestral data
and phylogenetic tree reconstruction, cf. [9], [10], and phase
transitions for random constraint satisfaction problems, see
e.g. [11], [12]. Moreover, the existence results obtained here on
DAGs suggest it might be possible to reconstruct other biologi-
cal networks, such as phylogenetic networks or pedigrees, even
if the growth of the network is very mild. It is also interesting
to explore if there are connections between broadcasting on
general DAGs and random constraint satisfaction.

B. Random DAG Model

A random DAG model consists of an infinite DAG with fixed
vertices that are Bernoulli random variables and randomly gen-
erated edges that are independent BSCs. Let the root or source
vertex be X0,0 ∼ Ber

(
1
2

)
, and let Xk = (Xk,0, . . . , Xk,Lk−1)

be the collection of vertices at distance k ∈ N , {0, 1, 2, . . . }
from the root, where Lk ∈ N\{0} is the number of vertices at
distance k. In particular, we have X0 = (X0,0) and L0 = 1.

For any k ∈ N\{0} and any j ∈ [Lk] , {0, . . . , Lk − 1},
we first independently and uniformly select d ∈ N\{0}
vertices Xk−1,i1 , . . . , Xk−1,id from Xk−1, and then construct
d directed edges (Xk−1,i1 , Xk,j), . . . , (Xk−1,id , Xk,j). This
process generates the underlying DAG (or directed multigraph)
structure, and we let G denote this random DAG variable.

To define a Bayesian network on G, we fix a sequence of
Boolean functions at the vertices and a crossover probability
δ ∈

(
0, 12
)
. Then, for every k ∈ N\{0} and j ∈ [Lk], given

i1, . . . , id and Xk−1,i1 , . . . , Xk−1,id , we define:

Xk,j = fk(Xk−1,i1 ⊕ Zk,j,1, . . . , Xk−1,id ⊕ Zk,j,d) (1)

where fk : {0, 1}d → {0, 1} is the processing function at level
k, ⊕ denotes XOR, and Zk,j,i are i.i.d Ber(δ) random variables
that are independent of everything else. The propagation
process of X0,0 through G is completely characterized by (1).

Under this setup, our objective is to determine whether X0,0

can be decoded from the observations Xk as k →∞. Let us
define the proportion of 1’s at level k ∈ N as:

σk ,
1

Lk

Lk−1∑
m=0

Xk,m (2)

where σ0 = X0,0. Given σk−1 = σ, Xk−1,i1 , . . . , Xk−1,id
are i.i.d. Ber(σ), and as a result, each Xk,j is the output of
fk upon inputting a d-length i.i.d. Ber(σ ∗ δ) string, where
σ ∗δ , σ(1−δ)+δ(1−σ). It is straightforward to verify that
σk is a sufficient statistic of Xk for performing inference about
σ0. Therefore, we consider the Markov chain {σk : k ∈ N}
in our achievability results. In particular, given σk, infer-
ring the value of σ0 is a binary hypothesis testing problem

with minimum probability of error P
(
fkML(σk) 6= σ0

)
, where

fkML(σk) ∈ {0, 1} is the maximum likelihood (ML) decision
rule without knowledge of the random DAG realization G. We
say that reconstruction of the root bit X0,0 is possible when:

lim
k→∞

P
(
fkML(σk) 6= σ0

)
<

1

2
. (3)

On the other hand, we will consider the Markov chain {Xk :
k ∈ N} conditioned on G in our converse results. We say that
reconstruction of the root bit X0,0 is impossible when:

lim
k→∞

∥∥∥P+
Xk|G − P

−
Xk|G

∥∥∥
TV

= 0 G-a.s. (4)

where ‖·‖TV is the total variation (TV) distance, P+
Xk|G and

P−Xk|G are conditional distributions of Xk given {X0 = 1, G}
and {X0 = 0, G}, respectively, and G-a.s. stands for “almost
surely with respect to the law of G.” Moreover, the condition
(4) is equivalent to limk→∞ P

(
hkML(Xk, G) 6= X0

∣∣G) = 1
2 G-

a.s., because for every realization of the random DAG G:

P
(
hkML(Xk, G) 6= X0

∣∣G)=
1

2

(
1−
∥∥∥P+

Xk|G−P
−
Xk|G

∥∥∥
TV

)
(5)

where hkML(Xk, G) ∈ {0, 1} is the ML decision rule with
knowledge of the random DAG realization G.

II. RECONSTRUCTION ON RANDOM DAGS

In this section, we present two main results for random DAG
models with general indegree d ≥ 3 and d = 2, respectively.
Note that d = 1 corresponds to the well-studied tree setting.

A. Phase Transition for Indegree d ≥ 3

When d ≥ 3, taking a majority vote of the d inputs at each
vertex intuitively has good “local error correction” properties.
So, we fix all Boolean functions in the random DAG model
to be the majority rule, and prove that this model exhibits a
phase transition phenomenon around a critical threshold of:

δmaj ,
1

2
− 2d−2⌈

d

2

⌉(
d⌈
d
2

⌉) (6)

where d·e denotes the ceiling function.

Theorem 1 (d ≥ 3 and Majority Processing). Let C(δ, d) and
D(δ, d) be the constants defined in (12) and (10). Consider a
random DAG model with d ≥ 3 and all majority processing
functions, where ties are broken by outputting random bits.

1) If δ ∈ (0, δmaj) and the layer size Lk ≥ C(δ, d) log(k)
for all sufficiently large k (depending on δ and d),1 then
reconstruction is possible in the sense that:

lim sup
k→∞

P
(
Ŝk 6= σ0

)
<

1

2

where Ŝk , 1
{
σk ≥ 1

2

}
is the majority decoder. Hence,

reconstruction is also possible in the sense of (3).
2) If δ ∈

(
δmaj,

1
2

)
and the layer size Lk = o

(
D(δ, d)−k

)
,

then reconstruction is impossible in the sense of (4).
1Note that log(·) and exp(·) have base e in this paper.



Proof Outline. We outline the proof here, and refer readers
to the full version of this paper [13, Section III] for details.

Suppose we are given that σk−1 = σ for any k ∈ N\{0}.
Then, for all j ∈ [Lk], Xk,j are i.i.d. Ber(g(σ)), where e.g.
when d is odd, the function g : [0, 1]→ [0, 1] is defined as:

g(σ) , P(Xk,j = 1|σk−1 = σ) = E[σk|σk−1 = σ] (7)

=

d∑
i= d+1

2

(
d

i

)
(σ ∗ δ)i(1− σ ∗ δ)d−i. (8)

Moreover, the Margulis-Russo formula yields [14, Section 2]:

g′(σ) = (1− 2δ)
d+ 1

2

(
d
d+1
2

)
((σ ∗ δ)(1− σ ∗ δ))

d−1
2 (9)

which means g′ is positive on [0, 1], increasing on
[
0, 12
]
, and

decreasing on
[
1
2 , 1
]
. Hence, g is increasing on [0, 1], convex

on
[
0, 12
]
, concave on

[
1
2 , 1
]
, and has Lipschitz constant:

D(δ, d) , g′
(

1

2

)
= (1− 2δ)

(
1

2

)d−1
d+ 1

2

(
d
d+1
2

)
. (10)

These properties also hold for even d. Let δmaj be the critical
value in (6) such that D(δmaj, d) = 1. Then, there are two
regimes of δ of interest.

1) Achievability: Suppose δ ∈ (0, δmaj) so that D(δ, d) > 1.
In this case, g has three fixed points at σ = 1− σ̂, 12 , σ̂, where
σ̂ ∈

(
1
2 , 1
)
, as g

(
1
2

)
= 1

2 and g(1− σ) = 1− g(σ) using (8).
We first construct a useful monotone Markovian coupling
{(X−k , X

+
k ) : k ∈ N} between the Markov chains {X+

k : k ∈
N} and {X−k : k ∈ N}, which are versions of the Markov
chain {Xk : k ∈ N} initialized at X+

0 = 1 and X−0 = 0,
respectively. For every realization of G, we couple these chains
so that along any edge BSC, e.g. (Xk,j , Xk+1,i), either X+

k,j

and X−k,j are both copied with probability 1−2δ, or X+
k+1,i =

X−k+1,i = Ber
(
1
2

)
a.s. for a shared independent Ber

(
1
2

)
bit

with probability 2δ. In other words, {X+
k : k ∈ N} and {X−k :

k ∈ N} “run” on the same underlying DAG G with common
BSCs. Since the majority rule is monotone non-decreasing,
this coupling is also monotone, i.e. X+

k,j ≥ X
−
k,j a.s. for every

k ∈ N and j ∈ [Lk].
Next, observe that γ(ε) , g(σ̂ − ε) − (σ̂ − ε) > 0 for all

sufficiently small ε > 0, because g′(σ̂) < 1 and g(σ̂) = σ̂. Fix
any such ε = ε(δ, d) > 0. Then, Hoeffding’s inequality yields:

P
(
σ+
k < g

(
σ+
k−1
)
− γ(ε)

∣∣σ+
k−1
)
≤ exp

(
−2Lkγ(ε)2

)
for every k ∈ N\{0}, where σ+

k and σ−k are defined using X+
k

and X−k , respectively, according to (2). Hence, we have:

P
(
σ+
k < σ̂ − ε

∣∣σ+
k−1 ≥ σ̂ − ε

)
≤ exp

(
−2Lkγ(ε)2

)
(11)

because σ+
k < σ̂ − ε = g(σ̂ − ε) − γ(ε) implies that σ+

k <
g(σ+

k−1)− γ(ε) when σ+
k−1 ≥ σ̂ − ε (since g is increasing).

Fix any τ > 0 and any sufficiently large K = K(ε, τ) ∈ N
such that

∑
m>K exp

(
−2Lmγ(ε)2

)
≤ τ . Note that such K

exists because Lm ≥ C(δ, d) log(m) for all sufficiently large
m (depending on δ and d), where we define:

C(δ, d) ,
1

γ(ε(δ, d))2
> 0 . (12)

Now let E ,
{
σ+
K ≥ σ̂ − ε, σ

−
K ≤ 1− σ̂ + ε

}
, and observe

using the Hoeffding based bound in (11) that:

P

( ⋂
k>K

{
σ+
k ≥ σ̂ − ε

} ∣∣∣∣∣E
)
≥
∏
k>K

1− exp
(
−2Lkγ(ε)2

)
≥ 1−

∑
k>K

exp
(
−2Lkγ(ε)2

)
where (11) can be shown to hold with the additional condi-
tioning required. Therefore, we have for any k > K:

P
(
σ+
k ≥ σ̂ − ε

∣∣E) , P(σ−k ≤ 1− σ̂ + ε
∣∣E) ≥ 1− τ (13)

where the P
(
σ−k ≤ 1− σ̂ + ε

∣∣E) case holds mutatis mutandis.
Finally, notice that for all k > K:

P
(
σ+
k ≥

1

2

)
− P

(
σ−k ≥

1

2

)
≥ E

[
1

{
σ+
k ≥

1

2

}
− 1

{
σ−k ≥

1

2

}∣∣∣∣E]P(E)

≥
(
P
(
σ+
k ≥ σ̂ − ε

∣∣E)− P
(
σ−k > 1− σ̂ + ε

∣∣E))P(E)

≥ (1− 2τ)P(E) > 0

where the first inequality uses the monotonicity of our Marko-
vian coupling, 1

{
σ+
k ≥

1
2

}
≥ 1

{
σ−k ≥

1
2

}
a.s., the second

inequality holds because 1− σ̂+ ε < 1
2 < σ̂− ε, and the final

inequality follows from (13). It is straightforward to verify that
this implies that lim supk→∞ P(Ŝk 6= σ0) < 1

2 .
2) Converse: Suppose δ ∈

(
δmaj,

1
2

)
so that D(δ, d) < 1.

In this case, the only fixed point of g is σ = 1
2 .

First, using our monotone coupling and the maximal cou-
pling representation of TV distance, it can be shown that:

E
[∥∥∥P+

Xk|G − P
−
Xk|G

∥∥∥
TV

]
≤ P

(
X+
k 6= X−k

)
≤ Lk E

[
σ+
k − σ

−
k

]
(14)

where the second inequality follows from the union bound,
the relation P(X+

k,j 6= X−k,j) = E[X+
k,j−X

−
k,j ], and (2). Then,

we can bound E
[
σ+
k − σ

−
k

]
using the Lipschitz continuity of

g and the monotonicity of our coupling. Indeed, observe that:

E
[
σ+
k − σ

−
k

]
= E

[
g
(
σ+
k−1
)
− g
(
σ−k−1

)]
≤ D(δ, d)E

[
σ+
k−1 − σ

−
k−1
]

where the equality follows from the tower property and (7).
Therefore, we recursively have:

E
[∥∥∥P+

Xk|G − P
−
Xk|G

∥∥∥
TV

]
≤ LkD(δ, d)k (15)

where we use (14) and E
[
σ+
0 − σ

−
0

]
= 1. Letting k → ∞

produces limk→∞ E[‖P+
Xk|G − P

−
Xk|G‖TV] = 0 because Lk =

o(D(δ, d)−k) (with D(δ, d) < 1). Finally, a monotonicity and
bounded convergence theorem argument yields (4). �

Part 1 of Theorem 1 illustrates that reconstruction is pos-
sible on random DAGs with majority rule processing using
the majority decoder Ŝk when δ ∈ (0, δmaj), while part 2
establishes that even if the ML decoder knows G and has
access to Xk, it cannot beat the δmaj critical threshold in all



but a zero measure set of DAGs. We remark that the δmaj

critical threshold in (6) has appeared in past literature. For
example, reliable computation using formulae with d-input δ-
noisy gates, where d ≥ 3 is odd, is impossible if and only
if δ ≥ δmaj, cf. [6], [7]. In fact, the analysis of the fixed
point structure of g when d = 3 and δmaj = 1

6 can be traced
back to von Neumann’s seminal work [4]. Furthermore, the
recursive structure of g was also analyzed in [14] in the context
of recursive reconstruction on periodic trees. However, our
analysis also requires significant applications of concentration
of measure and coupling arguments not used in these works.

Part 2 of Theorem 1 is only a partial converse result.
We conjecture that: In the random DAG model with Lk =
O(log(k)) and fixed d ≥ 3, reconstruction is impossible for
all choices of Boolean processing functions (which may vary
between vertices and be graph dependent) when δ ≥ δmaj. In
fact, it is known that this conjecture is true when δ > 1

2−
1

2
√
d

,
cf. [5], [13, Section II-C]. The ensuing proposition establishes
another special case of our conjecture. It portrays that the ML
decoder based on a single vertex, e.g. Xk,0, cannot reconstruct
X0,0 in all but a vanishing fraction of DAGs when δ ≥ δmaj,
although reconstruction is possible using Xk,0 when δ < δmaj.

Proposition 1 (Single Vertex Reconstruction). As in Theorem
1, consider a random DAG model with d ≥ 3.

1) If δ ∈ (0, δmaj), Lk ≥ C(δ, d) log(k) for all sufficiently
large k, and all processing functions are the majority
rule, then reconstruction is possible in the sense that:

lim sup
k→∞

P(Xk,0 6= X0,0) <
1

2

where Xk,0 is the single vertex decoder.
2) If δ ∈

[
δmaj,

1
2

)
, d is odd, limk→∞ Lk =∞, and Rk ,

infn≥k Ln = O
(
d2k
)
, then for all choices of processing

functions, reconstruction is impossible in the sense that:

lim
k→∞

E
[∥∥∥P+

Xk,0|G − P
−
Xk,0|G

∥∥∥
TV

]
= 0 .

This is proved in [13, Appendix A], and part 2 exploits the
aforementioned impossibility results on reliable computation.

We next present an immediate corollary of Theorem 1 which
demonstrates that deterministic DAGs (i.e. Bayesian networks
on specific realizations of G) admitting reconstruction of the
root bit with logarithmic layer sizes in the depth do exist.

Corollary 1 (Existence of Deterministic DAGs). For every
d ≥ 3, δ ∈ (0, δmaj), and layer sizes Lk ≥ C(δ, d) log(k) for
all sufficiently large k, there exists a deterministic DAG G with
all majority processing functions such that:

lim
k→∞

P
(
hkML(Xk,G) 6= X0

)
<

1

2
.

This follows from a probabilistic method argument; see [13,
Appendix B]. Since δmaj → 1

2 as d → ∞, a consequence of
Corollary 1 is that for any δ ∈

(
0, 12
)
, there exists a deter-

ministic DAG with sufficiently large d and Lk = Ω(log(k))
which admits reconstruction of the root bit.

B. Phase Transition for Indegree d = 2

Our second main result considers the d = 2 setting, where it
is not immediately obvious that deterministic DAGs admitting
reconstruction exist. Indeed, it is not clear which processing
functions are good for “local error correction” in this scenario.
We fix all Boolean functions in the random DAG model to
be the NAND rule. It is straightforward to verify that for
the purposes of broadcasting, this is equivalent to a random
DAG model with all AND functions at even levels and all OR
functions at odd levels. For simplicity, we analyze this model
at even levels, and establish a phase transition phenomenon
around a critical threshold of δnand , 3−

√
7

4 .

Theorem 2 (d = 2 and NAND Processing). Consider a
random DAG model with d = 2, all AND processing functions
at even levels, and all OR processing functions at odd levels.

1) Suppose δ ∈ (0, δnand). Then, there exist C(δ) > 0 and
t = t(δ) ∈ (0, 1) such that if Lk ≥ C(δ) log(k) for all
sufficiently large k (depending on δ), then reconstruction
is possible in the sense that:

lim sup
k→∞

P
(
T̂2k 6= σ0

)
<

1

2

where T̂k,1{σk ≥ t} is a thresholding decoder. Hence,
reconstruction is also possible in the sense of (3).

2) Suppose δ ∈
(
δnand,

1
2

)
. Then, there exists D(δ) ∈ (0, 1)

such that if Lk = o
(
E(δ)−k/2

)
and lim infk→∞ Lk >

2
E(δ)−D(δ) for any E(δ) ∈ (D(δ), 1), then reconstruc-
tion is impossible in the sense of (4).

Theorem 2 is an analogue of Theorem 1 for d = 2, and
is proved in [13, Section IV] using the same proof technique.
Moreover, analogues of part 1 of Proposition 1 and Corollary
1 also hold for Theorem 2. As before, the δnand threshold has
appeared in the reliable computation literature. In particular,
it is well-known that reliable computation using formulae
consisting of δ-noisy NAND gates is possible when δ < δnand
[15], and reliable computation using formulae with general
2-input δ-noisy gates is impossible when δ ≥ δnand [16].

C. Optimality of Logarithmic Layer Size Growth

The next result shows that if Lk grows sub-logarithmically
with the depth, then reconstruction is impossible for determin-
istic and random DAGs regardless of the decision rule used.

Proposition 2 (Layer Size Impossibility Result). For any de-
terministic DAG with parameters δ ∈

(
0, 12
)

and d ∈ N\{0}, if
Lk ≤ log(k)/(d log(1/(2δ))) for all sufficiently large k, then
for all choices of Boolean processing functions, reconstruction
is impossible in the sense that limk→∞

∥∥P+
Xk
− P−Xk

∥∥
TV

= 0,
where P+

Xk
and P−Xk

denote the conditional distributions of
Xk given X0 = 1 and X0 = 0, respectively.

Proposition 2 is proved in [13, Appendix C]. Moreover,
under the conditions of Proposition 2, reconstruction is also
impossible for random DAG models in the sense of (4). Thus,
our assumption that Lk ≥ C log(k) for reconstruction to be
possible in our previous results is in fact necessary.



III. EXPLICIT CONSTRUCTION OF DAGS WHERE
BROADCASTING IS POSSIBLE

Finally, we present an explicit construction of deterministic
bounded degree DAGs such that Lk = Θ(log(k)) and re-
construction is possible using the majority decision rule. Our
construction is based on a variant of regular bipartite lossless
expander graphs. Using results like [17, Lemma 1] and [18,
Proposition 1, Appendix II] which establish the existence of
expander graphs via the probabilistic method, we show in [13,
Corollary 2] that for any d ∈ N\{0} and every sufficiently
large n ∈ N\{0} (depending on d), there exists a d-regular
bipartite graph Bn = (Un, Vn, En) with two disjoint sets of
degree d vertices Un and Vn such that |Un| = |Vn| = n,
undirected edge set En (where multiple edges are allowed
between two vertices), and the lossless expansion property:

∀S ⊆ Un, |S| =
n

d6/5
⇒ |Γ(S)| ≥

(
1− 2

d1/5

)
d|S| (16)

where Γ(S) , {v ∈ Vn : ∃u ∈ S, {u, v} ∈ En} denotes the
neighborhood of S. Note that we only require subsets of
Un to expand (not Vn). Moreover, strictly speaking, nd−6/5

must be an integer, but we neglect this detail for simplicity.
In the sequel, we refer to graphs Bn that satisfy (16) as d-
regular bipartite lossless (d−6/5, d−2d4/5)-expander graphs.
The next theorem constructs deterministic DAGs with majority
processing where reconstruction is possible by concatenating
d-regular bipartite lossless (d−6/5, d−2d4/5)-expander graphs.

Theorem 3 (Expander Based DAG Construction). Fix any
δ ∈

(
0, 12
)
, any sufficiently large odd d = d(δ) ≥ 5 satisfying:

8

d1/5
+ d6/5 exp

(
− (1− 2δ)2(d− 4)2

8d

)
≤ 1

2
, (17)

and any sufficiently large N = N(δ) ∈ N such that M ,
exp(N/(4d12/5)) ≥ 2 and for every n ≥ N , there exists a d-
regular bipartite lossless (d−6/5, d − 2d4/5)-expander graph
Bn = (Un, Vn, En). Define L0 = 1, L1 = N , and Lk = 2mN
for all m, k ∈ N such that Mb2

m−1c < k ≤M2m , where b·c is
the floor function, and Lk = Θ(log(k)). Then, either in deter-
ministic quasi-polynomial time O(exp(Θ(log(r) log log(r)))),
or if N additionally satisfies N ≥ 11/(5d−6/5(1 − d−6/5)),
in randomized polylogarithmic time O(log(r) log log(r)), we
can construct levels 0, . . . , r of a deterministic DAG with layer
sizes Lk, indegrees bounded by d, outdegrees bounded by 2d,
and the following edge configuration:

1) Every vertex in X1 has one directed edge from X0,0.
2) For every pair of consecutive levels k and k+1 such that

Lk+1 = Lk, the directed edges from Xk to Xk+1 are
given by the edges of BLk

, where we identify the vertices
in ULk

with Xk and VLk
with Xk+1, respectively.

3) For every pair of consecutive levels k and k+1 such that
Lk+1 = 2Lk, we partition the vertices in Xk+1 into two
sets, X1

k+1 = (Xk+1,0, . . . , Xk+1,Lk−1) and X2
k+1 =

(Xk+1,Lk
, . . . , Xk+1,Lk+1−1), so that the directed edges

from Xk to Xi
k+1 are given by BLk

for i = 1, 2, where
we identify ULk

with Xk and VLk
with Xi

k+1, as before.

Furthermore, if this infinite deterministic DAG has all identity
processing functions in level k = 1, and all majority process-
ing functions in levels k ≥ 2, then reconstruction is possible:

lim sup
k→∞

P
(
Ŝk 6= X0

)
<

1

2

where Ŝk = 1
{
σk ≥ 1

2

}
is the majority decoder.

We refer readers to [13, Section V] for a proof and a detailed
discussion. Our quasi-polynomial time algorithm constructs
the desired expander graphs by exhaustively enumerating over
all d-regular bipartite graphs and testing property (16) by
brute force. We expound our randomized polylogarithmic time
Monte Carlo algorithm in [13, Section V]. In closing, we note
that the question of finding a deterministic polynomial time
construction of DAGs that admit reconstruction remains open.
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