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Abstract—This paper addresses the question of how to add
redundancy to a collection of physical objects so that the
overall system is more robust to failures. Physical redundancy
can (generally) only be achieved by employing copy/substitute
procedures. This is fundamentally different from information
redundancy, where a single parity check simultaneously protects
a large number of data bits against a single erasure. We
propose a bipartite graph model of designing defect-tolerant
systems where defective objects are repaired by reconnecting
them to strategically placed redundant objects. The fundamental
limits of this model are characterized under various asymptotic
settings and both asymptotic and finite-size optimal systems are
constructed.

Mathematically, we say that a £ by m bipartite graph corrects
t defects over alphabet of size ¢ if for every g-coloring of % left
vertices there exists a coloring of m right vertices such that every
left vertex is connected to at least ¢ same-colored right vertices.
We study the tradeoff between redundancy m/k and the total
number of edges in the graph divided by k. The question is trivial
when ¢ > k: the optimal solution is a simple ¢-fold replication.
However, when ¢ < k£ some non-trivial savings are possible by
leveraging the inherent repetition of colors.

Index Terms—defect-tolerant circuits, bipartite graphs, com-
binatorics, worst-case

I. INTRODUCTION

Classical Shannon theory established principles of adding
redundancy to data for combatting noise and, dually, of
removing redundancy from data for more efficient storage.
The central object of the classical theory is information, which
unlike physical objects, can be freely copied and combined.
In fact, the marvel of error-correcting codes is principally
based on the counter-intuitive property that multiple unrelated
information bits X7, ..., X} can be simultaneously protected
by adding “parity-checks” such as

Y=X;+ --+X; mod2. (1)
In this example, the added parity-check Y allows the recovery
of the original message even if vector

(leXQa e ana Y)
undergoes an erasure of an arbitrary element.

Physical objects (e.g. transistors in a chip) may also be
subject to erasures (failures) and thus it is natural to ask about
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ways of insuring the system against probable failure events.
Necessarily, any such solution would entail addition of spare
(redundant) elements. Note, however, that for physical objects
operations such as (1) are meaningless: generally the only
operations that apply to physical objects are copy/substitute.
It may, therefore, seem that nothing better than a simple repli-
cation can guard against failures. This paper shows otherwise.
Indeed, there exist non-trivial ways to add redundancy as long
as the objects’ diversity does not exceed their number. That
is, if the number of types of objects is smaller than the total
number of them.

Specifically, we study the following problem formulation:
Given k objects (“functional nodes™), connect each one of
them to some of the available m spares (“redundant nodes’)
in such a way that in the event that ¢ > 1 of the objects fail
(originals or spares) the overall system can be made to function
after a repair step. Such a repair step consists of replacing
each failed functional node with one of the spares that it is
connected to. The key restrictions are 1) the functional nodes
are one of ¢ types 2) the spares have to be programmed to one
of the q types before the failure events are known and 3) the
same connections need to repair all possible choices of types
for the k£ functional nodes. We are interested in minimizing
the redundancy m/k and the number of connections to spare
nodes.

Our motivation for studying this model comes from the
following applications:

o Objects are digital gates of one of ¢ types on a sili-
con chip. Imperfect manufacturing process causes cer-
tain gates to fail. As part of post-manufacture testing a
configurable interconnect fabric is programmed to route
around defective gates. Details are discussed further in
Section II-B.

« Objects are elements in a programmable logic device (e.g.
look-up tables (LUTs) in an FPGA). As part of periodical
firmware update, manufacturer assigns values of LUTs
(both functional and redundant) without knowledge of
locations of device-specific failures. Then, a built-in algo-
rithm for each failed LUT T reconnects it to an adjacent
spare LUT R, with the requirement that R and 7' be
equivalent. The key here is for the local algorithm to be
computationally non-demanding.

It is not hard to come up with other potential applications in
warehouse planning, operations research, public safety etc.

In short, we are looking for a k x m bipartite graph with
the property that for any g-coloring of the left nodes there is
a g-coloring of the right nodes such that each of the k nodes
is connected to at least ¢ nodes of its color. The goal is to
trade off redundancy m/k vs. number of edges. For ¢ = 2
our problem is equivalent to sparsity vs. edge-size tradeoff for
(t,t)-colorable hypergraphs, cf. [1]. It may be instructive to
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look at simple non-trivial graphs in Figures 3-4. (In all figures,
circles are original or functional nodes and squares are spare
or redundant nodes.)

To summarize our main findings, if the number of types
q > k then no strategy is better than straightforward ¢-fold
replication. However, as long as ¢ < k there exists designs
that provide savings compared to repetition, as we will see
in Section III. Consequently, we characterize the fundamental
tradeoff between redundancy m/k and the number of edges
(connections) in the following cases: 1) ¢, ¢ fixed and k, m —
o0; 2) q fixed and k,m,t — o0; 3) ¢, k fixed and m,t —
o0. Perhaps surprisingly, in this (combinatorial) problem it is
possible to obtain exact answers for asymptotics.

II. PROBLEM SETUP AND MAIN RESULTS

A. Defect-tolerance model

Definition 1. Fix finite alphabet X where |X| = q. A bipartite
graph with k functional (left) nodes and m redundant (right)
nodes is called a t-error correcting design if for any labeling
of k functional nodes by elements of X there exists a labeling
of m redundant nodes by elements of X such that every
Sfunctional node labeled x € X has at least t neighbors labeled
x. We will call such a graph a (k,m,t, E),-design, with E
denoting the number of edges.

This paper is devoted to the fundamental tradeoff between

the two basic parameters of ¢-error correcting designs:
m

o redundancy of a (k,m,t, F),-design is p = 7
o the wiring complexity (or average degree) of a
(k,m,t, E)q-design is ¢ = £
Definition 2. For a fixed q and t > 1 we define the region R,
as the closure of the set of all achievable pairs of (g, p):
E
Ri £ closure { (k’ 7:) : 3(k, m, t,E)q—design} 2)
Proposition 1. (Properties of R)
1) (g,p) € Ry iff there exists a sequence of (k,m,t,E),-
designs with % =& = pask,m— oo
2) if (,p) E Ry and ' > e,p' > p then (¢',p) € Ry,
3) R are closed convex subsets of RZ;
4) We have

. 1 1 A
lim sup —R; = closure U -R: p =
t—oo 1 1 b

R, )

5) Limiting region R is also a closed convex subset of Ri
characterized as

N E m .
R = closure { (kt’ kt) :3(k,m,t, E) — deszgn}
“)

B. Reconfigurable defect-tolerant circuits

To interpret the relation between Definition 1 and defect-
tolerance we consider one particular application, namely re-
configurable circuits. Consider a chip design process, in which
the chip is composed of many similar cells (e.g. standard-
cell designs of ASICs). Cell structure is dictated by the chip
manufacturer (fab). Each cell has k input/output buses and %
placeholders (nodes) that can be filled in with logic realizing

one of g functions. Now because of manufacturing defects, not
all £ functional elements will operate correctly. For this reason,
each cell also contains m placeholders for redundant elements.
The designer then selects what type of logic to instantiate into
these redundant elements. Once the chip is manufactured and
placed on the testbed, the testing equipment goes over each
cell and checks which functional elements came out defective.
The programmable switches then can be used to reconnect
input/output buses from the defective functional elements to
one of the redundant nodes containing the same logic.

With respect to this application, our goal is to understand
what cell topologies the fab should try to implement in order
to attain optimal tradeoff between the number of redundant
elements, provisional wires (buses) and defect-tolerance. The
exact relation to the previous definition of the t-error correct-
ing design is as follows: the & functional nodes in our model
represents the placeholders intended for the components which
are necessary for the chip to operate and the redundant nodes
represents the placeholders for the redundant components. The
labeling we apply to the nodes is the choice of components
for each space. The edges correspond to the provisional wires.

Proposition 2. An interconnect for a reconfigurable circuit
can tolerate any t manufacturing defects for any choice of
functional nodes if and only if the interconnect is a t-error
correcting design.

Note that our performance metrics, p and €, are meaningful
for this circuit interpretation: they correspond to the extra
silicon area and wiring (and fan-out) required for defect-
tolerance. There are certainly other metrics (such as geometric
constraints) which are interesting for circuit applications, but
we leave that to future work.

One may argue that the interconnect should be allowed to
depend on the labeling of functional nodes. Indeed, the latter
will be known before the final topology for the chip is made.
In contrast, our procedure insists on laying out provisional
wires before the specific choice of elements in the placeholders
is known. The explanation is that our work attempts to
find a universal design, which would be independent of the
chosen functional node labels and thus could serve as the new
standard cell for all defect-tolerant circuits. Nevertheless, we
will discuss variations of this procedure in Section VI.

Relation to prior work: The subject of designing digital
electronics robust to errors has been traditionally approached
with the goal of combatting dynamic noise. This is epitomized
in the large body of work started by von Neumann [2].
Although significant progress has been made in understanding
fundamental limits in von Neumann’s model, the practical
applications are limited due to a prohibitively high level of
redundancy required [3].

Instead, we are interested in fighting static manufacturing
failures which has the advantage of being able to test which
parts of the circuit failed and to configure out (or “wire
around”) the defective parts. This side information enables
significant savings in redundancy [4] and it is rather popular in
practice: multi-core CPUs [5], analog-to-digital converters [6],
sense-amplifiers [7], parallel computing [8], [9], etc.

In summary, fighting dynamic noise (von Neumann’s
model) has good theoretical understanding, but requires huge
redundancy. Static defects are practically handled via recon-
figurability. This paper is an attempt to provide theoretical

3029



2016 IEEE International Symposium on Information Theory

foundations for the latter method.

C. Overview of two main results

The two main results that characterize the redundancy-
wiring complexity tradeoff are for the small ¢ case (Theorems
3 and 4) and the asymptotic ¢ case (Theorem 5).

Theorem 3. When q = 2, for t =1 and t = 2, we have

Ri={(e,p):e >t and e > 2t — p} (3)
Theorem 4. For ¢ = 3 and t = 1 we have
Ri={(e,p):e>1and e >3 —2p} (6)

Theorem 5. Fix q. The region R, defined in (3) is the closure

of the set of points (€, p), parameterized by the distribution Ps

with a finite support on Z, and
E[S

- - 1
E = — = 5
F(Ps) "~ F(Py)
A 1
F(Ps) =minmaxmin ——=E |L;I{Y = 8
( S) Px Py@jé[q] PX(]) [ J { J}] ( )
where E [-] is computed over random variables S € 7., X €

(7

lql,L = (L1,...,Lq) € Z1,Y € [q] with joint distribution
A
Ps.py(s,L,y) = Ps(s)Prs(L]s) Py (ylf) - )
where
N s g ,
P g Px(j)" . 1
wst 2, 0, I et (10

Theorem 5 parametrically defines a region of achievable
designs, whereas Theorem 3 and Theorem 4 explicitly define
the respective achieveable regions. (Note that evaluation of
the bound (7) presents non-trivial technical difficulties.) The
resulting achievable regions for ¢ = 2 are plotted in Figure 1.
This plot, for instance, shows that at redundancy level 10%
we can:

o correct 1 error if each functional node is connected on

average to about 1.9 redundant nodes

e correct 2 errors if each functional node is connected on

average to about 1.9 x 2 redundant nodes

o correct 10? errors if each functional node is connected

on average to about 1.7 x 103 redundant nodes

The optimal designs for Theorem 5 are what we call subset
designs, which are discussed in Section III-B. The proofs of
Theorems 3 and 5 are given in Sections IV and V respectively.
See Section IV of [10] for Theorem 4.

D. Implications and extensions of results

The result for R; and Ro demonstrates that for correcting
small numbers of defects the best solution in the limit of a
large number of functional nodes is a linear combination of
two basic designs, the repetition block and the complete design
(see Figure 2), and designs with finite k£ can do no better.

We note that while we do not know R; for ¢ > 2,
according to (4) all regions %Rt will lie between R, and
R, approaching the latter as ¢ — oo, making Theorem 5
the fundamental limit for the tradeoff between redundancy
and wire complexity. It is perhaps surprising that unlike most
known asymptotic combinatorial problems, this one admits a
relatively simple solution. Theorem 5 also holds for arbitrary
alphabet, whereas computing regions R; for large g is not
covered by Theorem 3 or 4.

We also study asymptotics in the regime of fixed k& and
m,t — oo (see [10] Section V).
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Fig. 1. Achievable regions for redundancy and wiring complexity tradeoff
when ¢ = 2. Regions R and %Rg are shown in darker gray. Region Roo
includes lighter and darker gray areas. All other regions %Rt lie between R 1

o
<3

(a) Repetition block (b) Complete design

Fig. 2. Two elementary designs.

III. EXAMPLES OF GOOD DESIGNS
The two most basic designs are the following:

1) Repetition blocks: Each functional node has t private
redundant nodes. (See Figure 2(a).) Corrects ¢ errors.

2) Complete designs: Fully connected bipartite graph with
gt redundant nodes. (See Figure 2(b).) Corrects ¢ errors
(label redundant nodes with ¢ copies of each value in X).

A. Smallest non-trivial designs

If k < ¢ then all functional nodes can have different values
and thus one is forced to use the repetition block to correct ¢
errors. For k = q + 1 the question becomes more interesting.
First, notice that the minimal possible m equals q¢t, like in the
complete design. However, some of the edges can be removed.
Optimal designs with k = ¢+ 1, m = ¢ and ¢ = 1 are shown
in Figure 3. Optimal designs with & = ¢ + 1, m = 2q and
t = 2 are shown in Figure 4. While these designs are optimal
for a given value of k, we can find other designs with larger
values of k& which are better in terms of the p-¢ tradeoff.

(@ q=2 c)g=4

Fig. 3. Smallest non-trivial 1-error correcting designs.

b)g=3
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(a) g =2 (b)) g=3 (c)g=4

Fig. 4. Smallest non-trivial 2-error correcting designs.

B. Subset designs

S(k,s) is a bipartite graph with k functional nodes and
m = (};) redundant nodes, each connected to a distinct s-
subset of {1,...,k}. In general, we allow subset designs to
have multiple and possibly different subset sizes. We need the
following idea to make this precise.

Proposition 6 (Merging). Consider (k,mj,t;, E})q-designs
G ;. The merging of G;, denoted G = \/j G is a graph formed
by taking disjoint copies of G; and identifying functional
nodes. G is a (k,>>;mj, > t;, > ; Ej)q-design.

Definition 3 (Subset design). Given k and positive integers
$1,82,...,8, € [k], S(k,s1)V S(k,s2)V---V S(k,s,) is a
subset design with k functional nodes and m = Z;Zl (Sk)
redundant nodes. ’

For example, the Hamming block, Figure 4(a), is S(3,2) V
S(3,3), the repetition block is S(k,1)V---V .S(k, 1) (¢ times)
and the complete design is S(k, k) V ---V S(k, k) (gt times).

Subset designs are the unique designs where there exists
a group of bipartite-graph automorphisms that acts as the full
symmetric group S on functional nodes. The next proposition
gives an estimate on the performance of subset designs.
(See [10] Section V for exact statement.)

Proposition 7. (Informal) Fix X, g = |X| and k € Z. If G is
a subset graph with proportion of degree s redundant nodes
given by Pg, k functional nodes, and m redundant nodes, then
G has E = mIE[S] edges and G can correct

~ %F(Ps) (11)

errors.

Proof Sketch. To show t ~ % F(Ps), fix any labeling w" €
X% of the k functional nodes of G. Let ™ to be the optimal
labeling of the redundant nodes. Let

o Px denote the empirical distribution of the frequency of
each label in w*

o { = (lq,---,44) be the rype of each redundant node v,
where £; is the number of functional nodes with label j
which is a neighbor of redundant node v

o Py|1(jl£) be the proportion (empirical distribution) of
redundant nodes of type £ which are labeled j in labeling
7,.m

The distribution of £ for degree s redundant nodes is

approximately given by (10). For each label j, we can count
the average number of redundant node neighbors with label j a
functional node with label j has. This quantity is given by (8)
without the maximums and minimums, which we get after
taking the worse case label 7 and Px with the best possible
Py (j]€). We can show there is a way for 7™ to obtain this
average for each functional node by random coding.

IV. BOUNDS FOR FINITE ¢
A. Elementary achievability
Proposition 8. The following region is achievable for any
t>1and q > 2:
(K) & .
Ry ={lep)iezat+(1—qpe=t,p=0} (12)

Proof. Note that corner points (t,t) and (qt,0) are achieved

by the repetition block and the complete design, respectively.

By Proposition 1 the region R; is convex and hence must
.o (K

contain R, . O

By merging the repetition block and complete design, we
can get designs in RgK) with each functional node having the

same degree.
B. Covering converse

Theorem 9. Fix X, q = |X| and suppose (g, p) € Ry. Then
there exists Ty, Ti41,...,Tq > 0 satisfying

Y ogmi<e, Y omi=1 (13)
j=t j=t
qt
> milog,li/t] = 14 (t—1)m —p. (14)
j=t+1

Proof. Notice that every functional node clearly should have
degree at least ¢. Let us define 75,5 =¢,t41,...,qt — 1 to be
the fraction of functional nodes of degree j and 74 to be the
fraction with degree qt or larger. This satisfies (13). We only
need to show (14).

For each labeling ™ € X™ of redundant nodes let G (r™)
be the set of functional node labelings for which conditions
of Definition 1 are satisfied (we say that 7™ covers G;(r"™) of
the labelings). It is clear that the design is t-error correcting
if and only if

5)

U Qt(rm)‘ = X" =¢".
rmexm

Two functional nodes of degree ¢ should have disjoint neigh-
borhoods (otherwise labeling them different values clearly
violates Definition 1). Thus G;(r™) is empty unless each such
neighborhood has a constant label. This shows that for the
tkm, redundant nodes we are restricted to only q’”f choices,
while the rest contribute g™~ **™ more choices.

Given any of the ¢™ (*~Dk7 choices of 7 we can
estimate |G;(r™)| from above by assuming that each functional
node of degree d can take any of the |d/t| values in X’ while
still satisfying the ¢-wise coverage condition of Definition 1.
This yields

qt
1G(r™) < [T Li/e)* (16)
j=t

and thus applying the union bound to (15), we get (14). [J

Proof of Theorem 3. Achievability follows from Proposi-
tion 8. The converse is given by evaluating the optimal ¢ for
each p with the constraints given in (13)-(14) fort =1,2. O

Remark 1. The bound given by Theorem 9 is the best bound
of R known to us for values of € near qt.
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V. FUNDAMENTAL LIMIT FOR t — 00

A. Converse and proof outline

Proposition 10 (Symmetrization Converse). If there exists a
(k,m,t, E),-design then there exists a (k,m-k!,t-k!, E-k!),-
design which is a subset design (Definition 3).

Proof. Let G be a (k, m,t, E),-design. Choose an ordering of
the functional nodes in G. For each o € S}, (the full symmetric
group on k elements), let G, be isomorphic to the design G,
with the order of its functional nodes transformed by o. Then
merge G, for all o € S identifying functional nodes with
the same order, so that the result is
Grerm = \/ Go.
o€Sk
GpgruM is constructed to be permutation invariant (and thus a
subset design) and by Proposition 6 Gpgrwm is a (k,m - k!, t-
kL E - k!),-design. O

Proof Sketch. Proof of Theorem 5

Achievability: Given by Proposition 7. Converse: For any
design G which is a (k,m, t, E),-design, there exists a subset
design G’ which is a (k,m - kl,t - kI, E - k!),-design by
Proposition 10. If Pg are the proportions of degree s redundant
nodes in G’, then by Proposition 7, we get t-k! < %’“!F(PS),
bounding the performance of G. [

A7)

VI1. DISCUSSION
A. Comparison to other models for defect-tolerance

This paper studies a defect-tolerance model where steps
proceed as follows:

a. bipartite graph is designed;

b. functional nodes get g-ary labeling;

c. redundant nodes are assigned g-ary labels (so that each

functional node has ¢ neighbors with matching label).

There are two natural variations where sequence of steps are
interchanged:

o adaptive graph: b.—a.—-c.

o non-adaptive redundancy: a.—c.—b.
In the first case, the graph is a function of the g-ary labels,
while in the second case the redundant nodes are not allowed
to depend on the labeling of functional nodes. The setting
considered in this paper (a.—b.—c.) is an intermediate case.

The fundamental redundancy-wiring complexity tradeoff for
these cases is defined similarly to (2). Both tradeoffs are rather
easy to determine for any ¢ > 1:

o adaptive graph: Ry = {(g,p) :e > t,p > 0}.

o non-adaptive redundancy: Ry = {(e,p) : ¢ > qt,p > 0}.

These observations are summarized in Figure 5.

B. Stochastic defects

This work considers correcting arbitrary (worst-case) defect
patterns. One of the conclusions is that to correct fraction «
of defects (i.e. t = ak) on k functional nodes, the number
of edges should grow as k2. Instead we can relaxed the re-
quirement to correcting i.i.d. Bernoulli(«) defects. Each defect
pattern will occur with some probability and we only want
all defects in the design to be corrected with high probability
(computed over distribution of defects and functional labels). It
turns out that in such a probabilistic model, correcting fraction-
a of defects is possible with designs possessing O(klog k)
edges and O(k) redundant nodes. See Section 4.4 in [11].
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Fig. 5. Comparison of redundancy-wiring complexity tradeoffs for different
levels of adaptivity when ¢ = 2.

C. Open Problems

Regions which are still to be determined include:

e Ryfort>3and g =2
e Rifort>1and ¢ >3

For ¢ = 2, it is also unknown what the smallest value of ¢ is for
which R; does not equal the region defined in Equation (5).
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