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Abstract—Most information systems store data by modifying
the local state of the matter, in the hope that atomic (or sub-
atomic) local interactions would stabilize the state for sufficiently
long time, thereby allowing later recovery. In this work we
initiate the study of information retention properties of locally-
interacting systems. We model the time-dependent interactions
between the different particles via the stochastic Ising model
(SIM). The initial spin configuration X0 serves as the user-
controlled input. The output configuration Xt is produced by
running t steps of the Glauber chain. Our main goal is to evaluate
the information capacity In(t) , maxpX0

I(X0;Xt) when the
time t scales with the size of the system n according to various
rates. For the zero-temperature SIM on the two-dimensional√
n ×

√
n grid and free boundary condition, it is easy to show

that In(t) = Θ(n) as long as t = O(n). In addition, we show
that order of

√
n bits can be stored for infinite time (and even

with zero error). The
√
n achievability is optimal when t → ∞

and n is fixed. Our main result is in extending achievability to
super-linear (in n) times via a coding scheme that reliably stores
more than

√
n bits (in orders of magnitude). The analysis of

the scheme decomposes the system into Ω(
√
n) independent Z-

channels whose crossover probability is found via the (recently
rigorously established) Lifshitz law of phase boundary movement.
Finally, two order optimal characterizations of In(t), for all t,
are given for the grid dynamics with an external magnetic field
and for the dynamics on the Honeycomb lattice. It shown that
In(t) = Θ(n) in both cases, suggesting their superiority over the
grid without an external field for storage purposes.

I. INTRODUCTION

A. Storing Information Inside Matter

The predominant technology for long-term storage of digital

information is based on physical effects such as magnetiza-

tion of domains, or changes of meta-stable states of organic

molecules. Data is written to the system by perturbing the

local state of matter, e.g., by magnetizing particles to take

one of two possible spins (represented by +1 and 1). In the

time between writing and reading, the stored data degrades

due to quantum/thermal fluctuations. These effects inspire

the particles to interact - a physical phenomena we aim to

capture in order to understand its influence on the duration of

(reliable) storage. We adopt the physical model of an Ising spin

system to describe the interplay between particles and allow

manipulating spins at the particle level. By doing so we aim

set the ground for the study of the fundamental notion of data

storage inside matter, isolated from any particular technology.

More specifically, this paper is motivated by the following
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Fig. 1: A new model for storage inside matter: The encoder maps the
data m into the initial configuration X0. The channel progresses X0

by t steps of Glauber dynamics. The decoder recovers m from Xt.

question: how much information can be stored in a planar

medium for a given time-duration?

Typical models for the theoretical study of reliable data

storage overlook the inherent time-dependent evolution of the

system, and, in particular, the interactions between particles.

Interactions are partially accounted for by run-length limited

(RLL) codes [1], which mitigate unwanted patterns. On top of

that, a certain (stationary, with respect to the sequence of input

bits) error model is adopted and governs the relation between

the input and output. Error-correcting codes are used to combat

these errors. Thus, the storage problem is reduced to that

of coding over a noisy channel. While the conversion to the

well-understood channel coding problem is certainly helpful,

this approach fails to capture central physical phenomena

concerning the system’s evolution in time.

We propose a new model for the study of storage in

locally interacting systems, which accounts for the system’s

fluctuations in time. The time-evolution is modeled by Glauber

dynamics [2] for the Ising model [3], also known as the

stochastic Ising model (SIM). This widely accepted model

for nonequilibrium ferromagnetic statistical mechanics [4]

successfully describes interparticle interaction in real-life sub-

stances. In the proposed setup (Fig. 1), the encoder controls the

initial configuration X0. Once written, t steps of the Glauber

chain are applied. This produces the output configuration Xt,

from which the decoder tries to recover the message. The

fundamental quantity we consider is the information capacity

max
pX0

I(X0;Xt). (1)

While mutual information (MI) estimation is of independent

interest, the information capacity is shown to have the desired

operational meaning: it characterizes (at least approximately)

the number of bits that can be stored for t time-units in the

storage medium. Our main focus is to evaluate (1) when t
scales with the size of the system n according to various rates.

B. The Stochastic Ising Model

The SIM at inverse temperature β > 0 is a reversible

Markov chain (MC) with the Gibbs measure as its stationary



Time Information Capacity

t = 0 In(t) = n
t = O(n) In(t) = Θ(n)

t = a(n) · n
where a(n) is o(n)

In(t) = Ω
(

n
a(n)

)

t → ∞
independent of n

In(t) = Θ(
√
n)

TABLE I: Main results for the zero-temperature SIM on the 2D grid

distribution [5, Chapter 15]. At each step, the discrete-time

chain picks a site uniformly at random and generates a new

spin for that site according to the Gibbs measure conditioned

on all the other spins of the system. Accordingly, spins have

a tendency to align, i.e., spins at adjacent sites favor having

the same value. The lower the temperature is, the stronger is

the influence of neighbouring spins on one another.

The literature on the SIM is too vast for this short paper to

cover (see [5, Chapter 15] for a partial survey). Of particular

interest here is the so-called zero-temperature SIM on the two-

dimensional (2D) square lattice. Taking the limit of β → ∞,

the transition rule amounts to a majority update: the updated

site takes the same spin as the majority of its neighbors, or, in

case of a tie, draws is according to a fair coin toss. This process

has been much studied in the physics literature as a model

of “domain coarsening” (see, e.g., [6]). One of prominent

rigorous results on this model concerns the disappearance time

of an all-plus droplet in a sea of minuses. In [7] it was shown

that a square droplet of side length L disappears in time

Θ(L2). This result, known as the Lifshitz law, plays a central

role in analyzing one of the coding schemes in this work.

C. The Storage Problem and Contributions

The SIM’s underlying graph describes the interactions be-

tween particles and corresponds to the topology of the modeled

medium. This work assumes a planar topology, for which a

natural choice is a 2D square grid of n vertices. At infinite

temperature (β = 0), interactions are eliminated and, upon

selection, particles flip with probability 1
2 , independently of

their locality. Taking t = cn, the grid essentially becomes an

n-fold binary-symmetric channel (BSC) with flip probability
1
2

(

1− e−c/4
)

, which is arbitrarily close to 1
2 for large c. Con-

sequently, the per-site capacity is almost zero. Understanding

whether introducing interactions (i.e., taking β > 0), enhances

the capacity of the system is one of our main interests.

Classic results on the 2D Ising model phase transition and

mixing times [8] imply the following: for β < βc, where

βc =
1
2 log

(

1+
√
2
)

, we have In
(

poly(n)
)

= 0, while for β >
βc, In

(

exp(n)
)

≥ 1.1 A general analysis of the information

capacity for β > 0, however, is an extremely challenging task.

As a first step towards the general β > 0 case, we endow

the grid with the zero-temperature dynamics. The information

capacity, denoted by In(t), is first studied when n is fixed

and t → ∞. Beyond answering the question of ‘how much

1The 2D SIM on the grid mixes within O(n logn) time when β < βc,

and exhibits exponential mixing of eΩ(
√

n) time, when β > βc [8].

information can be stored in the system forever?’, this limiting

quantity lower bounds In(t), for all t. We characterize zero-

temperature SIM as an absorbing MC, and identify the set

of absorbing states (referred to as ‘stable configurations’). A

configuration is stable if and only if (iff) it has a (horizontal or

vertical) striped pattern, with stripes of width at least two. As

the number of stripes is of order
√
n, we obtain lim

t→∞
In(t) =

Θ(
√
n). Achievability follows by coding only over the stripes;

the converse uses the MC’s absorbing nature.

Next, Gilbert-Varshamov existence claim easily shows that

up to linear times of approximately n
4 , one can store a linear

number of bits (which is order optimal). The main challenge,

therefore, becomes understanding what happens in between

these two regimes. A coding scheme that stores more than√
n bits (in order of magnitude) for super-linear times is of

particular interest. We devise a scheme based on arranging

monochromatic droplets (i.e., of all-plus or all-minus spins)

in a sea of minuses. By growing the size of the droplets

a(n) as any o(n) function, one can reliably store n
a(n) bits

for times up to a(n) · n. We analyze the continuous-time

version of the dynamics (easily shown to be equivalent for

our purposes to the discrete-time version). The configurations

in our codebook decouple into n
a(n) independent MCs, and

for each one, thresholding the number of pluses results in a Z-

channel with positive capacity. The droplet survival time result

from [7] and a tenzorization argument are used to conclude

the analysis. Our main results are summarized in Table I.

Finally, we highlight two modifications to the zero-

temperature dynamics for which storage performance signifi-

cantly improves. Introducing an external magnetic field to the

grid dynamics, gives rise to a tie-braking rule for updating

sites with a balanced neighbourhood. This increases the size

of the stable set from order of
√
n to Θ(n), which implies that

In(t) = Θ(n), uniformly in t. The same holds, without an

external field, when the grid is replaced with the Honeycomb

lattice. This follows from a tiling-based achievability scheme

that exploits the odd degree (namely, 3) of all the vertices in

the interior of the lattice.

II. ZERO-TEMPERATURE DYNAMICS AND PRELIMINARIES

For k ∈ N, we set [k] , {1, . . . , k}. Let Gn = (Vn, En) be

a square grid of side
√
n ∈ N, where Vn =

{

(i, j)
}

i,j∈[
√
n]

. 2

The neighborhood of v is Nv , {w ∈ Vn|{v, w} ∈ En}.

Fix n ∈ N and let Ωn , {−1,+1}Vn . For every σ ∈ Ωn

and v ∈ Vn, σ(v) denotes the value of σ at v. Given

a configuration σ ∈ Ωn and v ∈ Vn, σv denotes the

configuration that agrees with σ everywhere except v, i.e.,

σv(u) = σ(u)
(

1{u6=v} − 1{u=v}
)

. The all-plus and the all-

minus configurations are denoted by ⊞ and ⊟, respectively.

Let mv(σ) ,
∣

∣

{

w ∈ Nv|σ(w) = σ(v)
}∣

∣ be the number of v’s

neighbours whose spin is σ(v). Also set ℓv(σ), |Nv|−mv(σ).

2For convenience, we assume
√
n ∈ N; if

√
n /∈ N, simple modification of

some of the subsequent statements using ceiling and/or floor operations are
needed. Regardless, our focus is on the asymptotic regime as n → ∞, and
the assumption that

√
n ∈ N has no affect on the asymptotic behavior.



Given a configuration σ ∈ Ωn, the zero-temperature SIM on

Gn, which amounts to a majority update, evolves as follows:

1) Pick a vertex v ∈ V uniformly at random.

2) Modify σ at v as:

• If mv(σ) > ℓv(σ), keep the value of σ(v);
• If mv(σ) < ℓv(σ), flip the value of σ(v);
• Otherwise, draw σ(v) uniformly over {−1,+1}.

Let P be the corresponding transition kernel and (Xt)t∈N0
be

the induced MC on Ωn. We use P for the probability measure,

while Pσ indicates a conditioning on {X0 = σ}. If X0 ∼
pX0

, the distribution of (X0, Xt) is pX0,Xt
(σ, η) , P(X0 =

σ,Xt = η) = pX0
(σ)P t(σ, η), where P t is the t-step kernel.

The MI I(X0;Xt) is taken with respect to pX0,Xt
.

III. OPERATIONAL VERSUS INFORMATION CAPACITY

Our main focus is on the asymptotic behaviour of the

information capacity In(t) , maxpX0
I(X0;Xt). While the

study of In(t) for the Ising model is of independent interest,

we are also motivated by coding for storage. This section

briefly describes the operational problem and establishes In(t)
as a fundamental quantity in the study thereof. The rest of the

paper deals only with In(t).
For a fixed

√
n ∈ N and t ∈ N

+
0 , P t is a channel from X0

to Xt, referred to as the t-th Stochastic Ising Channel on Gn

(SICn(t)). The encoder controls X0 and the decoder observes

Xt (Fig. 1). The goal is to maintain reliable communication

of a message m ∈ [M ] with the largest possible alphabet size.

Definition 1 (Code) An (M,n, t, ǫ)-code for the SICn(t)

is a pair of maps: the encoder f
(t)
n : [M ] →

Ωn and the decoder φ
(t)
n : Ωn → [M ], satisfying

1
M

∑

m∈[M ]

P
f
(t)
n (m)

(

φ
(t)
n (Xt) 6= m

)

≤ǫ.

Let M⋆(n,t,ǫ)=max
{

M
∣

∣

∣
∃ an (M,n, t, ǫ)-code for SICn(t)

}

be the largest code size with error probability at most ǫ. The

next proposition relates M⋆(n, t, ǫ) and In(t). Due to space

limitations, the reader is referred to Appendix A of the full

version of this work [9].

Proposition 1 The following bounds on M⋆(n, t, ǫ) hold:

1) Upper Bound: For any n ∈ N, t ≥ 0 and ǫ > 0, we have

logM⋆(n, t, ǫ) ≤ 1

1− ǫ

(

In(t) + h(ǫ)
)

,

where h : [0, 1] → [0, 1] is the binary entropy function.

2) Lower Bound: For n1 = o(n), t ≥ 0 and ǫ > 0, we have

1

n
logM⋆

(

n+o

(

n√
n1

)

, t, ǫ

)

≥ 1

n1
In1

(t)−
√

n1

n(1−ǫ)
.

To interpret item (2), let α ∈ (0, 1) and n1 = n1−α. This gives

1

n
logM⋆

(

n+o
(

n
1+α

2

)

,t,ǫ
)

≥ 1

n1−α
In1−α(t)−

√

1

nα(1−ǫ)
,

and approximates the normalized largest code size by the nor-

malized information capacity of Gn1−α , for α however small.

IV. INFINITE-TIME CAPACITY

We focus now on I
(∞)
n , limt→∞ In(t), for fixed n ∈ N.

This is motivated by storage for infinite-time. Furthermore,

thought the Data Processing Inequality (DPI), I
(∞)
n is a

uniform (in t) lower bound on In(t).

To characterize I
(∞)
n , we identify (Xt)t∈N0

as an absorbing

MC. Because the chain inevitably lands in an absorbing state,

the number of possible output configurations is equal to the

number of absorbing states. To get the right dependence of

I
(∞)
n on n, we first study the absorbing or stable set.

Definition 2 (Stable Configurations) The set of stable con-

figurations is defined as Sn ,
{

σ ∈ Ωn

∣

∣P (σ, σ) = 1
}

.

We next show that Sn equals to the set of all striped configura-

tions. A striped configuration partitions the grid into horizontal

or vertical monochromatic stripes of width at least 2 (Fig.

2(a)); see [9, Definition 3]) for a formal definition. We use

An for the set of all striped configurations.

The size of An can be found by mapping it to the number

of binary sequences in a certain class and then relating the

latter to a Fibonacci sequence (see [9, Proposition 2]). For

our purposes here, it suffices to note that |An| = 2Θ(
√
n).

Theorem 1 Any σ∈Ωn is stable iff it is striped, i.e., Sn =An.

Proof Outline: The inclusion An ⊆ Sn is trivial. We

thus focus on the opposite inclusion. View the
√
n×√

n grid

as a board of n squares (each of side 1), such that each

square is associated with a site v ∈ Vn. Assigning a +1
(respectively, −1) spin to a site corresponds to coloring the

appropriate square in, e.g., blue (respectively, red). Now, fix

a stable configuration σ ∈ Sn and consider the corresponding√
n×√

n board of blue and red squares. The striped pattern

of σ essentially follows by noting that while traveling along

the borders between two monochromatic regions, one can

never turn. Indeed, each change of orientation (from vertical

to horizontal or vice versa) would reveal an unstable site that,

if selected, would have a probability of at least 1
2 to flip. The

stripes’ width must be at least 2 because any stripe of width

1 (even on the borders) contains unstable sites. Appendix C

of [9] formulates this idea based on Peierl’s contours.

Next, we claim that (Xt)t∈N0
is an absorbing MC. Namely,

setting Tn , Ωn \ Sn, (Xt)t∈N0
is an absorbing MC if for

any ρ ∈ Tn there exist t(ρ) ∈ N such that P t(ρ)(ρ,Sn) =
∑

σ∈S P t(ρ)(ρ, σ) > 0. While (Xt)t∈N0
being absorbing

seems very intuitive, proving this relies on a rather intricate

connectivity argument that is found in [9, Appendix D]).

Lemma 1 (Absorbing MC) (Xt)t∈N0
is an absorbing MC,

and consequently, lim
t→∞

max
σ∈Ωn

Pσ

(

Xt /∈ Sn

)

= 0.

The convergence in probability above is a well-known property

of absorbing MCs (see, e.g., [10, Chapter 11]). We are now

ready to state and prove the infinite-time capacity result.

Theorem 2 (Infinite Time) For any n ∈ N, we have

log |Sn| ≤ I(∞)
n ≤ log |Sn|+ 1, (2)
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Fig. 2: (a) A horizontally striped configuration; (b) A droplet config-
uration of size ℓ× ℓ. Positive spins are represented by blue squares,
while negative spins are depicted in red.

and, in particular, I
(∞)
n = Θ(

√
n).

Proof: For achievability, let X0 ∼ Unif(Sn). Since

P (σ, σ) = 1 for all σ ∈ Sn, we have

In(t) ≥ H(X0) = log |Sn|, ∀t ∈ N0. (3)

For the upper bound, define Et , 1{Xt∈Sn}. For any pX0
and

t ∈ N0, we have I(X0;Xt) = I(X0;Et)+ I(X0;Xt|Et), and

by expanding over Et, one may verify that

I(X0;Xt) ≤ 1 + log |Sn|+ n ·max
σ∈Ω

Pσ(Xt /∈ Sn). (4)

Combining (3)-(4) and taking t → ∞ concludes the proof.

V. STORING FOR SUPER-LINEAR TIME

The previous section showed that for any t ∈ N0, one can

achieve In(t) = Θ(
√
n). The question, therefore, becomes:

can we achieve a higher information capacity and, if yes, at

what time scales? A simple initial observation is as follows.

Proposition 2 (Linear Time Order Optimality) Fix ǫ > 0.

For n ∈ N and any t <
(

1
4 − ǫ

)

n, we have In(t) = Θ(n).

The converse In(t) ≤ n is trivial, while achievability follows

by the Gilbert-Varshamov existence claim, which implies that

there exist error-correcting codes with minimum distance d >
(

1
4 + ǫ

)

n. Since until the aforementioned time there can occur

at most
(

1
4 − ǫ

)

n flips, the code is able to correct them. Thus,

In(t) > n·
[

1−h
(

1
4 − ǫ

)

−o(1)
]

= Ω(n), for all t <
(

1
4 − ǫ

)

.

A. Beyond Linear Times - A Droplet-Based Scheme

To get an estimate on In(t) beyond linear times, we propose

a coding scheme that decomposes Gn into independent sub-

squares, each capable of reliably storing a bit for ω(n) time.

The decomposition relies on separating the sub-squares by all-

minus stripes of width 2. This disentangles the dynamics inside

the sub-squares and enables a tenzorization-based analysis.

Thus, we now focus on the evolution of a square droplet of

positive spins surrounded by a sea of minuses. Fix ℓ ≤ √
n−2,

and let Rℓ ⊂ Ωn be the set of configurations with all spins

−1 except for those inside an ℓ×ℓ square, which are +1, such

that the graph distance between the square and the boundary

of the grid is at least one (see Fig. 2(b) for an illustration).

Consider a system initiated at X0 = ρ ∈ Rℓ and let τ
be the hitting time of the all-minus configuration ⊟, i.e.,

τ , inf{t ∈ N0|Xt = ⊟}. The gaps between the borders

of the square and the boundary of the grid ensure that the

√

a(n)

√
n

. . .

. . .

. . .

...
...

.... .
.

Fig. 3: Partitioning the grid into sub-squares of side length
√

a(n).
Red squares represent −1 spins; white squares are unspecified spins.

only stable configuration reachable from Rℓ is ⊟. Thus, the

original square shrinks with time until its disappearance.

To approximate τ , it is convenient to consider the

continuous-time version of the zero-temperature dynamics,

which is effectively equivalent to the discrete-time chain

via Poisson approximation. Although this equivalence is not

proven in this paper (see [9, Proposition 4]), it is subsequently

used for proving Theorem 4. The continuous-time dynamics

are described as follows: When in state σ ∈ Ωn, each site

v ∈ Vn is assigned with an independent Poisson clock of rate

cv,σ = P (σ, σv) =











1
n , mv(σ) < ℓv(σ)
1
2n , mv(σ) = ℓv(σ)

0, mv(σ) > ℓv(σ).

(5)

When the clock at site v rings, the spin at v is flipped. Thus,

if σ(v) agrees with the majority/half/minority or the spins of

its neighbors, it flips with rate 1
n / 1

2n a/ 0. The benefit from

moving to the continuous-time dynamics is the decorrelation

it induces between non-interacting portions of the Gn.

A landmark result from the zero-temperature SIM literature

[7, Theorem 2] is that, with high probability, τ = Θ
(

nℓ2
)

.

Theorem 3 (Erosion Time of a Square Droplet [7]) For

any ρ ∈ Rℓ, there exist constants c, C, γ > 0, such that

Pρ

(

cnℓ2 ≤ τ ≤ Cnℓ2
)

≥ 1− e−γnℓ, ∀ℓ ≥ 1. (6)

Our main result for super-linear time storage is given next.

Theorem 4 (Storing Beyond Linear Time) For any n ∈ N

let a(n) = o (
√
n). Then there exists C > 0, such that for all

t ≤ C · a(n) · n, we have In(t) = Ω
(

n
a(n)

)

.

Proof: We move from discrete-time to continuous-time3

and construct the input distribution of X0 as follows. Tile the√
n×√

n grid with monochromatic sub-squares of side
√

a(n)
(whose spins are to be specified later) separated by all-minus

stripes of width 2. The partitioning contains a total number of

K2 sub-squares, where K =
⌊ √

n−3√
a(n)−2

⌋

(Fig. 3).

Let Cn be the collection of configurations whose topology

corresponds to Fig. 3 with monochromatic spin assignments

to each of the Θ
(

n
a(n)

)

sub-squares (see [9] for the technical

3Abusing notation, we still use (Xt)t≥0 to denote the corresponding MC.
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X
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)

with crossover

probability qn , P
(

τ1 ≤ C · a(n) · n
)

.

definition). The collection Cn can be thought of as our code-

book, where each droplet stores a bit. Accordingly, one may

encode K2 = Θ
(

n
a(n)

)

bits into the initial configuration by

mapping bits to droplets with, say, a zero bit mapped to a -1

droplet. We next show that In(t) ≥ K2, for t ≤ C · a(n) · n.

Let X0 ∼ pX0
with supp(pX0

) = Cn (the exact distribution

will be understood later), and note that by the very nature of

the continuous-time dynamics, X0 and Xt can be decomposed

into K2 independent components. Each is a sub-grid of side
√

a(n) + 2 corresponding to a different
√

a(n) ×
√

a(n)
square surrounded by an all-minus strip of width 1. This

follows by the independent Poisson clocks that define the

flip rates of
(

Xt

)

t≥0
and because when X0 = σ ∈ Cn,

interactions are confined to the original sub-squares (namely,

the white regions in Fig. 3). Let
(

X
(i)
0

)

i∈[K2]
and

(

X
(i)
t

)

i∈[K2]
be the decomposition, respectively, of X0 and Xt to the

aforementioned independent components. We have,

In(t) ≥ K2 ·max
p1

I
(

X
(1)
0 ;X

(1)
t

)

, K2 · I1(t), (7)

where X
(1)
0 is a binary random variable that sets the 1st sub-

square to ⊟ with probability (w.p.) p1, and sets it to an all-plus

droplet (surrounded by a strip of minuses) w.p. 1− p1.

Based on (7), to prove Theorem 4 it suffices to show that

there exists C > 0 such that I1(t) > 0, for all t ≤ C ·a(n) ·n.

Interestingly, this follows because the relation between X
(1)
0

and X
(1)
t can be described in terms of a Z-channel. To see this

denote the two possible values of X
(1)
0 by σ− and σ+, where

σ− = ⊟ ∈ Ω√
a(n)+2

, while σ+ is an all-plus droplet of side
√

a(n) surrounded by a strip of width 1 of minuses (see the

right-hand side of Fig. 4). Define φ : {σ−, σ+} → {σ−, σ+}
as φ(σ) = σ+·1{σ 6=σ

−
}+σ−·1{σ=σ

−
}, and note that X

(1)
0 and

φ
(

X
(1)
t

)

are related through the Z-channel from Fig. 4 with

crossover probability qn , P (τ1 ≤ C · a(n) · n). By Theorem

3, there exist C, γ > 0, qn ≤ e−γ·a(n), and consequently,

I1(t) > 0, for all t ≤ C · a(n) · n.

VI. TIGHT INFORMATION CAPACITY RESULTS

A. 2D Grid with External Field

Introducing an (arbitrarily small) positive external magnetic

field to the zero-temperature SIM on Gn serves as a tie-

breaker. Namely, when in configuration σ ∈ Ωn and updating

v ∈ Vn with mv(σ)= ℓv(σ), the spin at v is set to +1 w.p 1.

Theorem 5 (Information Capacity with External Field)

For the zero-temperature SIM on Gn with a positive external

field, we have In(t) = Θ(n), for all t ≥ 0.

Fig. 5: Storing Ω(n) stable bits in the Honeycomb lattice: Each green
region corresponds to a bit (written by assigning the same spin to all
the vertices on the border of that region); the rest of the vertices are
assigned with negative spins, shown by the red circles in the figure.

Theorem 5 essentially follows because, under the aforemen-

tioned tie-braking rule, the droplet configurations in Cn from

the proof of Theorem 4, with a(n) = 2, are all stable. Thus, an

(however small) external field is highly beneficial for storage

purposes, as compared to the case where its absent.

B. The Honeycomb Lattice

Another interesting instance is when the underlying graph

is the Honeycomb Lattice on n vertices Hn (Fig. 5; ignore the

coloring for now) without an external field.

Theorem 6 (Honeycomb Lattice Information Capacity)

For the zero-temperature stochastic Ising model on the

Honeycomb lattice Hn, we have In(t) = Θ(n), for all t ≥ 0.

The achievability proof of Theorem 6 uses the tiling of the

Honeycomb lattice shown in 5. A stable bit can be stored in

each colored region. To write a bit, all the sites at the border of

that region are assigned with the same spin (say, negative for

‘0′ and positive for ‘1′). The rest of the spins is the systems are

set to −1. Any such configuration is stable. It is readily verified

by doing so, Ω(n) bits can be stored in the system indefinitely.

Thus, when external field is applied, the Honeycomb lattice is

preferable (over the grid) for storage purposes.
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