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Abstract—In this paper, we consider a problem of sampling a
Wiener process, with samples forwarded to a remote estimator
via a channel that consists of a queue with random delay. The
estimator reconstructs a real-time estimate of the signal from
causally received samples. Motivated by recent research on age-
of-information, we study the optimal sampling strategy that
minimizes the mean square estimation error subject to a sampling
frequency constraint. We prove that the optimal sampling strat-
egy is a threshold policy, and find the optimal threshold. This
threshold is determined by the sampling frequency constraint
and how much the Wiener process varies during the channel
delay. An interesting consequence is that even in the absence of
the sampling frequency constraint, the optimal strategy is not
zero-wait sampling in which a new sample is taken once the
previous sample is delivered; rather, it is optimal to wait for a
non-zero amount of time after the previous sample is delivered,
and then take the next sample. Further, if the sampling times
are independent of the observed Wiener process, the optimal
sampling problem reduces to an age-of-information optimization
problem that has been recently solved. Our comparisons show
that the estimation error of the optimal sampling policy is much
smaller than those of age-optimal sampling, zero-wait sampling,
and classic uniform sampling.

I. INTRODUCTION

Consider a system with two terminals (see Fig. 1): An
observer measuring a Wiener process Wt and an estimator,
whose goal is to provide the best-guess Ŵt for the current
value of Wt. These two terminals are connected by a channel
that transmits time-stamped samples of the form (Si,WSi

),
where the sampling times Si satisfy 0 ≤ S1 ≤ S2 ≤ . . . The
channel is modeled as a work-conserving FIFO queue with
random i.i.d. delay Yi, where Yi ≥ 0 is the channel delay
(i.e., transmission time) of sample i.1 The observer can choose
the sampling times Si causally subject to an average sampling
frequency constraint

lim inf
n→∞

1

n
E[Sn] ≥ 1

fmax
,

where fmax is the maximum allowed sampling frequency.
Unless it arrives at an empty system, sample i needs to

wait in the queue until its transmission starts. Let Gi be the
transmission starting time of sample i such that Si ≤ Gi.
The delivery time of sample i is Di = Gi + Yi. The initial
value W0 = 0 is known by the estimator for free, represented
by S0 = D0 = 0. At time t, the estimator forms Ŵt using
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1By “work-conserving”, we meant that the channel is kept busy whenever
there exist some generated samples that are not delivered to the estimator.
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Fig. 1: System model.

causally received samples with Di ≤ t. By minimum mean
square error (MMSE) estimation,

Ŵt =E[Wt|WSj , Dj ≤ t]
=WSi , if t ∈ [Di, Di+1), i = 0, 1, 2, . . . , (1)

as illustrated in Fig. 2. We measure the quality of remote
estimation via the MMSE:

lim sup
T→∞

1

T
E

[∫ T

0

(Wt − Ŵt)
2dt

]
.

In this paper, we study the optimal sampling strategy that
achieves the fundamental tradeoff between fmax and MMSE.
The contributions of this paper are summarized as follows:
• The optimal sampling problem for minimizing the MMSE

subject to the sampling frequency constraint is solved ex-
actly. We prove that the optimal sampling strategy is a
threshold policy, and find the optimal threshold. This thresh-
old is determined by fmax and the amount of signal variation
during the channel delay (i.e., random transmission time of
a sample). Our threshold policy has an important difference
from the previous threshold policies studied in, e.g., [1]–
[10]: In our model, each sample waiting in the queue for its
transmission opportunity unnecessarily becomes stale. We
have proven that it is suboptimal to take a new sample when
the channel is busy. Consequently, the threshold should be
disabled whenever there is a packet in transmission.

• An unexpected consequence of our study is that even
in the absence of the sampling frequency constraint (i.e.,
fmax =∞), the optimal strategy is not zero-wait sampling
in which a new sample is generated once the previous
sample is delivered; rather, it is optimal to wait a positive
amount of time after the previous sample is delivered, and
then take the next sample.

• If the sampling times are independent of the observed
Wiener process, the optimal sampling problem reduces
to an age-of-information optimization problem solved in
[11], [12]. The asymptotics of the MMSE-optimal and age-
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(b) Estimate process Ŵt using causally received samples.

Fig. 2: Sampling and remote estimation of the Wiener process.

optimal sampling policies at low/high channel delay or
low/high sampling frequencies are studied.

• Our theoretical and numerical comparisons show that the
MMSE of the optimal sampling policy is much smaller
than those of age-optimal sampling, zero-wait sampling, and
classic uniform sampling.

II. RELATED WORK

On the one hand, the results in this paper are closely related
to the recent age-of-information studies, e.g., [11]–[20], where
the focus was on queueing and channel delay, without a
signal model. The discovery that the zero-wait policy is not
always optimal for minimizing the age-of-information can be
found in [11]–[13]. The sub-optimality of a work-conserving
scheduling policy was also observed in [19], which considered
scheduling updates to different users with unreliable channels.
One important observation in our study is that the behavior of
the optimal update policy changes dramatically after adding a
signal model.

On the other hand, the paper can be considered as a con-
tribution to the rich literature on remote estimation, e.g., [1]–
[10], [21], by adding a queueing model. Optimal transmission
scheduling of sensor measurements for estimating a stochastic
process was recently studied in [9], [10], where the samples are
transmitted over a channel with additive noise. In the absence
of channel delay and queueing (i.e., Yi = 0), the problems
of sampling Wiener process and Gaussian random walk were
addressed in [1], [7], [8], where the optimality of threshold
policies was established. To the best of our knowledge, [7] is
the closest study with this paper. Because there is no queueing
and channel delay in [7], the problem analyzed therein is a
special case of ours.

III. MAIN RESULT

Let π = (S0, S1, . . .) represent a sampling policy, and
Π be the set of causal sampling policies which satisfy the
following conditions: (i) The information that is available for
determining the sampling time Si includes the history of the
Wiener process (Wt : t ∈ [0, Si]), the history of channel
states (It : t ∈ [0, Si]), and the sampling times of previous
samples (S0, . . . , Si−1), where It ∈ {0, 1} is the idle/busy
state of the channel at time t. (ii) The inter-sampling times

t

Si+Yi =Si+1(Si, 0)
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√
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Si+1 = Si + Yi.

t t
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√
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−
√

β

Wt − WSi

(b) If |WSi+Yi −WSi | <
√
β,

sample i + 1 is taken at time t
that satisfies t ≥ Si + Yi and
|Wt−WSi | =

√
β.

Fig. 3: Illustration of the threshold policy (4).

{Ti = Si+1 − Si, i = 0, 1, . . .} form a regenerative process
[22, Section 6.1]: There exist integers 0 ≤ k1 < k2 < . . . such
that the post-kj process {Tkj+i, i = 0, 1, . . .} has the same
distribution as the post-k1 process {Tk1+i, i = 0, 1, . . .} and
is independent of the pre-kj process {Ti, i = 0, 1, . . . , kj−1};
in addition, E[S2

k1
] <∞ and 0 < E[(Skj+1

− Skj )2] <∞ for
j = 1, 2, . . .2 We assume that the Wiener process Wt and the
channel delay Yi are mutually independent and do not change
according to the sampling policy. We also assume E[Y 2

i ] <∞.
A sampling policy π ∈ Π is said to be signal-independent

(signal-dependent), if π is (not) independent of the Wiener
process {Wt, t ≥ 0}. Example policies in Π include:

1. Uniform sampling: The inter-sampling times are constant,
such that for some β ≥ 0,

Si+1 = Si + β. (2)

2. Zero-wait sampling [11]–[14]: A new sample is generated
once the previous sample is delivered, i.e.,

Si+1 = Si + Yi. (3)

3. Threshold policy in signal variation: The sampling times
are given by

Si+1 = inf
{
t ≥ Si + Yi : |Wt −WSi |≥

√
β
}
, (4)

which is illustrated in Fig. 3. If |WSi+Yi
−WSi

| ≥ √β,
sample i+1 is generated at the time Si+1 = Si+Yi when
sample i is delivered; otherwise, if |WSi+Yi −WSi | <√
β, sample i+ 1 is generated at the earliest time t such

that t ≥ Si+Yi and |Wt−WSi
| reaches the threshold

√
β.

It is worthwhile to emphasize that even if there exists time
t ∈ [Si, Si+Yi) such that |Wt−WSi

| ≥ √β, no sample is
taken at such time t, as depicted in Fig. 3. In other words,
the threshold-based control is disabled during [Si, Si+Yi)
and is reactivated at time Si+Yi. This is a key difference
from previous studies on threshold policies [1]–[10].

4. Threshold policy in time variation [11]–[13]: The sam-
pling times are given by

Si+1 = inf {t ≥ Si + Yi : t− Si ≥ β} . (5)

The optimal sampling problem for minimizing the MMSE

2Really, we assume that Ti is a regenerative process because we an-
alyze the time-average MMSE in (6), but operationally a nicer definition
is lim supn→∞ E[

∫Dn
0 (Wt − Ŵt)2dt]/E[Dn]. These two definitions are

equivalent when Ti is a regenerative process.



subject to a sampling frequency constraint is formulated as

min
π∈Π

lim sup
T→∞

1

T
E

[∫ T

0

(Wt − Ŵt)
2dt

]
(6)

s.t. lim inf
n→∞

1

n
E[Sn] ≥ 1

fmax
. (7)

Problem (6) is a constrained continuous-time Markov deci-
sion problem with a continuous state space. Somewhat to our
surprise, we were able to exactly solve (6):

Theorem 1. There exists β ≥ 0 such that the sampling policy
(4) is optimal to (6), and the optimal β is determined by
solving3

E[max(β,W 2
Y )]=max

(
1

fmax
,
E[max(β2,W 4

Y )]

2β

)
, (8)

where Y is a random variable with the same distribution as
Yi. The optimal value of (6) is then given by

mmseopt ,
E[max(β2,W 4

Y )]

6E[max(β,W 2
Y )]

+ E[Y ]. (9)

Proof. See Section IV.

The optimal policy in (4) and (8) is called the “MMSE-
optimal” policy. Note that one can use the bisection method
or other one-dimensional search method to solve (8) with quite
low complexity. Interestingly, this optimal policy does not
suffer from the “curse of dimensionality” issue encountered
in many Markov decision problems.

Notice that the feasible policies in Π can use the complete
history of the Wiener process (Wt : t ∈ [0, Si+1]) to determine
Si+1. However, the MMSE-optimal policy in (4) and (8) only
requires recent knowledge of the Wiener process (Wt−WSi :
t ∈ [Si + Yi, Si+1]) to determine Si+1.

Moreover, according to (8), the threshold
√
β is determined

by the maximum sampling frequency fmax and the distribution
of the signal variation WY during the channel delay Y . It is
worth noting that WY is a random variable that tightly couples
the source process and the channel delay. This is different
from the traditional wisdom of information theory where
source coding and channel coding can be treated separately.

A. Signal-Independent Sampling and the Age-of-Information
Let Πsig-independent ⊂ Π denote the set of signal-independent

sampling policies, defined as

Πsig-independent ={π ∈ Π : π is independent of Wt, t ≥ 0}.
For each π ∈ Πsig-independent, the MMSE (6) can be written as

lim sup
T→∞

1

T
E

[∫ T

0

∆(t)dt

]
, (10)

where

∆(t) = t− Si, t ∈ [Di, Di+1), i = 0, 1, 2, . . . , (11)

is the age-of-information [14], that is, the time difference
between the generation time of the freshest received sample
and the current time t. If the policy space in (6) is restricted

3If β → 0, the last terms in (8) and (13) are determined by L’Hôpital’s
rule.

from Π to Πsig-independent, (6) reduces to the following age-of-
information optimization problem [11], [12]:

min
π∈Πsig-independent

lim sup
T→∞

1

T
E

[∫ T

0

∆(t)dt

]
(12)

s.t. lim inf
n→∞

1

n
E[Sn] ≥ 1

fmax
.

Problem (6) is significantly more challenging than (12),
because in (6) the sampler needs to make decisions based on
the evolution of the signal process Wt, which is not required
in (12). More powerful techniques than those in [11], [12] are
developed in Section IV and our technical report [23] to solve
(6).

Theorem 2. [11], [12] There exists β ≥ 0 such that the
sampling policy (5) is optimal to (12), and the optimal β is
determined by solving

E[max(β, Y )]=max

(
1

fmax
,
E[max(β2, Y 2)]

2β

)
. (13)

The optimal value of (12) is then given by

mmseage-opt ,
E[max(β2, Y 2)]

2E[max(β, Y )]
+ E[Y ]. (14)

The sampling policy in (5) and (13) is referred to as the
“age-optimal” policy. Because Πsig-independent ⊂ Π,

mmseopt ≤ mmseage-opt. (15)

In the following, the asymptotics of the MMSE-optimal and
age-optimal sampling policies at low/high channel delay or
low/high sampling frequencies are studied.

B. Low Channel Delay or Low Sampling Frequency
Let Yi = dXi represent the scaling of the channel delay Yi

with d, where d ≥ 0 and the Xi’s are i.i.d. positive random
variables. If d→ 0 or fmax → 0, we can obtain from (8) that

β =
1

fmax
+ o

(
1

fmax

)
, (16)

where f(x) = o(g(x)) as x → a means that limx→a
f(x)/g(x) = 0. Hence, the MMSE-optimal policy becomes

Si+1 =inf

{
t ≥ Si : |Wt −WSi

|≥
√

1

fmax

}
, (17)

and the optimal value of (6) becomes mmseopt = 1/(6fmax)
+o(1/fmax). The sampling policy (17) was also obtained in
[7] for the case that Yi = 0 for all i.

If d → 0 or fmax → 0, one can show that the age-optimal
policy in (5) and (13) becomes uniform sampling (2) with
β = 1/fmax + o(1/fmax), and the optimal value of (12) is
mmseage-opt = 1/(2fmax) + o(1/fmax). Therefore,

lim
d→0

mmseopt

mmseage-opt
= lim
fmax→0

mmseopt

mmseage-opt
=

1

3
. (18)

C. High Channel Delay or Unbounded Sampling Frequency
If d → ∞ or fmax → ∞, the MMSE-optimal policy for

solving (6) is given by (4) where β is determined by solving

2βE[max(β,W 2
Y )] = E[max(β2,W 4

Y )]. (19)



Similarly, if d→∞ or fmax →∞, the age-optimal policy for
solving (12) is given by (5) where β is determined by solving

2βE[max(β, Y )] = E[max(β2, Y 2)]. (20)

In these limits, the ratio between mmseopt and mmseage-opt
depends on the distribution of Y .

When the sampling frequency is unbounded, i.e., fmax =
∞, one logically reasonable policy is the zero-wait policy in
(3) [11]–[14]. This zero-wait policy achieves the maximum
throughput and the minimum queueing delay of the channel.
Surprisingly, this zero-wait policy does not always minimize
the age-of-information in (12) and almost never minimizes the
MMSE in (6), as stated below:

Theorem 3. If fmax =∞, the zero-wait policy is optimal for
solving (6) if and only if Y = 0 with probability one.

Theorem 4. [12] If fmax =∞, the zero-wait policy is optimal
for solving (12) if and only if

E[Y 2] ≤ 2 ess inf Y E[Y ], (21)

where ess inf Y = sup{y ∈ [0,∞) : Pr[Y < y] = 0}.

Theorems 3 and 4 are proven in our technical report [23].

IV. PROOF SKETCH OF THE MAIN RESULT

A proof sketch of Theorem 1 is provided here, and the
detailed proof is relegated to our technical report [23]:

We first provide a lemma that is crucial for simplifying (6).

Lemma 1. In the optimal sampling problem (6) for minimizing
the MMSE of the Wiener process, it is suboptimal to take a
new sample before the previous sample is delivered.

In recent studies on age-of-information [11], [12], Lemma
1 was intuitive and hence was used without a proof: If a
sample is taken when the channel is busy, it needs to wait
in the queue until its transmission starts, and becomes stale
while waiting. A better method is to wait until the channel
becomes idle, and then generate a new sample, as stated in
Lemma 1. However, this lemma is not intuitive in the MMSE
minimization problem (6): The proof of Lemma 1 relies on
the strong Markov property of Wiener process, which may not
hold for other signal processes.

By Lemma 1, we only need to consider a sub-class of
sampling policies Π1 ⊂ Π defined by

Π1 = {π ∈ Π : Si+1 = Gi+1 ≥ Di for all i}.
This completely eliminates the waiting time wasted in the
queue, and hence the queue should always be kept empty.
Let Zi = Si+1 −Di ≥ 0 represent the waiting time between
the delivery time Di of sample i and the generation time
Si+1 of sample i+ 1. Then, Si = Z0 +

∑i−1
j=1(Yj + Zj) and

Di =
∑i−1
j=0(Zj + Yj+1) for each i = 1, 2, . . . If (Y1, Y2, . . .)

is given, (S0, S1, . . .) is uniquely determined by (Z0, Z1, . . .).
Hence, one can also use π = (Z0, Z1, . . .) to represent a
sampling policy.

Because Ti is a regenerative process, (6) can be reformu-
lated as the following Markov decision problem:

mmseopt , min
π∈Π1

lim
n→∞

∑n−1
i=0 E

[∫Di+1

Di
(Wt−WSi)

2dt
]

∑n−1
i=0 E [Yi + Zi]

(22)

s.t. lim
n→∞

1

n

n−1∑

i=0

E [Yi + Zi] ≥
1

fmax
, (23)

Define the σ-fields Fst = σ(Ws+v −Ws : v ∈ [0, t]) and
Fs+t = ∩v>tFsv , as well as the filtration (i.e., a non-decreasing
and right-continuous family of σ-fields) {Fs+t , t ≥ 0} of the
time-shifted Wiener process {Ws+t−Ws, t ∈ [0,∞)}. Let Ms

denote the set of square-integrable stopping times of {Ws+t−
Ws, t ∈ [0,∞)}, i.e.,

Ms = {τ ≥ 0 : {τ ≤ t} ∈ Fs+t ,E
[
τ2
]
<∞}.

After some manipulations, we formulate the Lagrangian dual
problem of (22), which can be decomposed into a sequence
of mutually independent per-sample control problem (24):

Zi = min
τ∈MSi+Yi

E
[

1

2
(WSi+Yi+τ −WSi

)4

−β(Yi + τ)

∣∣∣∣WSi+Yi
−WSi

, Yi

]
, (24)

where β ≥ 0 is the dual variable. In the proof of (24), we
have used the following lemma:

Lemma 2. Let τ ≥ 0 be a stopping time of the Wiener process
Wt with E[τ2] <∞, then

E
[∫ τ

0

W 2
t dt

]
=

1

6
E
[
W 4
τ

]
. (25)

Using the optimal stopping rule developed in [24], we get

Theorem 5. An optimal solution to (24) is

Zi = inf
{
t ≥ 0 : |WSi+Yi+t −WSi | ≥

√
β
}
. (26)

Notice that (26) is equivalent to (4).

Theorem 6. The following assertions are true:
(a). The duality gap between (22) and its Lagrangian dual

problem is zero.
(b). A common optimal solution to (6) and (22) is given by

(4) and (8).

By this, Theorem 1 is proven.

V. NUMERICAL RESULTS

In this section, we evaluate the estimation performance
achieved by the following four sampling policies:

1. Uniform sampling: The policy in (2) with β = fmax.
2. Zero-wait sampling [11]–[14]: The sampling policy in

(3), which is feasible when fmax ≥ E[Yi].
3. Age-optimal sampling [11], [12]: The sampling policy in

(5) and (13), which is the optimal solution to (12).
4. MMSE-optimal sampling: The sampling policy in (4) and

(8), which is the optimal solution to (6).
Let mmseuniform, mmsezero-wait, mmseage-opt, and mmseopt, be
the MMSEs of uniform sampling, zero-wait sampling, age-
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Fig. 4: MMSE vs. fmax tradeoff for i.i.d. exponential channel
delay.

optimal sampling, MMSE-optimal sampling, respectively. Ac-
cording to (15), as well as the facts that uniform sampling is
feasible for (12) and zero-wait sampling is feasible for (12)
when fmax ≥ E[Yi], we can obtain

mmseopt ≤ mmseage-opt ≤ mmseuniform,

mmseopt ≤ mmseage-opt ≤ mmsezero-wait, when fmax ≥ E[Yi],

which fit with our numerical results below.
Figure 4 depicts the tradeoff between MMSE and fmax for

i.i.d. exponential channel delay with mean E[Yi] = 1/µ = 1.
Hence, the maximum throughput of the channel is µ = 1.
In this setting, mmseuniform is characterized by eq. (25) of
[14], which was obtained using a D/M/1 queueing model. For
small values of fmax, age-optimal sampling is similar with
uniform sampling, and hence mmseage-opt and mmseuniform are
of similar values. However, as fmax approaches the maximum
throughput 1, mmseuniform increases to infinite. This is because
the queue length in uniform sampling is large at high sampling
frequencies, and the samples become stale during their long
waiting times in the queue. On the other hand, mmseopt and
mmseage-opt decrease with respect to fmax. The reason is that
the set of feasible policies satisfying the constraints in (6) and
(12) becomes larger as fmax grows, and hence the optimal
values of (6) and (12) are decreasing in fmax. Moreover,
the gap between mmseopt and mmseage-opt is large for small
values of fmax. The ratio mmseopt/mmseage-opt tends to 1/3
as fmax → 0, which is in accordance with (18). As we
expected, mmsezero-wait is larger than mmseopt and mmseage-opt
when fmax ≥ 1.

Figure 5 illustrates the MMSE of i.i.d. log-normal channel
delay for fmax = 1.5, where Yi = eσXi/E[eσXi ], σ > 0 is the
scale parameter of log-normal distribution, and (X1, X2, . . .)
are i.i.d. Gaussian random variables with zero mean and unit
variance. Because E[Yi] = 1, the maximum throughput of the
channel is 1. Because fmax > 1, mmseuniform is infinite and
hence is not plotted. As the scale parameter σ grows, the tail of
the log-normal distribution becomes heavier and heavier. We
observe that mmsezero-wait grows quickly with respect to σ and
is much larger than mmseopt and mmseage-opt. In addition, the
gap between mmseopt and mmseage-opt increases as σ grows.
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[3] O. C. Imer and T. Başar, “Optimal estimation with limited measure-
ments,” International Journal of Systems Control and Communications,
vol. 2, no. 1-3, pp. 5–29, 2010.

[4] G. M. Lipsa and N. C. Martins, “Remote state estimation with commu-
nication costs for first-order LTI systems,” IEEE Trans. Auto. Control,
vol. 56, no. 9, pp. 2013–2025, Sept 2011.
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