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Abstract—In this paper we consider a channel model that is
often used to describe the mobile wireless scenario: multiple-
antenna additive white Gaussian noise channels subject to ran-
dom (fading) gain with full channel state information at the
receiver. Dynamics of the fading process are approximated by
a piecewise-constant process (frequency non-selective isotropic
block fading). This work addresses the finite blocklength fun-
damental limits of this channel model. Specifically, we give a
formula for the channel dispersion – a quantity governing the
delay required to achieve capacity – and present achievability
and (partial) converse bounds. Multiplicative nature of the fading
disturbance leads to a number of interesting technical difficulties
that required us to enhance traditional methods for finding
channel dispersion. Knowledge of channel dispersion opens the
possibility for studying the impact of channel dynamics, antenna
selection rules, etc on the communication rate.

I. INTRODUCTION

Given a noisy communication channel, the maximal cardi-
nality of a codebook of blocklength n which can be decoded
with block error probability no greater than ǫ is denoted
as M∗(n, ǫ). Evaluation of this function – the fundamental
performance limit of block coding – is computationally impos-
sible for most channels of interest. To resolve this difficulty, [1]
proposed a closed-form normal approximation, based on the
asymptotic expansion:

logM∗(n, ǫ) = nC −
√
nV Q−1(ǫ) +O(log n) , (1)

where capacity C and dispersion V are two intrinsic char-
acterstics of the channel and Q−1(ǫ) is the inverse of the
Q-function1. One immediate consequence of the normal ap-
proximation is an estimate for the minimal blocklength (delay)
required to achieve a given fraction η of channel capacity:

n &

(

Q−1(ǫ)

1− η

)2
V

C2
. (2)

Asymptotic expansions such as (1) are rooted in the central-
limit theorem and have been known classically for discrete
memoryless channels [2], [3] and later extended in a wide
variety of directions; see [4] for a survey.

Motivated by a recent surge of orthogonal frequency divi-
sion (OFDM) technology, this paper focuses on the frequency-
nonselective coherent complex block fading discrete-time
channel with multiple transmit and receive antennas (MIMO)
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1As usual, Q(x) =
∫∞

x
1√
2π

e−t2/2 dt .

(See [5, Section II] for background on this model). Formally,
let nt ≥ 1 be the number of transmit antennas, nr ≥ 1 be the
number of receive antennas, and T ≥ 1 be the coherence time
of the channel. The input-output relation at block j (spanning
time instants (j − 1)T + 1 to jT ) with j = 1, . . . , n is given
by

Yj = HjXj + Zj , (3)

where {Hj, j = 1, . . .} is a nr × nt matrix-valued random
fading process, Xj is a nt × T matrix channel input, Zj is a
nr × T Gaussian random matrix with independent circularly
symmetric entries of zero mean and unit variance, and Yj is
the nr × T matrix-valued channel output. The process Hj is
assumed to be i.i.d. with isotropic distribution PH, i.e. for any
unitary matrices U ∈ C

nr×nr and V ∈ C
nt×nr , both UH and

HV are equal in distribution to H. The fading also satisfies
the normalization condition

E [‖H‖2F ] = 1 . (4)

where ‖ · ‖F denotes the Frobenius norm. Note that due to
merging channel inputs at time instants 1, . . . , T into one
matrix-input, the block-fading channel becomes memoryless.
We assume coherent demodulation so that the channel state
information (CSI) Hj is fully known to the receiver (CSIR).

An (nT,M, ǫ, P )CSIR code of blocklength nT , probability
of error ǫ and power-constraint P is a pair of maps: the encoder
f : [M ] → (Cnt×T )n and the decoder g : (Cnr×T )n ×
(Cnr×nt)n → [M ] such that

P[W 6= Ŵ ] ≤ ǫ . (5)

and
n
∑

j=1

‖Xj‖2F ≤ nTP P-a.s. ,

on the probability space

W → X
n → (Yn,Hn) → Ŵ ,

where W is uniform on [M ], Xn = f(W ), Xn → (Yn,Hn)
is as described in (3) and Ŵ = g(Yn,Hn).

Under the isotropy assumption on PH , the capacity C of
this channel is given by [6]

C(P ) = E

[

log det

(

Inr
+

P

nt
HH

†

)]

(6)

where In denotes the n× n identity matrix.
The goal of this line of work is to characterize dispersion

of the present channel. Since the channel is memoryless it is
natural to expect, given the results in [1], [7], that dispersion
(for ǫ < 1/2) is given by

Vmin = inf
PX :I(X;Y |H)=C

1

T
Var[i(X ;Y,H)|X ] (7)

1

2016 IEEE International Symposium on Information Theory

978-1-5090-1805-5/16/$31.00 ©2016 IEEE 1068



where the information density is denoted

i(x; y, h)
△
= log

dPY,H|X=x

dP ∗
Y,H

(y, h) (8)

and P ∗
Y,H is a capacity-achieving output distribution. In this

work, we justify (7) as the actual (operational) dispersion,
appearing in the expansion of logM∗(n, ǫ). A general achiev-
ability bound is given, along with a partial converse result that
assumes the supreumum norm of all codewords is bounded
by ‖xn‖∞ = o(n1/4). Without this constraint, information
density may not be asymptotically normal and the general
(unconstrained) converse is still open. Both the achievability
and partial converse proofs require novel steps as compared to
techniques invoked in previous works on channel dispersion
and finite blocklength information theory.

In the MISO case (nr = 1), the solution to (7) is non-
trivial, because the class of input distributions that achieve
capacity is rich. This was analyzed by us in [8], where it
was shown that full rate orthogonal designs are the solution
to (7) in dimensions where they exist (e.g. Alamouti code for
nt = T = 2). In this work, we focus on the case where
nr ≥ 2. In this case, the capacity achieving input distribution
is unique, so the minimization is trivial and we are able to
give a closed-form expression for (7).

Before proceeding to our results, we mention recent litera-
ture on dispersion of wireless channels. Single antenna channel
dispersion is computed in [7] for a coherent channel subject to
stationary fading process. In [9] finite-blocklength effects are
explored for the non-coherent (i.e. no CSI) block fading setup.
Quasi-static fading channels in the general MIMO setting
have been thoroughly investigated in [10], showing that the
expansion (1) changes dramatically (in particular the channel
dispersion term becomes zero); see also [11] for evaluation
of the bounds. Coherent quasi-static channel has been studied
in the limit of infinitely many antennas in [12] appealing to
concentration properties of random matrices. Dispersion for
lattices (infinite constellations) in fading channels has been
investigated in a sequence of works, see [13] and references.
The regime of low spectral efficiency (or minimum energy-
per-bit) for general MIMO channel in both the coherent
and non-coherent case was studied in [14]. [15] investigates
how power control (i.e. power constraint averaged over the
codebook) affects fundamental limits under the quasi-static
fading channel with perfect CSIRT.

All proofs in this paper can be found in [16]. The numerical
tool used to compute the achievability bounds, dispersion, and
normal approximation are available online [17].

II. MAIN RESULTS

Our first result is a coding theorem giving the achievability
and partial converse for the MIMO coherent fading channel.

Theorem 1. For the MIMO-BF channel, there exists an

(nT,M, ǫ, P )CSIR maximal probability of error code with

0 < ǫ < 1/2 and

logM ≥ nTC(P )−
√

nTV (P )Q−1(ǫ) + o(
√
n) (9)

Furthermore, for any δn → 0 there exists δ′n → 0 so that every

(nT,M, ǫ, P )CSIR code with extra constraint that ‖xn‖∞ ≤

δnn
1/4, must satisfy

logM ≤ nTC(P )−
√

nTV (P )Q−1(ǫ) + δ′n
√
n (10)

where C(P ) is the capacity given in (6), and

V (P ) = inf
PX:I(X;Y|H)=C

1

T
Var[i(X;Y,H)|X] (11)

and i(x; y, h) is the information density, given in (19) below.

In the case when nr ≥ 2, the distribution achieving capacity
is unique. In this case, we can compute the conditional
variance (11) in closed form. The expression is given in the
following theorem.

Theorem 2. When nr ≥ 2,

V (P ) = TVar

(

nmin
∑

i=1

CAWGN

(

P

nt
Λ2
i

)

)

+ nminE

[

VAWGN

(

P

nt
Λ2

)]

+ nmin

(

P

nt

)2

χ1

−
(

P

nt

)2

χ2
n2
min

nt
(12)

where Λ2
i , i = 1, . . . nmin are eigenvalues of HH†, Λ2 is the

marginal distribution a single eigenvalue of HH†, and

CAWGN (P ) = log (1 + P ) (13)

VAWGN = log2(e)

(

1− 1

(1 + P )
2

)

(14)

χ1 = log2(e)E





(

Λ2

1 + P
nt

Λ2

)2


 (15)

χ2 = log2(e)E2

[

Λ2

1 + P
nt
Λ2

]

(16)

Note here that all eigenvalues Λ2
1, . . . ,Λ

2
nmin

of HH† have
the same marginal distribution by the assumption that H is
isotropic, so Λ2 is well defined.

In Section II-A we review some relevant properties of the
coherent block fading channel. Then in Sections II-B and
II-C we outline the strategies to prove the achievability and
converse bounds, respectively. In Section II-D we discuss the
implications of the dispersion results on communicating over
fading channels.

A. Preliminaries

The capacity of this channel (6) was first proved by
Telatar [6]. Telatar also showed that the input distribution with
i.i.d. CN (0, P/nt) (circularly symmetric Gaussian) entries
achieves capacity. In this work, the capacity achieving output

distribution (caod) will be of interest, i.e. the distribution
PYH induced by the capacity achieving input distribution P ∗

X

through the channel. Here, P ∗
YH

= PHP
∗
Y|H where PH is

distribution of the fading process, and

P ∗
Y|H ∼ CN

(

0, Inr
+

P

nt
HH

†

)

(17)
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In [8], the authors show that when nr = 1, the distribution
that achieves capacity is not unique and not necessarily Gaus-
sian. However, as soon as nr ≥ 2, the following proposition
states the Telatar’s distribution is a unique maximizer of
capacity:

Proposition 3. When nr ≥ 2, the capacity achieving input

distribution is uniquely X ∈ Cnt×T where each entry Xij has

an i.i.d. N (0, P/nt) distribution.

Proof sketch: Any capacity achieving input distribution
induces the unique output distribution (17). This implies that
for any h ∈ Cnr×nt , and Xi, Xj ∈ Cnt×1, i 6= j being any
two columns of X, we have

hE[XiX
†
j ]h

† = 0nr
. (18)

where On denotes the n×n all zero matrix. When nr > 1, (18)

can hold only if E[XiX
†
j ] is the all zero matrix. Along with

other Gaussian constraints, this forces X to be unique.
A fundamental quantity needed to prove finite blocklength

bounds is the information density, as defined in (8). Some
algebra yields the explicit expression for the (single-letter)
information density as follows:

i(x; y, h) = T log det

(

Inr
+

P

nt
hh†

)

+

nmin
∑

j=1

‖Λjwj‖2 + Λj〈wj , z̃j〉+ Λ̄j〈z̃j , wj〉 − P
nt

|Λj|2‖zj‖2

1 + P
nt

|Λj |2
(19)

where ā is the complex conjugate of a ∈ C, and

1) nmin = min(nt, nr).
2) h = UDV † is the SVD of h, where D ∈ Cnr×nt

with Λ1, . . . ,Λnmin
on the principal diagonal and zeros

elsewhere.
3) w = V †x, and wj denotes the j-th row of w.
4) z̃ = U †z, and z̃j , zj denote the j-th row of z̃, z,

respectively.

Theorem 1 justifies the quantity 1
T Var[i(X;Y,H)|X] as the

quantity to compute for the operational dispersion, and The-
orem 2 gives the closed form expression for this conditional
variance.

B. Achievability

The proof utilizes the κβ bound [1], which states that for
a given a channel PY|X with input alphabet A and output
alphabet B, for any distribution QY on B, and ǫ, τ such that
0 < τ < ǫ < 1, there exists an (M, ǫ) code satisfying

M ≥ κτ (F,QY )

supx∈F β1−ǫ+τ (PY |X=x, QY )
(20)

where F is any set in the input space.
The notation βα(P,Q) denotes the minimal error in a binary

hypothesis test between distribution P and Q given that the
test chooses P when P is the true distribution with at least
probability α. κτ (F,Q) for set F and distribution Q denotes
the minimum error in a composite hypothesis test, which
decides between the set of distributions {PY |X=x}x∈F and
Q. For more background on these definitions, see [1].

The “art” of applying the κβ bound is in choosing F and
QYH appropriately. In this case, and as is common, QYH is

chosen to be the capacity achieving output distribution (17).
To motivate the choice of the set F , the following lower bound
on κτ (F,QYH) can be shown

κτ (F,QYnHn)

≥ exp

(

−D(P
X̃n ◦ PYnHn|Xn ||QYnHn) + log 2

τP
X̃n [F ]

)

(21)

where the notation PX ◦PY |X denotes the output distribution
induced through the channel PY |X by input PX , and P

X̃n

is any distribution such that P
X̃n [F ] > 0. The key reason

why (21) is a useful lower bound is the following lemma.

Lemma 4. Let X be any capacity achieving input distribution

for the channel, and X
n = [X1 · · ·Xn]. Let

P
X̃n ∼ X

n

‖Xn‖F
√
nTP (22)

and QY nHn =
∏n

i=1 P
∗
YH

, where P ∗
YH

is the (unique) capacity

achieving output distribution as described in (17). Then there

exists a constant K > 0 such that for all n = 1, 2, . . .,

D(P
X̃n ◦ PYnHn|Xn ||QYnHn) ≤ K (23)

(A similar result was shown for the AWGN channel by
MolavianJazi et al [18, Proposition 2].) This Lemma can be
interpreted as saying: the output distribution induced by any
caid normalized to lie on the manifold {xn ∈ C

nnt×T :
‖xn‖2F = nTP} is similar (in the sense of divergence) to
the caod. This choice of P

X̃n is good for the numerator in the
bound (21), and this motivates the choice of the set F , i.e.
we need P

X̃n [F ] to be bounded away from zero for all n. The
following Lemma gives conditions for this to hold.

Lemma 5. For X caid, X̃n distributed as X
n

‖Xn‖F

√
nTP , we

have

P

[
∣

∣

∣

∣

1

T
Vn(X̃

n)− 1

T
E[V1(X)]

∣

∣

∣

∣

≥ δ

]

→ 0 as n → ∞
(24)

where

Vn(x
n) =

1

n

n
∑

j=1

Var[i(Xj ;Yj ,Hj)|Xj = xj ] (25)

In this notation, E[V1(X)] = Var[i(X;Y,H)|X].
The function Vn(x

n) is the empirical conditional variance.
With this in mind, choose the set F to be

F = {xn : ‖xn‖2F = nTP} ∩
{

xn :
1

T
Vn(x

n) ≤ V + δ

}

(26)

Lemma 5 guarantees that F chosen as (26) satisfies
P
X̃n [F ] → 1. With these choices of F and QYnHn ,

κτ (F,QYnHn) is lower bounded by a constant. The denomina-
tor of (20) can be expanded in the usual way using the Berry-
Esseen theorem, giving the expression in the achievability
bound.

C. Converse

The converse utilizes the maximum probability of error
meta-converse bound: any (n,M, ǫ) maximum probability of

3

2016 IEEE International Symposium on Information Theory

1070



error code satisfies

1

M
≥ inf

xn∈F
β1−ǫ

(

PYnHn|Xn=xn , QYnHn

)

(27)

where F = {xn ∈ Rnnt×T : ‖xn‖2F = nTP} is the constraint
set for the channel, and QYnHn is any distribution on the
output space. Again, QYnHn is chosen to be the i.i.d. n-fold
product of capacity achieving output distributions (17). There
are a few challenges that emerge: first, to apply central limit
theorem based theorems such as the Berry Esseen theorem,
the distribution of the log likelihood ratio

log
PYnHn|Xn=xn

QYnHn

(Yn,Hn) |Xn = xn (28)

must be asymptotically normal. For the MIMO fading channel,
this is not true for all values of xn ∈ F . Specifically, (28)
is asymptotically normal when xn is not too “peaky”, i.e.
when ‖xn‖∞ = o(n1/4), which is the primary reason for
imposing this constraint. Without the constraint, for example

the codeword where one entry has value
√
nTP and all the

other entries are zero clearly does not result in the information
density being asymptotically normal.

The second difficulty arises as follows: when ‖xn‖∞ =
o(n1/4), we have the expansion

− logβ1−ǫ

(

PYnHn|Xn=xn , QYnHn

)

= E[i(xn;Yn,Hn)]

−
√

Var(i(xn;Yn,Hn))Q−1(ǫ) + o(
√
n) (29)

Here, the O(n) term is constant over all xn ∈ F . The O(
√
n)

term is not constant over F , and furthermore, “smooth” xn’s,
e.g. where all entries are

√

P/nt, causes Var(i(xn;Yn,Hn))
to be smaller than the conditional variance (11), and hence
not tight with the achievability bound. To remedy this, we
expurgate these “smooth” codewords using the following
technique. The intuition is that although some xn’s give an
unusually small dispersion, the set of such xn’s is too small
to support a capacity-achieving code. Given a codebook C, fix
δ > 0, and split it into two pieces

Cl , C ∩ {xn : Vn(x
n) ≤ n(V − δ)} (30)

Cu , C ∩ {xn : Vn(x
n) > n(V − δ)} (31)

where Vn(x
n) is given in (25). A converse is shown for each of

the pieces separately: if Ml,Mu are the number of codewords
in Cl, Cu, respectively, then

logM ≤ logmax(Mu,Ml) + log 2 (32)

showing an upper bound on logMu is simple: using the meta
converse and expansion (29), we conclude that

logMu ≤ nTC −
√

nT (V − δ)Q−1(ǫ) + o(
√
n) (33)

The V − δ term follows immediately from the form of the
codebook Cu. The portion Cl requires more work. Define Fl ,
{xn : V (xn) ≤ V − δ}. We prove the following

Lemma 6. For any δ > 0 and any (nT,M, ǫ, P )CSIR max-

imum probability of error code (for the MIMO-BF channel)

with codewords in Fl , {xn : Vn(x
n) ≤ V − δ}, there exists

τ > 0 such that

logM ≤ n(C − τ) +O(1) (34)

where C is the capacity (6).

Remark 1. This Lemma gives the strong converse for the fad-
ing channel with the additional codebook constraint Vn(x

n) ≤
V − δ, and helps bound logMl.

Proof sketch: We apply the following basic bound, for
any γn > 0,

1

M
≥ inf

x∈Fl

β1−ǫ(PYnHn|Xn=xn , QYnHn) (35)

≥ inf
x∈Fl

1

γn

(

1− ǫ−

P

[

log
PYnHn|Xn=xn

QYnHn

(Yn,Hn) ≥ log γn

])

(36)

On Cl, we choose QYnHn to be the capacity achieving output
distribution of the channel with the additional constraint,

C′ =
1

T
sup I(X;Y|H) (37)

PX : E[‖X‖2F ] ≤ TP

E[V1(X)] ≤ V − δ

For this modified capacity problem, we do not have an
expression for the capacity or the capacity achieving input or
output distributions. However, it can be shown that supremum
is attained. General results on capacity also imply that there
exists a unique capacity achieving output distribution QYH

for (37). Knowing that QYH is induced through the channel im-
plies that the distribution should be sufficiently well-behaved,
namely:

Lemma 7. Let PYnHn be any distribution induced through the

MIMO-BF channel by some PXn satisfying E[‖X‖2F ] = nTP .

Then for any xn satisfying ‖xn‖2F = nTP , there exists a

constant K > 0 such that for all n,

Var [logPYnHn(Yn,Hn)|Hn,Xn = xn] < nK (38)

Lemma 7 is proved via an application of the Poincare
inequality for the variance of a function of a Gaussian random
variable (25), similar to [19, Theorem 18 and (106)] for the
non-fading AWGN channel.

We apply Lemma 7 to the bound (36). Choose log γn =
n(C + C′)/2, and using Chebyshev’s inequality and some
algebra, we obtain

P

[

log
PYnHn|Xn=xn

QYnHn

(Yn,Hn) ≥ log γn

]

≤ 4nrT + 2K

n(C − C′)2

(39)

Applying this result to the bound (36), we see that for large
enough n,

logMl ≤ log γn − log(1− ǫ −O(1/n)) (40)

= n
C + C′

2
+O(1) (41)

Then τ = (C − C′)/2 concludes the argument.

D. Discussion

First we must assess the accuracy of the normal approxi-
mation (1) by comparing it against numerical bounds. It turns
out that the κβ bound we used for analysis is not the tightest
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Fig. 1. The normal approximation for varying coherent times, with nt =
nr = T = 4, P = 20, and ǫ = 10−3 for Rayleigh fading.

achievability. A better bound, a so called ββ-bound [20], is
computed in [20, Figure 2]. As shown there, (1) gives a
reasonable approximation of the achievability bound.

Now we turn to the communication insights of (1) together
with the expression for dispersion (12). The dependence on
the coherence time clearly has an affine relationship with
dispersion. Figure 1 shows the normal approximation for
different values of coherence time. Note that this plot was
made with H has i.i.d. CN (0, 1) entries, i.e. for Rayleigh
fading, to compare our results to canonical values. This is
different than the normalization (4), but does not effect any of
the results.

The relationship of (12) relative to the number of transmit
and receive antennas is less obvious, since the distribution
of Λ depends on the number of antennas. Notice that the
expression (12) is not symmetric in nt and nr. This is shown
in Figure 2, which plots the normalized dispersion V/C2

as a function of nt and nr. The blue curve shows that as
we increase the number of transmit antennas above 10 (the
number of receive antennas), the normalized dispersion is
approximately constant. Note that this is a statement about
the dispersion, different from the results that capacity scales
linearly with the minimum number of antennas.
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