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Abstract—Consider the family of all q-ary symmetric channels
(q-SCs) with capacities decreasing from log(q) to 0. This paper
addresses the following question: what is the member of this
family with the smallest capacity that dominates a given channel
V in the “less noisy” preorder sense. When the q-SCs are
replaced by q-ary erasure channels, this question is known
as the “strong data processing inequality.” We provide several
equivalent characterizations of the less noisy preorder in terms of
χ2-divergence, Löwner (PSD) partial order, and spectral radius.
We then illustrate a simple criterion for domination by a q-SC
based on degradation, and mention special improvements for the
case where V is an additive noise channel over an Abelian group
of order q. Finally, as an application, we discuss how logarithmic
Sobolev inequalities for q-SCs, which are well-studied, can be
transported to an arbitrary channel V .

I. INTRODUCTION

The less noisy preorder over channels was developed in [1],
and has since been primarily utilized in network information
theory. For instance, it and its variants have been used to
study the capacity regions of broadcast channels in [1]–[4] and
the references therein. Formally, given two discrete channels
PY |X = W ∈ Rq×rsto and PZ|X = V ∈ Rq×ssto (where we
represent channels as row stochastic matrices, and X ∈ X ,
Y ∈ Y , Z ∈ Z with |X | = q, |Y| = r, |Z| = s), we say that
W is less noisy than V , denoted W �ln V , if and only if:

I(U ;Y ) ≥ I(U ;Z) (1)

for every joint distribution PU,X such that U → X → (Y,Z)
forms a Markov chain and the random variable U ∈ U has
some arbitrary range U [1, Proposition 2], where Rq×rsto denotes
the set of q×r row stochastic matrices. Indeed, this definition
intuitively captures the notion that W is less noisy than V .
In this paper, we examine the basic question of when a q-ary
symmetric channel (q-SC) is less noisy than a given discrete
channel V ∈ Rq×ssto with common input alphabet.

Why would one be interested in knowing whether a q-
SC dominates a given V ? We present several reasons below.
Firstly, �ln domination by a q-SC turns out to be a natural
extension of the so called strong data processing inequality
(SDPI) as noticed in [5, Proposition 15]. For every Markov
chain U → X → Z, the data processing inequality states that
I(U ;X) ≥ I(U ;Z). Fixing the channel PZ|X = V ∈ Rq×ssto ,
this inequality can be tightened to [6]:

ηKL(V )I(U ;X) ≥ I(U ;Z) (2)
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using the contraction coefficient ηKL(V ) ∈ [0, 1], defined as:

ηKL(V ) , sup
PU,X

I(U ;Z)

I(U ;X)
(3)

where the supremum is over all Markov chains U → X → Z
such that PZ|X is fixed and 0 < I(U ;X) < +∞. Frequently,
one gets ηKL(V ) < 1 and the resulting inequality is called
an SDPI. Such inequalities have been recently simultaneously
rediscovered and applied in several disciplines; see [5, Sections
1-2] for a short survey. In [5, Proposition 15], the authors
demonstrate using an elementary calculation that a q-ary era-
sure channel (q-EC) Eε ∈ Rq×(q+1)

sto with erasure probability
ε ∈ [0, 1] is less noisy than the channel V , Eε �ln V , if
and only if ηKL(V ) ≤ 1 − ε. Hence, the entire study of
SDPIs is equivalent to determining whether a given channel
is dominated in the less noisy sense by a q-EC. There are
several useful upper bounds on ηKL that are suitable for this
purpose [7], [8, Remark III.2], but no such results exist for
q-SC domination.

This paper initiates the inquiry of a natural extension of the
concept of SDPI by replacing the distinguished role played by
the q-EC with a q-SC. In analogy with the bounds on ηKL, one
of our goals is to establish similar simple criteria for testing
domination by a q-SC instead of a q-EC.

Secondly, the less noisy preorder tensorizes [9, Proposition
5], [5, Proposition 16]. In other words, if we know W �ln V ,
we can also conclude that W⊗n �ln V

⊗n, which means that
I(U ;Y n) ≥ I(U ;Zn) for every Markov chain U → Xn →
(Y n, Zn). Therefore, many impossibility results (in statistical
decision theory for example) that are proven by exhibiting
bounds on quantities such as I(U ;Y n) transparently carry over
to statistical experiments with observations on the basis of Zn.
Since it is much more common to study the q-ary symmetric
observation model (especially with q = 2), we can leverage
its sample complexity lower bounds for other V .

Thirdly, there is a self-contained information theoretic mo-
tivation that addresses our leading question. W �ln V if and
only if the secrecy capacity CS = 0, where CS is the secrecy
capacity of the Wyner wiretap channel with V as the main
(legal receiver) channel and W as the eavesdropper channel
[10, Corollary 17.11]. Thus, finding the maximally noisy q-SC
that dominates V establishes the minimal noise required on the
eavesdropper link so that secret communication is feasible.

Finally, �ln domination turns out to entail a comparison of
Dirichlet forms (as we will illustrate), and consequently, allows
us to prove Poincaré (spectral gap) and logarithmic Sobolev
inequalities (LSIs) for V from well-known results on q-SCs.



These inequalities are cornerstones of the modern approach to
Markov chains and concentration of measure [11], [12].

We briefly delineate the ensuing discussion. In Section II,
we derive equivalent characterizations of �ln which are useful
for obtaining other results. We then illustrate conditions for
domination by q-SCs in Section III. Finally, we elucidate the
relationship between �ln domination and LSIs in Section IV.

II. EQUIVALENT CHARACTERIZATIONS OF LESS NOISY

We commence this section with an alternative definition of
�ln. Given the channels W ∈ Rq×rsto and V ∈ Rq×ssto , W �ln V
if and only if [1, Proposition 2], [5, Proposition 14]:

∀PX , QX ∈ Pq, D(PXW ||QXW ) ≥ D(PXV ||QXV ) (4)

where Pq denotes the probability simplex of row vectors in
Rq . Although �ln is characterized by KL divergence or mutual
information (in a manner pertinent for channel coding) in [1],
our most general result illustrates that this preorder can also be
characterized using χ2-divergence, the Löwner (PSD) partial
order, or a spectral radius condition. Recall that for any two
pmfs PX , QX ∈ Pq , their χ2-divergence is given by:

χ2(PX ||QX) ,
∑
x∈X

(PX(x)−QX(x))
2

QX(x)
(5)

where (0 − 0)2/0 = 0 and (p − 0)2/0 = +∞ for every p >
0 based on continuity arguments. The next theorem presents
these characterizations of the less noisy preorder.

Theorem 1 (Equivalent Characterizations of �ln). For any pair
of channels W ∈ Rq×rsto and V ∈ Rq×ssto on the same input
alphabet, the following are equivalent:

1) W �ln V
2) For every PX , QX ∈ Pq:

χ2(PXW ||QXW ) ≥ χ2(PXV ||QXV )

3) For every PX ∈ P◦q :

Wdiag(PXW )
−1
WT �PSD V diag(PXV )

−1
V T

4) For every PX ∈ P◦q :

ρ
((
Wdiag(PXW )

−1
WT

)†
V diag(PXV )

−1
V T
)

= 1

where P◦q denotes the relative interior of Pq , diag(x) denotes
a diagonal matrix with x ∈ Rq along its principal diagonal,
�PSD denotes the Löwner partial order, † denotes the Moore-
Penrose pseudoinverse, and ρ(·) denotes spectral radius.

Proof. (1⇔ 2) To prove the forward direction, recall the local
approximation of KL divergence [13, Proposition 4.2], which
states that for any PX , QX ∈ Pq , if χ2(PX ||QX) < +∞:

lim
λ→0+

2

λ2
D(λPX + λ̄QX ||QX) = χ2(PX ||QX) (6)

where λ̄ = 1−λ for λ ∈ (0, 1), and all logarithms are natural.
For any PX , QX ∈ Pq , if χ2(PXW ||QXW ) = +∞, then
there is nothing to prove. If χ2(PXW ||QXW ) < +∞, then

D(PXV ||QXV ) ≤ D(PXW ||QXW ) < +∞ using (4) and
[13, Equation 7.8]. Hence, PXV � QXV , which implies that
χ2(PXV ||QXV ) < +∞. Since W �ln V , we have from (4):

D
(
λPXW+λ̄QXW ||QXW

)
≥ D

(
λPXV +λ̄QXV ||QXV

)
for any λ ∈ [0, 1]. Applying (6) to both sides of this produces:

χ2(PXW ||QXW ) ≥ χ2(PXV ||QXV )

which proves the forward direction. For the converse, we recall
an integral representation of KL divergence [5, Appendix A.2]:

D(PX ||QX) =

∫ ∞
0

χ2(PX ||QtX) dt (7)

for any PX , QX ∈ Pq , where QtX = t
1+tPX + 1

t+1QX for t ∈
[0,∞). Since for every PX , QX ∈ Pq , χ2(PXW ||QtXW ) ≥
χ2(PXV ||QtXV ), we can integrate both sides and use (7) to
get W �ln V as follows:∫ ∞

0

χ2(PXW ||QtXW ) dt ≥
∫ ∞
0

χ2(PXV ||QtXV ) dt

D(PXW ||QXW ) ≥ D(PXV ||QXV ).

(2 ⇔ 3) Observe that for every PX ∈ Pq and QX ∈ P◦q :

χ2(PX ||QX) = JXdiag(QX)
−1
JTX (8)

where JX = PX −QX . Hence, for every PX ∈ Pq and every
QX ∈ P◦q , the Löwner condition in part 3 implies that:

JXWdiag(QXW )
−1
WTJTX ≥ JXV diag(QXV )

−1
V TJTX

which, using (8), is equivalent to:

χ2(PXW ||QXW ) ≥ χ2(PXV ||QXV ).

This inequality also holds for QX ∈ Pq\P◦q (as QkX → QX
⇒ χ2(PX ||QkX)→ χ2(PX ||QX)), which proves the converse.
The forward direction should appear plausible due to (8), and
we refer readers to [14, Proposition 8] for a complete proof.

(3⇔ 4) Wdiag(PXW )
−1
WT and V diag(PXV )

−1
V T are

both positive semidefinite matrices for every PX ∈ P◦q . If
Wdiag(PXW )

−1
WT is invertible, then it is actually positive

definite, and [15, Theorem 7.7.3 (a)] (which states that if
A ∈ Rq×q is positive definite and B ∈ Rq×q is positive
semidefinite, then A �PSD B if and only if ρ

(
A−1B

)
≤ 1)

implies that the Löwner condition in part 3 is equivalent to:

ρ
((
Wdiag(PXW )

−1
WT

)−1
V diag(PXV )

−1
V T
)
≤ 1 (9)

for every PX ∈ P◦q . Observe that PXWdiag(PXW )
−1
WT =

PXV diag(PXV )
−1
V T = 1T , where 1 , [1 · · · 1]T ∈ Rq is

the column vector with all entries equal to unity. So, we have:

1T
(
Wdiag(PXW )

−1
WT

)−1
V diag(PXV )

−1
V T = 1T

which means that this matrix has an eigenvalue of 1, and the
inequality in (9) is really an equality. This completes the proof
for invertible Wdiag(PXW )

−1
WT . The more general case is

derived in [14, Proposition 9] using an appropriate extension
of [15, Theorem 7.7.3 (a)] proved in [14, Lemma 2]. �



Since (6) and (7) hold more generally, the first equivalence
in Theorem 1 can be verified for more general Markov kernels.
Furthermore, it is related to the following notable result [6]:

ηKL(W ) = ηχ2(W ) , sup
PX ,QX∈Pq

χ2(PXW ||QXW )

χ2(PX ||QX)
(10)

for any channel W ∈ Rq×rsto , where the supremum is over all
pmfs PX , QX ∈ Pq that satisfy 0 < χ2(PX ||QX) < +∞.
Indeed, (10) portrays how less noisy domination by a q-EC
(which is characterized by ηKL) can be characterized by χ2-
divergence, and our first equivalence generalizes this result
to less noisy domination by an arbitrary channel. Finally, we
remark that the Löwner characterization in Theorem 1 is useful
for deriving our other results, and the spectral characterization
can be useful for computationally deducing whether W �ln V .

III. CONDITIONS FOR LESS NOISY DOMINATION

We next establish sufficient conditions for less noisy dom-
ination by q-SCs. Formally, a q-ary symmetric channel has
input and output alphabet X with |X | = q and transition
probability matrix Wδ ∈ Rq×qsto :

Wδ ,

(
1− δ − δ

q − 1

)
Iq +

δ

q − 1
11T (11)

where Iq ∈ Rq×q denotes the identity matrix, and δ ∈ [0, 1]
is the total crossover probability. Matrices of the form (11)
satisfy several useful properties; they are symmetric, doubly
stochastic, circulant, jointly diagonalizable by the DFT matrix,
and

{
Wδ ∈ Rq×q : δ ∈ R\

{
q−1
q

}}
with the multiplication op-

eration is an Abelian group [14, Proposition 3]. Given another
channel V ∈ Rq×qsto on the same alphabet, our objective is to
find the extremal δ?(V ) , sup

{
δ ∈

[
0, q−1q

]
: Wδ �ln V

}
such that for every 0 ≤ δ < δ?(V ), Wδ �ln V .

Computationally estimating δ?(V ) corresponds to a problem
of verifying collections of rational inequalities. Indeed, Theo-
rem 1 suggests the following minimax formulation of δ?(V ):

δ?(V ) = inf
PX∈P◦

q

sup
δ∈S(PX)

δ (12)

where S(PX) =
{
δ ∈
[
0, q−1q

]
: Wδ diag(PXWδ)

−1
WT
δ �PSD

V diag(PXV )
−1
V T
}

. The infimum can be naı̈vely approxi-
mated by sampling several PX ∈ P◦q . Estimating the supre-
mum entails testing collections of rational inequalities in δ, be-
cause positive semidefiniteness of a matrix can be established
using the non-negativity of its principal minors by Sylvester’s
criterion [15, Theorem 7.2.5]. On the other hand, analytically
determining δ?(V ) appears to be intractable. So, we instead
prove a sufficient condition for Wδ �ln V in the next theorem.
Our result can be construed as a lower bound on δ?(V ):

δ?(V ) ≥ ν

1− (q − 1)ν + ν
q−1

(13)

where ν is the minimum conditional probability in V .
To present the ensuing theorem, we introduce the (output)

degradation preorder over channels, which was also defined
to study broadcast channels [16]. In particular, a channel V ∈

Rq×ssto is said to be a degraded version of a channel W ∈ Rq×rsto
with the same input alphabet, denoted W �deg V , if V = WA
for some channel A ∈ Rr×ssto . It is well-known that W �deg V
implies that W �ln V , which follows from the data processing
inequality. Theorem 2 presents a simple sufficient condition for
degradation by a q-SC.

Theorem 2 (Sufficient Condition for Degradation by Symmet-
ric Channels). Given a channel V ∈ Rq×qsto with q ≥ 2 and
minimum entry ν = min {[V ]i,j : 1 ≤ i, j ≤ q}, we have:

0 ≤ δ ≤ ν

1− (q − 1)ν + ν
q−1

⇒ Wδ �deg V ⇒ Wδ �ln V.

Proof Sketch. We sketch the proof for the ν < 1
q case here; the

remaining details can be found in [14, Section VI]. Consider
the q-SC W(q−1)ν ∈ Rq×qsto , and let wi ∈ Pq and vi ∈ Pq for
1 ≤ i ≤ q denote the ith rows of W(q−1)ν and V , respectively.
Using a majorization argument, we have:

∀i ∈ {1, . . . , q} , vi =

q∑
j=1

pi,j wj

where {pi,j ≥ 0 : 1 ≤ i, j ≤ q} are some convex weights such
that

∑q
j=1 pi,j = 1 for 1 ≤ i ≤ q. Stacking the rows of V

back into a matrix, we observe that:

V =
∑

1≤j1,...,jq≤q

(
q∏
i=1

pi,ji

)
Sj1,...,jq

where for each 1 ≤ j1, . . . , jq ≤ q, Sj1,...,jq =
[
wTj1 · · · w

T
jq

]T
defines a matrix whose kth row is the jkth row of W(q−1)ν ,
and {

∏q
i=1 pi,ji : 1 ≤ j1, . . . , jq ≤ q} forms a product pmf.

Hence, if ∃ δ ∈
[
0, q−1q

)
such that for every 1 ≤ j1, . . . , jq ≤

q, Wδ �deg Sj1,...,jq , or equivalently W−1δ Sj1,...,jq ∈ Rq×qsto ,
then Wδ �deg V . The rows of W−1δ Sj1,...,jq sum to unity,
because W−1δ has the form (11) since matrices of the form (11)
constitute a group. Moreover, we can verify that the minimum
possible entry of W−1δ Sj1,...,jq is non-negative if and only if:

0 ≤ δ ≤ ν

1− (q − 1) ν + ν
q−1

.

This a sufficient condition for W−1δ Sj1,...,jq ∈ Rq×qsto for every
1 ≤ j1, . . . , jq ≤ q. Therefore, Wδ �deg V , which in turn
implies that Wδ �ln V . �

The condition given in Theorem 2 is tight for degradation.
For example, if V = S2,1,...,1 ∈ Rq×qsto , then Wδ �deg V if and
only if 0 ≤ δ ≤ ν/

(
1− (q − 1)ν + ν

q−1
)

[14, Section VI].

A. Domination of additive noise channels

It is compelling to derive a sufficient condition for Wδ �ln V
that does not simply ensure Wδ �deg V . To this end, we study
additive noise channels. Let (X ,⊕) be a finite Abelian group
of order q ≥ 2 equipped with a binary “addition” operation
⊕. An additive noise channel is defined by the relation:

Y = X ⊕N, X ⊥⊥ N (14)



Fig. 1. Additive less noisy domination and degradation regions for a 3-ary
symmetric channel with δ ∈

(
0, 2

3

)
: The gray region denotes the probability

simplex of noise pmfs P3. The dotted line denotes the symmetric channels{
wδ =

(
1 − δ, δ

2
, δ
2

)
: δ ∈ [0, 1]

}
. As conveyed in Theorem 3, the yellow

and (circular) cyan regions lower and upper bound the less noisy domination
region, respectively. Note that P3 ∈ R3×3 is a cyclic permutation matrix that
cyclically shifts an input row vector to the right once, and τ = 1− (δ/2) and
γ = (1−δ)/(1−δ+(δ/4)) correspond to the extremal degraded symmetric
channel and the symmetric channel from Theorem 3, respectively.

where X,Y,N ∈ X are the input, output, and noise random
variables respectively, and X is independent of N . The channel
transition probability matrix corresponding to (14) is a doubly
stochastic X -circulant matrix circX (PN ) ∈ Rq×qsto determined
by the noise pmf PN ∈ Pq [17, Chapter 3E, Section 4]:

∀x, y∈X , [circX (PN )]x,y , PN (−x⊕y) = PY |X(y|x) (15)

where −x ∈ X denotes the inverse of x. X -circulant matrices
form a commutative algebra, and are jointly unitarily diago-
nalizable by a “Fourier” matrix of characters. In the context
of various channel symmetries in the literature, additive noise
channels correspond to “group-noise” channels, and are input,
output, Dobrushin, and Gallager symmetric [18, Section VI.B].

One can verify that a q-SC is an additive noise channel with
noise pmf defined by PN (0) = 1− δ and PN (x) = δ/(q− 1)
for any x ∈ X\{0}, where 0 ∈ X is the identity element and
δ ∈ [0, 1]. To understand when a q-SC Wδ ∈ Rq×qsto dominates
an additive noise channel, we define the additive less noisy
domination region:

Ladd
Wδ
, {PN ∈ Pq : Wδ �ln circX (PN )} (16)

and the additive degradation region:

Dadd
Wδ
, {PN ∈ Pq : Wδ �deg circX (PN )} (17)

corresponding to Wδ . The next theorem exactly characterizes
Dadd
Wδ

, and “bounds” Ladd
Wδ

in a set theoretic sense.

Theorem 3 (Domination Regions of Symmetric Channels).
Given Wδ ∈ Rq×qsto with δ ∈

[
0, q−1q

]
and q ≥ 2, we have:

Dadd
Wδ

= conv ({(Wδ)k : 1 ≤ k ≤ q})
⊆ conv

(
{(Wδ)k : 1 ≤ k ≤ q} ∪

{
(Wγ)k : 1 ≤ k ≤ q

})
⊆ Ladd

Wδ
⊆
{
v ∈ Pq : ‖v − u‖`2 ≤ ‖(Wδ)1 − u‖

`2

}
where γ = (1 − δ)/

(
1 − δ + δ

(q−1)2
)
, (Wδ)k is the kth row

of Wδ , conv (·) denotes convex hull, u ∈ Pq is the uniform
pmf, and the first set inclusion is strict for δ ∈

(
0, q−1q

)
and

q ≥ 3. Furthermore, Ladd
Wδ

is closed, convex, and invariant
under permutations in the regular representation of (X ,⊕).

For an additive noise channel V ∈ Rq×qsto , the first set inclu-
sion in Theorem 3 offers a sufficient condition for Wδ �ln V
without ensuring Wδ �deg V ; it is derived using condition
3 of Theorem 1 [14, Proposition 13]. Theorem 3 is further
explicated and proved in [14, Sections III, V], where similar
properties of less noisy domination and degradation regions for
more general channels, and some necessary conditions for less
noisy domination are also established. In particular, degrada-
tion among additive noise channels is completely characterized
using group majorization in [14, Proposition 5]. We remark
that according to numerical evidence, the second and third set
inclusions in Theorem 3 appear to be strict, and Ladd

Wδ
seems

to be a strictly convex set. The results of Theorem 3 and these
observations are depicted in Figure 1 when q = 3.

IV. COMPARISON OF DIRICHLET FORMS

In this section, we show that proving Wδ �ln V for a doubly
stochastic channel V ∈ Rq×qsto allows us to translate the LSI for
Wδ to an LSI for V . Suppose V defines an irreducible discrete-
time Markov chain with state space X (such that |X | = q) and
unique stationary distribution u ∈ Pq . Corresponding to this
chain, we may define a continuous-time Markov semigroup:

∀t ≥ 0, Ht , exp (−t (Iq − V )) ∈ Rq×qsto (18)

with unique uniform stationary pmf, where V − Iq is the
Laplacian operator that forms the generator of the semigroup.
Furthermore, we define the Hilbert space L2(X ,u) of all real
functions with domain X endowed with the inner product:

∀f, g ∈ L2(X ,u), 〈f, g〉u ,
1

q

∑
x∈X

f(x)g(x) =
fT g

q
(19)

and induced norm ‖·‖u, where we treat functions in L2(X ,u)
as column vectors in Rq . To present our result, we define the
Dirichlet form EV : L2(X ,u)× L2(X ,u)→ R+ [11]:

EV (f, f) , 〈(Iq − V ) f, f〉u =
1

q
fT
(
Iq −

V + V T

2

)
f (20)

which is a quadratic form representing the energy of its input
function. A salient specialization of (20) is the so called stan-
dard Dirichlet form associated to the channel W(q−1)/q = 1u:

Estd(f, f) , VARu(f) =
∑
x∈X

f(x)2

q
−

(∑
x∈X

f(x)

q

)2

, (21)



and the Dirichlet forms corresponding to q-SCs satisfy the
relation: EWδ

(f, f) = qδ
q−1Estd(f, f) for every f ∈ L2 (X ,u).

The next theorem portrays that Wδ �ln V implies a pointwise
domination of Dirichlet forms: EV ≥ EWδ

= qδ
q−1Estd.

Theorem 4 (Domination of Dirichlet Forms). Given the
doubly stochastic channels Wδ ∈ Rq×qsto with δ ∈

[
0, q−1q

]
and V ∈ Rq×qsto , if Wδ �ln V , then:

∀f ∈ L2(X ,u), EV (f, f) ≥ qδ

q − 1
Estd(f, f).

Proof Sketch. Since Wδ �ln V , we have W 2
δ = WδW

T
δ �PSD

V V T from part 3 of Theorem 1 after letting PX = u. Then, by
the Löwner-Heinz theorem (cf. [15, Corollary 7.7.4 (b)]), we
get W 2

δ �PSD V V
T ⇒Wδ �PSD (V V T )

1
2 , because Wδ and the

Gramian matrix V V T are positive semidefinite. Due to (20),
it is sufficient to prove that: Wδ �PSD (V V T )

1
2 ⇒ Wδ �PSD

(V + V T )/2. This implication is proved in [14, Section VII]
by carefully analyzing the spectral structure of Wδ , (V V T )

1
2 ,

and (V +V T )/2, and then applying a corollary of the Courant-
Fischer variational characterization of singular values. �

We note that other variants of Theorem 4 are also presented
in [14, Section VII]. A major consequence of the domination
of Dirichlet forms in Theorem 4 is that we can immediately
establish an LSI for V using the LSI for Wδ . An LSI for the
Markov semigroup

{
Ht ∈ Rq×qsto : t ≥ 0

}
with constant α ∈ R

states that for all f ∈ L2(X ,u) with ‖f‖u = 1, we have [11]:

D(f2u||u) ≤ 1

α
EV (f, f) (22)

where µ = f2u ∈ Pq is a pmf such that ∀x ∈ X , µ(x) =
f(x)2 u(x), and f2 behaves like the density of µ with respect
to u. The largest constant α such that (22) holds is known as
the logarithmic Sobolev constant of the Markov chain V :

α(V ) , inf
f∈F

EV (f, f)

D(f2u||u)
(23)

where F =
{
f ∈ L2(X ,u) : ‖f‖u = 1 and D(f2u||u) > 0

}
.

This constant is closely related to the ergodicity (convergence
rate to invariant measure) and hypercontractivity properties of
the corresponding Markov semigroup [11].

Typically, it is difficult to analytically compute logarithmic
Sobolev constants. However, the logarithmic Sobolev constant
corresponding to Estd has been computed in [11, Appendix,
Theorem A.1], and implies the following LSI for q > 2:

D(f2u||u) ≤ q log(q − 1)

(q − 2)
Estd(f, f) (24)

for every f ∈ L2(X ,u) satisfying ‖f‖u = 1 (where the q = 2
case uses the limiting value of 2 in front of Estd). Moreover,
we can deduce α(Wδ) for any q-SC Wδ ∈ Rq×qsto (which is
irreducible if δ ∈ (0, 1]) from (24), cf. [14, Proposition 14].
So, we often compare the Dirichlet form of a given irreducible
channel V ∈ Rq×qsto with that of a q-SC Wδ ∈ Rq×qsto (or
the standard Dirichlet form); generalizations of this idea are

presented in [11, Lemmata 3.3 and 3.4]. If such a comparison
yields a pointwise domination of the form:

∀f ∈L2(X ,u), EV (f, f) ≥ EWδ
(f, f)=

qδ

q−1
Estd(f, f) (25)

as shown in Theorem 4, we immediately establish the follow-
ing LSI for V using (24):

D(f2u||u) ≤ (q − 1) log(q − 1)

δ (q − 2)
EV (f, f) (26)

for every f ∈ L2(X ,u) satisfying ‖f‖u = 1. Alternatively,
we may perceive (26) as a lower bound on α(V ):

α(V ) ≥ δ (q − 2)

(q − 1) log(q − 1)
. (27)

Therefore, Theorem 4 illustrates that less noisy domination of
a given channel by a q-SC is a sufficient condition for deriving
an LSI for the original channel.
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