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Abstract—This paper discusses the contemporary
problem of providing multiple-access (MAC) to a mas-
sive number of uncoordinated users. First, we define a
random-access code for Ka-user Gaussian MAC to be a
collection of norm-constrained vectors such that the noisy
sum of any Ka of them can be decoded with a given (suit-
ably defined) probability of error. An achievability bound
for such codes is proposed and compared against popular
practical solutions: ALOHA, coded slotted ALOHA,
CDMA, and treating interference as noise. It is found out
that as the number of users increases existing solutions
become vastly energy-inefficient.

Second, we discuss the asymptotic (in blocklength)
problem of coding for a K-user Gaussian MAC when K

is proportional to blocklength and each user’s payload is
fixed. It is discovered that the energy-per-bit vs. spectral
efficiency exhibits a rather curious tradeoff in this case.

I. INTRODUCTION

An interesting technological challenge for the next
generation of wireless standards is to provide co-
existence over the same band of a massive number
of infrequently communicating devices. This problem
has attracted attention in the world of the licensed
spectrum (3GPP and 5G-PPP) under the name of
mMTC (massive machine-type communication), and in
the world of unlicensed spectrum under the name of
LP-WANs (low-power wide-area networks).

One may be inclined to dismiss the novelty of the
challenge by refering back to the classical multiple-
access channel (MAC) question. There are, however,
several interesting and new aspects of this reincarna-
tion of the problem: small size of the payload leads
to finite-blocklength (FBL) effects [1], only a small
fraction of users are active at any given time (random-
access), but the total number of active users can still
be comparable with the overall blocklength (massive
multiple-access) and users access channel without any
prior resource requests to the base station (grantless
or grantfree [2]).

Various subsets of these issues have been ob-
served and discussed in the past. The FBL ques-
tions for a K-user MAC have been studied in [3],
but their bounds and normal approximations require
evaluating probabilities in 2K-dimensional spaces, and
thus are only computable for very modest values
of K . Classical literature on the topic of multiple-
access may roughly be split into three categories:
information theoretic (Ahslwede-Liao [4], [5]), the
network-theoretic (starting with ALOHA [6] and go-
ing to content-resolution [7], [8]) and the coding-
theoretic (CDMA [9], [10] and a closely-related adder-
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MAC [11], [12]). Already 30 years ago R. Gal-
lager [13] called for “a coding technology that is appli-
cable for a large set of transmitters of which a small,
but variable, subset simultaneously use the channel.”
It appears (to this author) that this call has not been
completely answered still. One reason for this could be
that the models in each of three categories are different
and thus solutions are not directly comparable. Our
first goal, thus, is to define a notion of random-access
code that would appeal to all three communities. This
we do next.

Fix integer Ka ≥ 1 – the number of active users –
and let PY |X = PY |X1,...,XKa

: XKa → Y be a mem-
oryless MAC satisfying permutation invariance con-
dition: the distribution PY |X1,...,XKa

(·|x1, . . . , xKa
)

coincides with PY |X1,...,XKa
(·|xπ(1), . . . , xπ(Ka)) for

any xKa ∈ XKa and any permutation π.

Definition 1. An (M,n, ǫ) random-access code for
the Ka-user channel PY |XKa is a pair of (possibly
randomized) maps – the encoder f : [M ] → Xn and

the decoder g : Yn →
(

[M ]
Ka

)

– satisfying:

1

Ka

Ka
∑

j=1

P[Ej ] ≤ ǫ ,

where Ej , {Wj 6∈ g(Y n)} ∪ {Wj =
Wi for some i 6= j} is the j-th user error event,
W1, . . . ,WKa

are independent and uniform on [M ]
and Xj = f(Wj).

In other words, we have Ka users generating code-
words from the same codebook and the decoder’s
job is to provide an estimate of the transmitted list.
The error measures the average fraction of correctly
guessed messages. The key differences from the usual
information-theoretic K-user MAC are: a) users are
forced to employ the same codebook; b) decoding is
done upto permutation of messages; c) the error event
is defined per-user, as opposed to global for all users.
Before explaining the rationale for our definition we
make technical remarks.

In the remainder of this paper we exclusively focus
on the Gaussian MAC (GMAC), given by

Y = X1 + · · ·+XKa
+ Z , Z ∼ N (0, 1) . (1)

In this case the blocklength n is also called the number
of real degrees of freedom (rdof). Naturally, for the
GMAC we require in addition that ‖f(j)‖22 ≤ nP
a.s. and in this case we say that the code achieves
energy-per-bit Eb

N0
, nP

2 log2 M
and the system spectral

efficiency S = Ka

n
log2 M measured in bits/rdof.

We have chosen to postulate that any collision
between the chosen messages automatically results in
error. Note that

P[∪i6=j{Wj = Wi}] ≤
(

Ka

2

)

M
, (2)



which is negligible in every practical situation. Thus,
the details of handling colliding messages are not
important. (A good alternative is to let the decoder
output a multiset and measure error by the multiset
difference.) These subtleties are important for the zero-
error questions, though: compare Bs-codes and (s, t)-
plans in [14].

To place Def. 1 in context, recall that the traditional
way of treating random-access in information-theoretic
literature is by way of partially active users (“T -
out-of-N MAC”). There is classical literature on the
topic [14]–[18] and a recent work by D. Guo and
colleagues [19], [20] extends the model to “massive”
number of users. From our point of view, however,
the T -out-of-N model is not completely satisfactory
because a) the total number N of users (active plus
inactive) affects the results; and b) it conflates the user
identification problem (“who was active”) with the
actual data transmission. For example, in the network-
theoretic studies it is common to think of MAC layer’s
job as that of delivering packets not identifying who
sent them. The reasoning is that part of the payload
(“headers”) contains identifying information. In the
regime of small 100-bit payloads particular details of
how this identification is done affects performance
rather severely and precludes honest evaluation of, e.g.,
ALOHA.

Our chief aim with Def. 1 was to propose a model in
which the total number of users could be taken infinite
and for which ALOHA would be a valid achievability.
Note that taking N = ∞ automatically precludes the
possibility of user identification. Naturally, we were
lead to the idea of forcing users employ the same
codebook (or randomized encoder, as in the case of
ALOHA). Note that the idea of non-identifiable users
has been discussed before [21], as well as the idea
of computing throughput (i.e., 1 − ǫ) by counting the
number of correctly decoded packets [22].

In the special case of GMAC, there is another
exciting connection: good random-access codes are
closely related to good matrices for noisy compressed
sensing (CS). Indeed, if we focus on deterministic
codes and ignore message collisions between users
then arranging all codewords in a n × M matrix A,
the goal of the decoder is just that of support recovery
of a Ka-sparse U ∈ {0, 1}M based on Y = AU + Z
with Z ∼ N (0, In). This connection between MAC
and CS has been observed and explored earlier [23]
and more recently [24]. We point out, however, that
compared to the standard CS problem we have a rather
peculiar setting: the dimension of U is terribly large
(at least 2100 in practice), the distortion is measured
by the Hamming distance (see (11) below) and the

reconstruction Û is required to be strictly Ka-sparse
itself.

What makes Def. 1 an attractive way to think about
random-access is the fact that many popular schemes
become achievability bounds and, consequently, can
be compared against each other. This is what we
do below. In Section II we prove a random coding
existence bound. Then in Section III we evaluate this
bound and also compare to several popular schemes:
(slotted) ALOHA, coded slotted ALOHA, treating
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interference as noise (TIN), CDMA with optimal
multi-user detector (MUD) and the (non-grantless)
strategy of orthogonalization (TDMA/FDMA). The
conclusions are not favorable to the known solutions.

In Section IV we discuss the standard (non random-
access) K-user GMAC in the asymptotic n → ∞
regime, but with K = µn and a per-user error
criterion. We discover that in this setting the trade-
off between energy-per-bit and spectral efficiency is

dramatically different from the familiar Eb

N0
= 22S−1

2S .

II. RANDOM CODING BOUND

Theorem 1. Fix P ′ < P . There exists an (M,n, ǫ)
random-access code for Ka-user GMAC satisfying
power-constraint P and

ǫ ≤
Ka
∑

t=1

t

Ka

min(pt, qt) + p0 , (3)

where

p0 =

(

Ka

2

)

M
+KaP





1

n

n
∑

j=1

Z2
j >

P

P ′



 , (4)

pt = e−nE(t), (5)

E(t) = max
0≤ρ,ρ1≤1

−ρρ1tR1 − ρ1R2 + E0(ρ, ρ1)

E0 = ρ1a+
1

2
log(1 − 2bρ1)

a =
ρ

2
log(1 + 2P ′tλ) +

1

2
log(1 + 2P ′tµ) (6)

b = ρλ− µ

1 + 2P ′tµ
, µ =

ρλ

1 + 2P ′tλ
(7)

λ =
P ′t− 1 +

√
D

4(1 + ρ1ρ)P ′t
, (8)

D = (P ′t− 1)2 + 4P ′t
1 + ρρ1

1 + ρ

R1 =
1

n
logM − 1

nt
log(t!) (9)

R2 =
1

n
log

(

Ka

t

)

(10)

qt = inf
γ
P[It ≤ γ] + exp{n(tR1 +R2)− γ}



where random variable It is defined in (13) below.

Remark 1. Similar bound holds for any MAC satis-
fying the following symmetry constraint: For any two
sets S1 ⊂ Ka and S2 = [Ka] \ S1 we should have

P

[

PY |X(Y |xS1
, xS2

)

PY |X(Y |xS1
, x̄S2

)
> t

∣

∣

∣

∣

XS1
= xS1

, XS2
= xS2

]

is a function of (t, xS2
, x̄S2

) and is independent of xS1
.

In particular, all additive channels with additive noise
satisfy this constraint.

Remark 2. If we set ρ1 = 1 and qt = 1 we get the
identification bound from [20, Section IV.B].

Proof. We generate the M codewords

c1, . . . , cM
i.i.d.∼ N (0, P ′). Upon transmission if

‖cWj
‖22 > nP , user j transmits 0 instead. For any

S ⊂ [M ] we set c(S) ,
∑

j∈S cj . The decoder

outputs the set Ŝ of cardinality Ka minimizing

‖c(Ŝ) − Y n‖22 (ties happen with probability zero,
so we ignore them). We analyze probability of error
next. Say that Wj is unique if Wj 6= Wi for any
i 6= j. Let

G =
1

Ka

Ka
∑

j=1

1{Wj 6∈ Ŝ,Wj–unique} .

We need to upper bound E[G]. To that end, first note
that function G is bounded by 1 and thus we can
change the measure over which E is taken at the ex-
pense of adding a total variation distance. We replace
measure by the one under which a) W1, . . . ,WKa

are sampled uniformly without replacement from [M ];
and b) under which Xj = cWj

(instead of Xj =
cWj

1{‖cWj
‖22 ≤ nP} under the true measure). The

total variation between the true measure and the new
one is easily bounded by p0.

If we let S = {W1, . . . ,WKa
} be a random Ka-

subset of [M ], then under the new measure, we have

G =
1

Ka

|S \ Ŝ| = 1

2Ka

dH(S, Ŝ) , (11)

where dH(·, ·) is the Hamming distance. We define

events Ft , {|S \ Ŝ| = t} and are only left to show
P[Ft] ≤ min(pt, qt). From symmetry, we may assume
S = {1, . . . ,Ka}.

First, consider the Gallager-type bound. Let S0

and S′
0 be generic subsets of size t in [Ka] and in

[M ] \ [Ka], respectively. Then, recalling that Y =
c([Ka] \ S0) + c(S0) + Z , we define error events

F (S0, S
′
0) , {‖c(S0) − c(S′

0) + Z‖2 < ‖Z‖2} and

F (S0) , ∪S′
0
F (S0, S

′
0). Next, fix ρ, ρ1 ∈ [0, 1] and

λ > 0. Using Chernoff bound and identity

E

[

e−γ‖√aZ+u‖2
2

]

=
e−

γ‖u‖2
2

1+2aγ

(1 + 2aγ)
n
2

, ∀γ > − 1

2a
(12)

we estimate

P[F (S0, S
′
0)|c(S0), Z] ≤ eE1(c(S0),Z) ,

where E1 = λ
(

‖Z‖22 − ‖c(S0)+Z‖2
2

1+2tP ′λ

)

. Next, we invoke

Gallager’s ρ-trick, i.e. P[∪jAj ] ≤ (
∑

j P[Aj ])
ρ for any

ρ ∈ [0, 1], to get

P[F (S0)|c(S0), Z] ≤
(

M −Ka

t

)ρ

eρE1(c(S0),Z) .

Taking here expectation over cS0
and employing (12)

again, we get

P[F (S0)|Z] ≤
(

M t

t!

)ρ

e+b‖Z‖2
2−na ,

where a, b are given by (6)-(7). Finally, applying
Gallager’s ρ-trick again, we get

P[∪S0
F (S0)] ≤ E

[(

∑

S0

P[F (S0)|Z]

)ρ1
]

= e−nE(t) ,

where we also set λ as in (8), which is optimal under
a fixed ρ, ρ1.

Next we bound P[Ft] differently. Define information
density1

it(a; y|b) = nCt+
log e

2

(‖y − b‖22
1 + P ′t

− ‖y − a− b‖22
)

,

where Ct = 1
2 log(1 + P ′t). Fix γ and consider the

event F̃ = {It ≤ γ} where

It = min
S0

it(c(S0);Y |c(Sc
0)) , (13)

where minimum is over all t-subsets of [Ka].
Note that F (S0, S

′
0) = {it(c(S′

0);Y |c(Sc
0)) >

it(c(S0);Y |c(Sc
0))} and thus we have

P[F (S0)|c1, . . . , cKa
, Y ] ≤ exp{ntR1 − γ}1F̃ c + 1F̃

according to the usual properties of information den-
sity, e.g. [25, Prop. 17.1]. Taking further union over
S0 we get that the first term is to be multiplied by
exp{nR2}, which yields qt.

III. NUMERICAL EVALUATION

On Fig. 1 we compare various MAC strategies
in the following setting: each active user is sending
k = 100 bits, the frame length is n = 30000 and the
target per-user probability of error is 10%. This is a
regime of interest for LP-WANs such as LoRaWAN
and Weightless.

We describe briefly how each curve was obtained.
The TIN2 achievability is the following: Generate
codewords {ci} according to i.i.d. N (0, P ′). Decoder’s
list consists of top Ka codewords closest to the re-
ceived channel output Y . Assuming that c1, . . . , cKa

were transmitted, the (per-user) probability of error can
be bounded similarly to the DT bound in [1] to get

E exp{− |i(Xn;Y n)− logM |+}+ P[

n
∑

i=1

X2
i > nP ]

(14)

where i(xn; yn) = log e
2

(

‖yn‖2
2

1+KaP ′ − ‖yn−xn‖2
2

1+(Ka−1)P ′

)

+

nCTIN (P ′) and CTIN (P ′) =
1
2 log

(

1 + P ′

1+(Ka−1)P ′

)

. If we omit the second

1To see that this is indeed an information density, suppose that

X1, . . . , XKa

i.i.d.
∼ N (0, P ′In) are the input to the MAC. Then

we have for any subset S0 ⊂ [Ka] that log
dPY |XS0

,XSc
0

dPY |XSc
0

is a

function of (X(S0), X(Sc
0
), Y ) only. Thus, we may define this

log-likelihood (whose expectation is I(XS0
;Y |Xc

S0
)) in terms of

the latter three n-vectors, as opposed to all (Ka + 1) n-vectors.
2In practical terms TIN curve corresponds to CDMA with

matched filter detector (i.e. without MUD)



term in (14) and approximate by the CLT we get that
TIN coding achieves about3

logM ≈ nCTIN (P )−
√

nP log2 e

1 +KaP
Q−1(ǫ) ,

ALOHA was done by partitioning n-long frame into
m subframes (we optimized m for each Ka) and
letting users randomly select a subframe. Decoding
works only if there were no collision and a single-
user decoder succeeded. Note that the steep increase
in ALOHA is primarily due to a large number of
subframes required to avoid collisions. This difficulty
is alleviated with Coded Slotted ALOHA (CSA) [27],
[28] which requires a lot fewer subframes in order
to tolerate the given number of users. For example,
for 2-regular CSA we assumed that each packet is
retransmitted twice (for 3 dB loss in Eb

N0
) but that

packets of all users can be recovered if Ka < m
2 ;

we also ignored the overhead required for including
pointers to other packets. TDMA curve corresponds
to a non-random-access strategy of orthogonalizing
into blocklength n

Ka
for each user. “Random CDMA”

corresponds to another non-random-access strategy4

where each of the users employ random ±1 signatures
of length N = Ka modulated by their binary ±1
symbols. Optimal MUD results in each user seeing
an effective single-user BI-AWGN channel with SNR
found from Tanaka’s formula [29], [30]. In all of
these computations, we assumed that good single-user
codes are used that achieve the two-term capacity-
dispersion approximation [1] for the AWGN or BI-
AWGN channels. Consequently, the above curves are
only (optimistic) approximations.

If we let n → ∞ while holding Ka fixed, then the
Shannon limit k

n
→ 1

2Ka
log2(1 +KaP ) with ǫ → 0,

which we plotted for reference. The “naive sumrate
converse” is a conjectured converse for a (non-random-
access) Ka-GMAC from [3, Section V].

The random coding curve is a firm bound, com-
puted by optimizing over P ′ in Theorem 1 (we only
used qt-bound for t = 1). Interestingly, for Ka ≤ 50
the terms with t = 1, 2, 3 contribute the most, while for
Ka & 170, most of the contribution occurs at t close
to Ka. This should be puzzling, since information-
theoretically the symmetric rate for Ka-GMAC equal
1

2Ka
log(1+PKa), corresponds to the term t = Ka in

the random-coding bound. This effect is illuminated by
Section IV: when Ka (and spectral efficiency) is small,
the dominant constraint is the FBL penalty on Eb

N0
due

to finite number k of bits [31]; when Ka is large, the
multi-access interference dominates.

IV. ASYMPTOTICS

Consider a standard K-user GMAC [32, Section
4.7] and suppose users are sending log2 M bits each
(with different codebooks!), but the probability of error

3We could have instead generated spherical codebook, resulting
in improved dispersion [26]. Numerically, the difference, however,
is imperceptible.

4This strategy is not truly random-access because it requires the
receiver to know the signatures of active users. It does provide
a good benchmark for what would be possible with MUD-based
CDMA.

is defined as ǫ = 1
K

∑K

j=1 P[Wj 6= Ŵj ], where

Ŵj ∈ [M ] are decoder decisions.
Fix ǫ and 0 < µ ≪ 1 (the density of users per

rdof). What is the fundamental tradeoff Eb

N0
vs. system

spectral efficiency tradeoff for K,n → ∞ with K =
µn. More exactly, we define

(

Eb

N0

)

min

= E∗(S, µ, ǫ) , inf

{

nP

2 log2 M

}

,

where infimum is taken over all (n,M,P ) for which
there exist K-codebooks each of size M decodable
with per-user probability of error ≤ ǫ over K-GMAC;

the ratio K logM
n

= S is the system spectral efficiency.
Note that, although we do allow n → ∞, this question
implicitly falls in the domain of the FBL information
theory. Indeed, for a fixed spectral efficiency S we
must have logM = S

µ
regardless of the blocklength.

What is a typical value of µ? Consider a metropoli-
tan area with 106-107 devices. The sub-GHz ISM
band is about 20 MHz wide. Therefore, if each of the
devices is active a few times per hour, we get the ratio
of 103-104 rdof per active user at any given moment.
Note that this number is unlikely to vary by much in
the near future.

Results of comparison are shown on Fig. 2. Here
we describe how each curve was obtained. For conve-
nience, let us denote Ptot = KP , so that Eb

N0
= Ptot

2S .
For the converse we have the best of two bounds:

The Fano’s inequality: (1 − ǫ)S ≤ 1
2 log(1 + Ptot) +

µh(ǫ) and the bound following from the fact that
each user only transmits finitely many bits S

µ
, namely

from [31, Theorem 2]:

S

µ
≤ − logQ

(
√

Ptot

µ
+Q−1(1− ǫ)

)

.

For the TDMA/FDMA achievability we divide n chan-
nel uses evenly among all K users and compute small-
est P guaranteeing existence of a single-user AWGN
code of rate S, blocklength 1

µ
and error probability

ǫ. The precise achievability bound that was used is
Shannon’s bound, e.g. [1, Theorem 13]. For the TIN
achievability we used (14) with power P = Ptot

µn
. As

n → ∞ the second term in (14) converges to zero,
while first converges to (this is not an approximation)

P[Z > u] +MP

[

Z >

√

Ptot

(1 + Ptot)µ
− u

]

, (15)

where Z ∼ N (0, 1) and lnM = Ptot

2(1+Ptot)µ
−

√

Ptot

(1+Ptot)µ
u. Finally, to apply Theorem 1 bound we

drop the second term in R1, cf. (9) since users now
employ different codebooks. We then find the smallest
Ptot so that Emin(Ptot, ǫ) > 0, where the latter is
given by

min
ǫ≤θ≤1

max
0≤ρ,ρ1≤1

−ρρ1θS − ρ1µh(θ) + E0(ρ, ρ1)

and is the worst exponent among all terms pt, cf. (5),
with t ≥ ǫKa. We note that, for spectral efficiencies
above the point marked by A on the plot the dominant
term in Theorem 1 corresponds to t = K; between A
and B the dominant term is ǫK < t < K; and below
B the dominant term is t = ǫK . This partially explains
the effects observed in evaluation on Fig. 1 too.
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and system spectral efficiency for the (non random-access) K-user GMAC in the regime K,n → ∞

with µ = K

n
= 10−3 , per-user probability of error ǫ = 10−3 (left) and ǫ = 10−1 (right). All curves are firm bounds (not approximations).
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