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Abstract—Consider the family of all g-ary symmetric channels
(¢-SCs) with capacities decreasing from log(q) to 0. This paper
addresses the following question: what is the member of this
family with the smallest capacity that dominates a given channel
V' in the ‘“less noisy” preorder sense. When the ¢-SCs are
replaced by g-ary erasure channels, this question is known
as the “strong data processing inequality.”” We provide several
equivalent characterizations of the less noisy preorder in terms of
x*-divergence, Lowner (PSD) partial order, and spectral radius.
We then illustrate a simple criterion for domination by a ¢-SC
based on degradation, and mention special improvements for the
case where V' is an additive noise channel over an Abelian group
of order ¢. Finally, as an application, we discuss how logarithmic
Sobolev inequalities for ¢-SCs, which are well-studied, can be
transported to an arbitrary channel V.

I. INTRODUCTION

The less noisy preorder over channels was developed in [1],
and has since been primarily utilized in network information
theory. For instance, it and its variants have been used to
study the capacity regions of broadcast channels in [1]-[4] and
the references therein. Formally, given two discrete channels
Pyix = W € RIS and Pzx =V € RES® (where we
represent channels as row stochastic matrices, and X € X,
Ye)Y, Ze Zwith |X|=gq, |Y]| =1, |Z] = s), we say that
W is less noisy than V, denoted W >, V, if and only if:

I(U;Y)>1(U; Z) (1)

for every joint distribution Py x such that U — X — (Y, 2)
forms a Markov chain and the random variable U € U has
some arbitrary range U [1, Proposition 2], where RZ;" denotes
the set of ¢ X r row stochastic matrices. Indeed, this definition
intuitively captures the notion that W is less noisy than V.
In this paper, we examine the basic question of when a g-ary
symmetric channel (g-SC) is less noisy than a given discrete
channel V' € R%5° with common input alphabet.

Why would one be interested in knowing whether a ¢-
SC dominates a given V'? We present several reasons below.
Firstly, >,, domination by a ¢-SC turns out to be a natural
extension of the so called strong data processing inequality
(SDPI) as noticed in [5, Proposition 15]. For every Markov
chain U — X — Z, the data processing inequality states that
I(U; X) > I(U; Z). Fixing the channel Pz x =V € R%:",
this inequality can be tightened to [6]:

me(V)I(U; X) 2 I(U; Z) 2)
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using the contraction coefficient 1 (V') € [0, 1], defined as:

o o 10:2)

M (V) S 0 X) 3
where the supremum is over all Markov chains U — X — Z
such that Py x is fixed and 0 < I(U; X') < +o0. Frequently,
one gets M (V) < 1 and the resulting inequality is called
an SDPIL. Such inequalities have been recently simultaneously
rediscovered and applied in several disciplines; see [5, Sections
1-2] for a short survey. In [5, Proposition 15], the authors
demonstrate using an elementary calculation that a g-ary era-
sure channel (¢-EC) E. € R, 91 with erasure probability
€ € [0,1] is less noisy than the channel V, E, >, V, if
and only if 7. (V) < 1 — e. Hence, the entire study of
SDPIs is equivalent to determining whether a given channel
is dominated in the less noisy sense by a ¢-EC. There are
several useful upper bounds on 7 that are suitable for this
purpose [7], [8, Remark IIL.2], but no such results exist for
q-SC domination.

This paper initiates the inquiry of a natural extension of the
concept of SDPI by replacing the distinguished role played by
the g-EC with a ¢-SC. In analogy with the bounds on 7., one
of our goals is to establish similar simple criteria for testing
domination by a ¢-SC instead of a ¢-EC.

Secondly, the less noisy preorder tensorizes [9, Proposition
51, [5, Proposition 16]. In other words, if we know W >V,
we can also conclude that W®™ >=_ V®" which means that
I(U;Y"™) > I(U; Z™) for every Markov chain U — X" —
(Y™, Z™). Therefore, many impossibility results (in statistical
decision theory for example) that are proven by exhibiting
bounds on quantities such as I(U; Y™) transparently carry over
to statistical experiments with observations on the basis of Z".
Since it is much more common to study the g-ary symmetric
observation model (especially with ¢ = 2), we can leverage
its sample complexity lower bounds for other V.

Thirdly, there is a self-contained information theoretic mo-
tivation that addresses our leading question. W >, V if and
only if the secrecy capacity C's = 0, where C's is the secrecy
capacity of the Wyner wiretap channel with V as the main
(legal receiver) channel and W as the eavesdropper channel
[10, Corollary 17.11]. Thus, finding the maximally noisy ¢g-SC
that dominates V' establishes the minimal noise required on the
eavesdropper link so that secret communication is feasible.

Finally, >, domination turns out to entail a comparison of
Dirichlet forms (as we will illustrate), and consequently, allows
us to prove Poincaré (spectral gap) and logarithmic Sobolev
inequalities (LSIs) for V' from well-known results on ¢-SCs.



These inequalities are cornerstones of the modern approach to
Markov chains and concentration of measure [11], [12].

We briefly delineate the ensuing discussion. In Section II,
we derive equivalent characterizations of >, which are useful
for obtaining other results. We then illustrate conditions for
domination by ¢-SCs in Section III. Finally, we elucidate the
relationship between >, domination and LSIs in Section IV.

II. EQUIVALENT CHARACTERIZATIONS OF LESS NOISY

We commence this section with an alternative definition of
.. Given the channels W € RY" and V e RY**, W =,V

sto sto

if and only if [1, Proposition 2], [5, Proposition 14]:
VPx,Qx € Py, D(PxW||QxW) > D(PxV||QxV) 4)

where P, denotes the probability simplex of row vectors in
RY. Although >, is characterized by KL divergence or mutual
information (in a manner pertinent for channel coding) in [1],
our most general result illustrates that this preorder can also be
characterized using x2-divergence, the Lowner (PSD) partial
order, or a spectral radius condition. Recall that for any two
pmfs Px,Qx € P,, their y%-divergence is given by:

2 2 v (Px(@) — Qx(2)*

where (0 —0)2/0 = 0 and (p — 0)2/0 = +oo for every p >
0 based on continuity arguments. The next theorem presents
these characterizations of the less noisy preorder.

®)

Theorem 1 (Equivalent Characterizations of >,). For any pair
of channels W € RL:" and V € RLS" on the same input
alphabet, the following are equivalent:

DW=,V

2) For every Px,Qx € Py:

X (PxWIQxW) > x*(PxVIQxV)

3) For every Px € Py:

Wdiag(Px W) ' WT =, Vdiag(Px V) ' VT

4) For every Px € Py:

p((Woﬁazg(PXW)‘1 WT)TVdiag(PXV)_l VT) —1

where Pg denotes the relative interior of Py, diag(x) denotes
a diagonal matrix with x € R? along its principal diagonal,
>psp denotes the Lowner partial order, T denotes the Moore-
Penrose pseudoinverse, and p(-) denotes spectral radius.

Proof. (1 < 2) To prove the forward direction, recall the local
approximation of KL divergence [13, Proposition 4.2], which
states that for any Pyx,Qx € Py, if x*(Px||Qx) < 4o0:

li =X*(P 6

Jim X (PxllQx)  (6)
where A = 1—\ for A € (0, 1), and all logarithms are natural.
For any Px,Qx € Py, if X2(PxW||QxW) = +oc, then
there is nothing to prove. If x?(PxW||QxW) < +oo, then

%D()‘PX +AQx||@x)

D(PxV||QxV) < D(PxW||QxW) < +oo using (4) and
[13, Equation 7.8]. Hence, PxV < QxV, which implies that
Y2(PxV||QxV) < +00. Since W =, V, we have from (4):

D(APxW+AQxW|QxW) > D(APxV4+AQxV||QxV)
for any A € [0, 1]. Applying (6) to both sides of this produces:
XC(PxW[IQxW) = x*(PxV||QxV)

which proves the forward direction. For the converse, we recall
an integral representation of KL divergence [5, Appendix A.2]:

D(Py||Qx) = / Y (Px|Ql) dt )

for any Px,Qx € P,, where Q% = 1+tPX—|— t+1QX fort €
[0, 00). Since for every Px,Qx € Py X2 (PxW||Q\W) >
X*(PxV]|Q%V), we can integrate both 51des and use (7) to
get W >, V as follows:

(oo} (oo}
| e@eswieawyar= [ EeevQyy)
0 0
D(PxW||QxW) > D(PxV||QxV).
(2 & 3) Observe that for every Px € P, and Qx € 73;:

X2(Px||Qx) = Jxdiag(Qx) " J% ®)

where Jx = Px — @ x. Hence, for every Px € P, and every
Qx € P, the Lowner condition in part 3 implies that:

JxWdiag(Qx W) ' WTJL > JxVdiag(QxV) ' VT JEL

which, using (8), is equivalent to:
Y (PxW[|QxW) > *(PxV||QxV).

This inequality also holds for Qx € P,\P; (as Q% — Qx
= x2(Px||Q%) — x*(Px||Qx)), which proves the converse.
The forward direction should appear plausible due to (8), and
we refer readers to [14, Proposition 8] for a complete proof.
(3 < 4) Wdiag(PxW) ' W7 and Vdiag(PxV) ' V7 are
both positive sem1deﬁn1te matrices for every Px € P,. If
Wdiag(PxW) ™" W7 is invertible, then it is actually positive
definite, and [15, Theorem 7.7.3 (a)] (which states that if
A € R9%7 is positive definite and B € R?*7 is positive
semidefinite, then A >p5 B if and only if p (A’lB) <1
implies that the Lowner condition in part 3 is equivalent to:

p((Wdiag(PXW)_l WT)ilVdiag(PXV)_l VT) <1 9

for every Py € P¢. Observe that Py Wdiag(PxW) ' W7 =
PxVdiag(PxV) VT =17, where 1 2 [1---1]7 € RY is
the column vector with all entries equal to unity. So, we have:

-1
17 (Wdiag(PXW)_l WT) Vdiag(PxV) VT =17

which means that this matrix has an eigenvalue of 1, and the
inequality in (9) is really an eq1 uality. This completes the proof
for invertible Wdiag(Px W)~ W7. The more general case is
derived in [14, Proposition 9] using an appropriate extension
of [15, Theorem 7.7.3 (a)] proved in [14, Lemma 2]. |



Since (6) and (7) hold more generally, the first equivalence
in Theorem 1 can be verified for more general Markov kernels.
Furthermore, it is related to the following notable result [6]:

X(PxW|QxW)
x*(Px||Qx)
gxr

for any channel W € Rg", where the supremum is over all
pmfs Px,Qx € P, that satisfy 0 < x?(Px||Qx) < +oo.
Indeed, (10) portrays how less noisy domination by a ¢-EC
(which is characterized by 7. ) can be characterized by x?2-
divergence, and our first equivalence generalizes this result
to less noisy domination by an arbitrary channel. Finally, we
remark that the Lowner characterization in Theorem 1 is useful
for deriving our other results, and the spectral characterization
can be useful for computationally deducing whether W >, V.

(W) = T2 (W) £ sup

Px,Qx€Py

(10)

III. CONDITIONS FOR LESS NOISY DOMINATION

We next establish sufficient conditions for less noisy dom-
ination by ¢-SCs. Formally, a g-ary symmetric channel has
input and output alphabet X with |X| = ¢ and transition

probability matrix W5 € RL5%:
1)

Ws 2 (1—5—(]1) Iq+q%;111T (a1
where I, € R7*? denotes the identity matrix, and ¢ € [0, 1]
is the total crossover probability. Matrices of the form (11)
satisfy several useful properties; they are symmetric, doubly
stochastic, circulant, jointly diagonalizable by the DFT matrix,
and {Ws e R7%9:§ € R\{%}} with the multiplication op-
eration is an Abelian group [14, Proposition 3]. Given another
channel V € R%5? on the same alphabet, our objective is to
find the extremal 6*(V) £ sup {5 € [O, %] : Ws =i V}
such that for every 0 < § < 6*(V), W5 =, V.
Computationally estimating §* (V') corresponds to a problem
of verifying collections of rational inequalities. Indeed, Theo-

rem 1 suggests the following minimax formulation of §*(V'):

(V)= inf sup 0 (12)

PxePg ses(Px)

where S(Px) = {66 [ } W diag(PxWs)~ W(S > pso
Vdiag(PxV)~ VT} The mﬁmum can be naively approxi-
mated by sampling several Py € P;. Estimating the supre-
mum entails testing collections of rational inequalities in ¢, be-
cause positive semidefiniteness of a matrix can be established
using the non-negativity of its principal minors by Sylvester’s
criterion [15, Theorem 7.2.5]. On the other hand, analytically
determining 6*(V') appears to be intractable. So, we instead
prove a sufficient condition for Ws >, V in the next theorem.
Our result can be construed as a lower bound on §*(V):

(V) >
( )_1—(q—1)u+q%1

v

13)

where v is the minimum conditional probability in V.

To present the ensuing theorem, we introduce the (output)
degradation preorder over channels, which was also defined
to study broadcast channels [16]. In particular, a channel V' €

RZ5 " is said to be a degraded version of a channel W € R%5"
with the same input alphabet, denoted W >4, V, it V. =W A
for some channel A € Ry ®. It is well-known that W =g V
implies that W >, V, which follows from the data processing
inequality. Theorem 2 presents a simple sufficient condition for

degradation by a ¢-SC.

Theorem 2 (Sufficient Condition for Degradation by Symmet-
ric Channels). Given a channel V. € R1:9 with ¢ > 2 and
minimum entry v = min{[V]; ; : 1 <1i,j < q}, we have:

v
0<6<
T T l-(g-r+ 5

= W§ idegv = Wé >__/nV

Proof Sketch. We sketch the proof for the v < X case here; the
remaining details can be found in [14, Section VI]. Consider
the ¢-SC W,_1), € Rsto , and let w; € Py and v; € P, for
1 <7 < q denote the ith rows of W(q,l)l, and V, respectively.
Using a majorization argument, we have:

q
Vie{l,...,q}, v :me»wj
j=1

where {p; ; > 0:1 <14,j < g} are some convex weights such
that Z?=1 pi; = 1 for 1 <4 < q. Stacking the rows of V'
back into a matrix, we observe that:

> (sz JZ> ,,,,, o

1<j1,-,34<q

V:

where for each 1 < j1,...,j, <¢q, Sj,,.. 5, = [wz wJTJT
defines a matrix whose kth row is the jith row of Wi—1yws
and {[1"_,pij, : 1 <j1,...,Jq < g} forms a product pmf.
Hence, if 36 € [0, ;1) such that for every 1<j1yeesjg <

¢ Ws =g Sjy,....j,» OF equivalently W5 YSiire € RIS,
then W5 =4 V. The rows of W Sh},,.,jq sum to unity,

because Wy~ ! has the form (11) since matrices of the form (11)
constitute a group. Moreover, we can verify that the minimum
possible entry of W[s_lth_,’jq is non-negative if and only if:

v

0<§<
1—(q—1)y+

This a sufficient condition for W, 'S;, ;. € Rgéq for every
1 < ji,..., 3¢ < q. Therefore, W5 = V which in turn

implies that W5 =, V. |

The condition given in Theorem 2 is tight for degradation.
For example, if V =9551,..1 € Rsto , then Ws >4, V if and
only if 0 <6 <v/(1—(¢—1)v+ P, ) [14, Section VIJ.

A. Domination of additive noise channels

It is compelling to derive a sufficient condition for W5 =, V'
that does not simply ensure Ws >4, V. To this end, we study
additive noise channels. Let (X, @) be a finite Abelian group
of order ¢ > 2 equipped with a binary “addition” operation
®. An additive noise channel is defined by the relation:

Y=X&N, XUN (14)



(0,0,1)

upper bound

wo = (1,0,0) (0,1,0)

Fig. 1. Additive less noisy domination and degradation regions for a 3-ary
symmetric channel with § € (07 %) The gray region denotes the probability
simplex of noise pmfs P3. The dotted line denotes the symmetric channels

{ws = (14, g, 2) 6 € [0,1]}. As conveyed in Theorem 3, the yellow

and (circular) cyan regions lower and upper bound the less noisy domination
region, respectively. Note that P35 € R3%3 is a cyclic permutation matrix that
cyclically shifts an input row vector to the right once, and 7 = 1 —(§/2) and
v=(1-6)/(1—35+(6/4)) correspond to the extremal degraded symmetric
channel and the symmetric channel from Theorem 3, respectively.

where X,Y, N € X are the input, output, and noise random
variables respectively, and X is independent of N. The channel
transition probability matrix corresponding to (14) is a doubly
stochastic X-circulant matrix circx(Py) € R%:? determined

by the noise pmf Py € P, [17, Chapter 3E, Section 4]:

Va,yeX, [circx(Py)], , = Pn(—z®y) = Py x(ylz) (15)

where —z € X denotes the inverse of x. X'-circulant matrices
form a commutative algebra, and are jointly unitarily diago-
nalizable by a “Fourier” matrix of characters. In the context
of various channel symmetries in the literature, additive noise
channels correspond to “group-noise” channels, and are input,
output, Dobrushin, and Gallager symmetric [18, Section VL.B].
One can verify that a ¢-SC is an additive noise channel with
noise pmf defined by Py(0) =1—0 and Py (z) =46/(q—1)
for any x € X\{0}, where 0 € X is the identity element and
§ € [0,1]. To understand when a ¢-SC W € RZ:? dominates
an additive noise channel, we define the additive less noisy

domination region:
%gg e {P N € P W =

=n circx(Pn)} (16)

and the additive degradation region:
17

{a/gg 2 {PN S P W6 Z_deg CIFCX(PN)}

corresponding to W;. The next theorem exactly characterizes
D%Sg and “bounds” Eadd in a set theoretic sense.

Theorem 3 (Domination Regions of Symmetric Channels).

Given Ws € Rggq with § € [O, q%l] and q > 2, we have:

Dﬁ{}’f =conv({(Ws), : 1 <k <gq})
Cconv({(Ws),: 1<k <qtu{(W,), :1<k<q})
Ly c{veP,: v —uHez < (Ws); —ull=}

where v = (1—6)/(1 -6 + (e ) z), (Ws) is the kth row
of Ws, conv(-) denotes convex hull, u € Py, is the uniform
pmf, and the first set inclusion is strict for § € (O, %) and
q > 3. Furthermore, ﬁ%’g is closed, convex, and invariant
under permutations in the regular representation of (X, ®).

For an additive noise channel V &€ Rgtzq, the first set inclu-
sion in Theorem 3 offers a sufficient condition for W5 =, V'
without ensuring W5 =4, V' it is derived using condition
3 of Theorem 1 [14, Proposition 13]. Theorem 3 is further
explicated and proved in [14, Sections III, V], where similar
properties of less noisy domination and degradation regions for
more general channels, and some necessary conditions for less
noisy domination are also established. In particular, degrada-
tion among additive noise channels is completely characterized
using group majorization in [14, Proposition 5]. We remark
that according to numerical evidence, the second and third set
inclusions in Theorem 3 appear to be strict, and L’add seems
to be a strictly convex set. The results of Theorem 3 and these
observations are depicted in Figure 1 when ¢ = 3.

IV. COMPARISON OF DIRICHLET FORMS

In this section, we show that proving W >, V for a doubly
stochastic channel V' € Rgtoq allows us to translate the LSI for
W to an LSI for V. Suppose V' defines an irreducible discrete-
time Markov chain with state space X’ (such that |X'| = ¢) and
unique stationary distribution u € P,. Corresponding to this

chain, we may define a continuous-time Markov semigroup:

Vt >0, H 2 exp(—t(I,—V)) e RL? (18)

with unique uniform stationary pmf, where V — I, is the
Laplacian operator that forms the generator of the semigroup.
Furthermore, we define the Hilbert space £2(X,u) of all real
functions with domain X endowed with the inner product:

Zf ng

xeX

Vf,g € LX), (19)

and induced norm ||-||,, where we treat functions in £?(X, u)
as column vectors in RY9. To present our result, we define the
Dirichlet form Ey : L2(X,u) x L2(X,u) — R* [11]:

T
5Wﬁﬁé«@—vwﬁn=;ﬁ(@—v+v)f@m

which is a quadratic form representing the energy of its input
function. A salient specialization of (20) is the so called stan-
dard Dirichlet form associated to the channel W, _1),, = 1u:

-y L (3 1 >,(21)

zeX reX

Eqa(f, ) = VARG(



and the Dirichlet forms corresponding to ¢-SCs satisfy the
relation: Ew, (f, f) = q‘%‘slé‘std(f, f) for every f € L2 (X, u).
The next theorem portrays that W >, V implies a pointwise
domination of Dirichlet forms: &y > Ew, = qqf‘slé'std.

Theorem 4 (Domination of Dirichlet Forms). Given the
doubly stochastic channels Ws € RZ*? with § € [O, %]

sto
and V. € R if Ws =, V, then:

sto
Uf € ), Evlf 1) 2 gl f. D).

Proof Sketch. Since Wy =, V, we have W2 = WsW] =g
VVT from part 3 of Theorem 1 after letting Py = u. Then, by
the Lowner-Heinz theorem (cf. [15, Corollary 7.7.4 (b)]), we
get W; eso VVT = Ws >pep (VVT)%, because W5 and the
Gramian matrix VV7 are positive semidefinite. Due to (20),
it is sufficient to prove that: Wy =psp (VVT)2 = W5 =pgp
(V + VT)/2. This implication is proved in [14, Section VII]
by carefully analyzing the spectral structure of W, (VVT)%,
and (V4V7T) /2, and then applying a corollary of the Courant-
Fischer variational characterization of singular values. ]

We note that other variants of Theorem 4 are also presented
in [14, Section VII]. A major consequence of the domination
of Dirichlet forms in Theorem 4 is that we can immediately
establish an LSI for V' using the LSI for Ws. An LSI for the
Markov semigroup {H; € R&5? : t > 0} with constant o € R

states that for all f € £2(X,u) with || f]|, = 1, we have [11]:

1
D(f?ullw) < ~Ev(f, /) (22)
where 1 = f?u € P, is a pmf such that Vo € X, p(z) =
f(x)?u(z), and f? behaves like the density of x with respect
to u. The largest constant « such that (22) holds is known as
the logarithmic Sobolev constant of the Markov chain V:

A . 5V(f7 f)
V)= L 5l

where F = {f € £2(X,u) : || f||, =1 and D(f*ullu) > 0}.
This constant is closely related to the ergodicity (convergence
rate to invariant measure) and hypercontractivity properties of
the corresponding Markov semigroup [11].

Typically, it is difficult to analytically compute logarithmic
Sobolev constants. However, the logarithmic Sobolev constant
corresponding to Egg has been computed in [11, Appendix,
Theorem A.1], and implies the following LSI for ¢ > 2:

(23)

D(f?ullu) < ql(j(_‘-’;)” Exalf. )

for every f € £%(X,u) satisfying || f||, = 1 (where the ¢ = 2
case uses the limiting value of 2 in front of &gq). Moreover,
we can deduce o(W;) for any ¢-SC W € RZ<9 (which is

sto
irreducible if § € (0, 1]) from (24), cf. [14, Proposition 14].
So, we often compare the Dirichlet form of a given irreducible
channel V' € RZ:? with that of a ¢-SC W; € R%:? (or
the standard Dirichlet form); generalizations of this idea are

(24)

presented in [11, Lemmata 3.3 and 3.4]. If such a comparison
yields a pointwise domination of the form:
q0

VfeL(X,u), Ev(f. f) = Ew,(f. f):ﬁgstd(fa f) 25)

as shown in Theorem 4, we immediately establish the follow-
ing LSI for V using (24):

(¢ —1)log(g — 1)
5(q—2)

for every f € L£%(X,u) satisfying || f||, = 1. Alternatively,

we may perceive (26) as a lower bound on a(V):

(g —2)
= D oalg 1
Therefore, Theorem 4 illustrates that less noisy domination of
a given channel by a ¢-SC is a sufficient condition for deriving
an LSI for the original channel.

D(f*ullw) <

Ev(f. f) (26)

27)
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