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Abstract—It is shown that under suitable regularity
conditions, differential entropy is O(

√
n)-Lipschitz as a

function of probability distributions on Rn with respect
to the quadratic Wasserstein distance. Under similar con-
ditions, (discrete) Shannon entropy is shown to be O(n)-
Lipschitz in distributions over the product space with
respect to Ornstein’s d̄-distance (Wasserstein distance
corresponding to the Hamming distance). These results
together with Talagrand’s and Marton’s transportation-
information inequalities allow one to replace the un-
known multi-user interference with its i.i.d. approxima-
tions. As an application, a new outer bound for the two-
user Gaussian interference channel is proved, which, in
particular, settles the “missing corner point” problem of
Costa (1985).

I. INTRODUCTION

Arguably, a key novel effect in multi-user informa-
tion theory is multi-user interference, where one user’s
codebook creates complicated non-i.i.d. disturbance
for other users. A convenient workaround would be to
have rigorous approximation results allowing replacing
a complicated non-i.i.d. interference with a simpler
i.i.d. one. Such approximation is the key contribution
of this paper.

As a concrete example, we consider the so-called
“missing corner point” problem in the capacity region
of the two-user Gaussian interference channels (GIC)
[1], which has attracted renewed attention recently
as witnessed by [2]–[5] and Sason’s comprehensive
treatment in [6].

Mathematically, the key question for settling “miss-
ing corner point” is the following: given independent
n-dimensional random vectors X1, X2, G2, Z with the
latter two being Gaussian, is it true that

D(PX2+Z‖PG2+Z) = o(n) (1)
?

=⇒ |h(X1 +X2 + Z)− h(X1 +G2 + Z)| = o(n).

This paper proves that indeed under suitable regu-
larity conditions, the difference in entropy (in both
continuous and discrete cases) can be bounded by
the Wasserstein distance, a notion originating from
optimal transportation theory which turns out to be the
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main tool of this paper. The Wasserstein distance, in
turn, can be bounded by Kullback-Leibler divergence
by virtue of Marton’s and Talagrand’s information-
transportation inequalities [7], [8].

We start with the definition of the Wasserstein
distance on the Euclidean space. Given probability
measures P,Q on Rn, define their p-Wasserstein dis-
tance (p ≥ 1) as

Wp(P,Q) , inf(E[‖X − Y ‖p])1/p, (2)

where ‖ · ‖ denotes the Euclidean distance and the
infimum is taken over all couplings of P and Q, i.e.,
joint distributions PXY whose marginals satisfy PX =
P and PY = Q. The following dual representation of
the W1 distance is useful:

W1(P,Q) = sup
Lip(f)≤1

∫
fdP −

∫
fdQ. (3)

It is easy to see that in order to control |h(X) −
h(X̃)| by means of W2(PX , PX̃), one necessarily
needs to assume some regularity properties of PX and
PX̃ ; otherwise, choosing one to be a fine quantization
of the other creates an infinite gap between differential
entropies, while keeping the W2-distance arbitrarily
small. Our main result in Section II shows that under
moment constraints and certain conditions on the den-
sities (which are in particular satisfied by convolutions
with Gaussians), various information measures such as
differential entropy and mutual information on Rn are
in fact

√
n-Lipschitz continuous with respect to the

W2-distance. These results have natural counterparts
in the discrete case, where the Euclidean distance is
replaced by the Hamming distance (Section IV).

Furthermore, transportation-information inequali-
ties, such as those due to Marton [7] and Talagrand
[8], allow us to bound the Wasserstein distance by the
KL divergence. For example, Talagrand’s inequality
states that if Q = N (0,Σ), then

W 2
2 (P,Q) ≤ 2σmax(Σ)

log e
D(P‖Q) , (4)

where σmax(Σ) denotes the maximal singular value of
the covariance matrix Σ. Invoking (4) in conjunction
with the Wasserstein continuity of the differential
entropy, we establish (1) and prove a new outer bound
for the capacity region of the two-user GIC, finally
settling the missing corner point in [1]. See Section III
for details.
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Notations: Throughout this paper log is with
respect to an arbitrary base, which also specifies the
units of the differential entropy h(·), Shannon en-
tropy H(·), mutual information I(·; ·), and divergence
D(·‖·). The natural logarithm is denoted by ln. The
norm of x ∈ Rn is denoted by ‖x‖ , (

∑n
j=1 x

2
j )1/2.

For random variables X and Y , let X ⊥⊥ Y denote
their independence.

Proofs: A full version of this work containing all
proofs and extensions is available in [9].

II. WASSERSTEIN-CONTINUITY OF ENTROPY

Proposition 1. Let B satisfy ‖B‖ ≤
√
nP (a.s.), G ∼

N (0, σ2
GIn) be independent of B and V = B + G.

For any U , we have

h(U)− h(V ) ≤ log e

2σ2
G

(
E[‖U‖2]− E[‖V ‖2]

)
+

log e

σ2
G

√
nPW1(PU , PV ) . (5)

Proof. First notice that the density pV of V satisfies

∇ log pV (v) =
log e

σ2
G

(B̂(v)− v) , (6)

where B̂(v) , E[B|V = v] = E[BpG(v−B)]
E[pG(v−B)] satisfies

‖B̂(v)‖ ≤
√
nP , since ‖B‖ ≤

√
nP almost surely

(as in [10, Proof of Theorem 8]). Denoting κ the
appropriate constant and t̄ , 1− t, we get

log
pV (v)

pV (u)
=

=

∫ 1

0

dt 〈∇ log pV (tv + t̄u), v − u〉 (7)

= κ

∫ 1

0

dt〈B̂(tv + t̄u), v − u〉 − κ

2
(‖v‖2 − ‖u‖2)

(8)

≤ κ
√
nP‖v − u‖ − κ

2
(‖v‖2 − ‖u‖2) . (9)

Taking the expectation of the last equation under the
W1-optimal coupling, we obtain (5) after noticing

h(U)− h(V ) +D(PU‖PV ) = E
[
log

pV (V )

pV (U)

]
.

Corollary 2. Let A,B,G,Z be mutually independent,
with G ∼ N (0, σ2

GIn), Z ∼ N (0, σ2
ZIn), and B

satisfying ‖B‖ ≤
√
nP (a.s.). Furthermore, assume

E[A] = E[B] = 0 and E[‖A‖2] = E[‖G‖2]. Then, for
every c ∈ [0, 1], we have

h(B +A+ Z)− h(B +G+ Z)

≤
√

2nP (σ2
G + c2σ2

Z) log e

σ2
G + σ2

Z

√
D(PA+cZ‖PG+cZ) .

Proof. First, notice that by definition the Wasserstein
distance is non-increasing under convolutions, i.e.,

W2(P1 ∗ Q,P2 ∗ Q) ≤ W2(P1, P2). Since c ≤ 1 and
the Gaussian distribution is stable, we have

W2(PB+A+Z , PB+G+Z) ≤W2(PA+cZ , PG+cZ),

and via Talagrand’s inequality (4) for some κ > 0

W2(PA+cZ , PG+cZ) ≤
√
κD(PA+cZ‖PG+cZ) .

From here we apply Proposition 1 with G replaced by
G+ Z.

III. GAUSSIAN INTERFERENCE CHANNELS

A. New outer bound

Consider the two-user Gaussian interference channel
(GIC)

Y1 = X1 + bX2 + Z1

Y2 = aX1 +X2 + Z2 ,
(10)

with a, b ≥ 0, Zi ∼ N (0, In), and a power constraint
on the n-letter codebooks:

‖X1‖ ≤
√
nP1, ‖X2‖ ≤

√
nP2 a.s. (11)

Denote by R(a, b) the capacity region of the GIC in
(10). As an application of the results developed in
Section II, we prove an outer bound for the capacity
region.

Theorem 3. Let 0 < a ≤ 1, C2 = 1
2 log(1 + P2),

and C̃2 = 1
2 log(1 + P2

1+a2P1
). Then, for any b ≥ 0

and C̃2 ≤ R2 ≤ C2, any rate pair (R1, R2) ∈ R(a, b)
satisfies

R1 ≤
1

2
log min

{
A− 1

a2
+ 1, Rc

}
, (12)

where

Rc = A
(1 + P2)(1− (1− a2) exp(−2δ))− a2

P2
,

(13)

A = (P1 + a−2(1 + P2)) exp(−2R2), (14)

δ = C2 −R2 + a

√
2P1(C2 −R2) log e

1 + P2
. (15)

Consequently, R2 ≥ C2 − ε implies that R1 ≤
1
2 log(1 + a2P1

1+P2
)− ε′, where ε′ = O(

√
ε) as ε→ 0.

Remark 1. The first part of the bound (12) coincides
with Sato’s outer bound [11] and [12, Theorem 2]
by Kramer, with the latter having been obtained by
reducing the Z-interference channel to the degraded
broadcast channel; the second part of (12) is new and it
settles the missing corner point of the capacity region.
The location of this corner point was first proposed
by Costa [13], but with a flawed proof, as pointed
out in [14]. The high-level difference between our
proof and that of [13] is the replacement of Pinsker’s
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inequality by Talagrand’s and the use of a coupling
argument.1

Proof. Without loss of generality, assume that all
random variables have zero mean. First of all, setting
b = 0 (which is equivalent to granting the first user
access to X2) will not shrink the capacity region of
the interference channel in (10). Therefore, to prove
the desired outer bound, it suffices to focus on the
following Z-interference channel henceforth:

Y1 = X1 + Z1

Y2 = aX1 +X2 + Z2 .
(16)

Let (X1, X2) be n-dimensional random variables cor-
responding to the encoder output of the first and
second user, which are uniformly distributed on the
respective codebook. For i = 1, 2 we define Ri ,
1
nI(Xi;Yi). By Fano’s inequality there is no difference
asymptotically between this definition of rate and the
operational one. Define the entropy-power function of
the X1-codebook:

N1(t) , exp

{
2

n
h(X1 +

√
tZ)

}
, Z ∼ N (0, In) .

We know the following general properties of N1(t):
• N1 is monotonically increasing.
• N1(0) = 0 (since X1 is uniform over the code-

book).
• N ′1(t) ≥ 2πe (since N1(t + δ) ≥ N1(t) + 2πeδ

by entropy power inequality).
• N1(t) is concave (Costa’s entropy power inequal-

ity [1]).
• N1(t) ≤ 2πe(P1 + t) (Gaussian distribution

maximizes differential entropy).
We can then express R1 in terms of the entropy power
function as

R1 =
1

2
log

N1(1)

2πe
. (17)

It remains to upper bound N1(1). We only show the
second part of the bound. Note that

nR2 = h(X2 + aX1 + Z)− h(aX1 + Z) ≤
n

2
log 2πe(1 + P2 + a2P1)− h(aX1 + Z) , (18)

and therefore

N1

(
1

a2

)
≤ 2πeA . (19)

Let G2 ∼ N (0, P2In). Using E[‖X2‖2] ≤ nP2 and
X1 ⊥⊥ X2, we obtain

nR2 = I(X2;Y2) ≤ I(X2;Y2|X1) = I(X2;X2 + Z2)

≤nC2 −D(PX2+Z2‖PG2+Z2),

1After circulating our initial draft, we were informed that the
authors of [3] posted an updated manuscript [15] that also proves
Costa’s conjecture. Their method is based on the analysis of the
minimum mean-square error (MMSE) properties of good channel
codes, but we were not able to verify all the details. A further update
is in [16].
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Fig. 1. Illustration of the “missing corner point”: The bound
in Theorem 3 establishes the location of the upper corner point,
as conjectured by Costa [13]. The bottom corner point has been
established by Sato [11].

that is,

D(PX2+Z2
‖PG2+Z2

) ≤ n(C2 −R2). (20)

Furthermore,

nR2 = h(aX1 +X2 + Z2)− h(aX1 +G2 + Z2)
(21)

+ h(aX1 +G2 + Z2)− h(aX1 + Z2) . (22)

Note that the second term (22) is precisely
n
2 log

N1(
1
a2 )

N1(
1+P2
a2 )

. The first term (21) can be bounded

by applying Corollary 2 and (20) with B = aX1,
A = X2, G = G2, and c = 1 to get an estimate

n

√
2a2P1(C2 −R2) log e

1 + P2
. (23)

Combining (21)–(23), yields

N1

(
1

a2

)
≤ exp(2δ)

1 + P2
N1

(
1 + P2

a2

)
. (24)

where δ is defined in (15). From the concavity of N1(t)
and (24)

N1(1) ≤ γN1

(
1

a2

)
− (γ − 1)N1

(
1 + P2

a2

)
(25)

≤ N1

(
1

a2

)(
γ − (γ − 1)

1 + P2

exp(2δ)

)
, (26)

where γ = 1 + 1−a2

P2
> 1. In view of (17), by upper

bounding N1

(
1/a2

)
in (26) via (19), we get after

some simplifications the second part of (12).

The outer bound in (12) is evaluated in Fig. 1 for the
case of b = 0 (Z-interference), where we also plot (just
for reference) the simple Han-Kobayashi inner bound
for the Z-GIC in (16), attained by choosing X1 =
U + V with U ⊥⊥ V jointly Gaussian.
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B. Corner points of the capacity region

The two corner points of the capacity region are
defined as follows:

C ′1(a, b) , max{R1 : (R1, C2) ∈ R(a, b)} , (27)

C ′2(a, b) , max{R2 : (C1, R2) ∈ R(a, b)} , (28)

where Ci = 1
2 log(1 +Pi). As a corollary, Theorem 3

completes the picture of the corner points for the
capacity region of GIC for all values of a, b ∈ R+.
We refer to [9] for complete details.

For a > 1 and b > 1 (strong interference) the
capacity region is well known [17], [18], and so we
assume a ≤ 1 henceforth. For the top corner, we have
that C ′1(a, b) equals

1
2 log

(
1 + a2P1

1+P2

)
, 0 < a ≤ 1, b ≥ 0

C1, a = 0, b = 0

C1, a = 0, b ≥
√

1 + P1

1
2 log

(
1 + P1+(b2−1)P2

1+P2

)
, a = 0, 1 < b <

√
1 + P1

1
2 log

(
1 + P1

1+b2P2

)
, a = 0, 0 < b ≤ 1.

(29)
Note that, for any b ≥ 0, a 7→ C ′1(a, b) is discontinu-
ous as a ↓ 0. The bottom corner point C ′2(a, b) equals

1
2 log

(
1 + P2

1+a2P1

)
, b = 0

1
2 log

(
1 + P2

1+a2P1

)
, b ≥

√
1+P1

1+a2P1

1
2 log

(
1 + b2P2

1+P1

)
, 1 < b <

√
1+P1

1+a2P1

1
2 log

(
1 + b2P2

1+P1

)
, 0 < b ≤ 1 ,

(30)

which is discontinuous as b ↓ 0 for any fixed a ∈ [0, 1].

IV. DISCRETE VERSION

Fix a finite alphabet X and an integer n. On the
product space Xn we define the Hamming distance

dH(x, y) =
n∑

j=1

1{xj 6=yj} ,

and consider the corresponding Wasserstein distance
W1. In fact, 1

nW1(P,Q) is known as Ornstein’s d̄-
distance [7], [19], namely,

d̄(P,Q) =
1

n
inf E[dH(X,Y )], (31)

where the infimum is taken over all couplings PXY of
P and Q. We next formulate the analog of Proposi-
tion 1 for the discrete setting.

Proposition 4. Let PY |X,A be a two-input
blocklength-n memoryless channel, namely,
PY |X,A(y|x, a) =

∏n
j=1W (yj |xj , aj), where W (·|·)

is a stochastic matrix and y ∈ Yn, x ∈ Xn, a ∈ An.
Let X,A, Ã be independent n-dimensional discrete

random vectors. Let Y and Ỹ be the outputs generated
by (X,A) and (X, Ã), respectively. Then

|H(Y )−H(Ỹ )| ≤ cnd̄(PY , PỸ ) (32)
D(PY ‖PỸ ) +D(PỸ ‖PY ) ≤ 2cnd̄(PY , PỸ ) (33)

|I(X;Y )− I(X; Ỹ )| ≤ 2cnE[d̄(PY |X , PỸ |X)]

(34)

where

c , max
x,a,y,y′

log
W (y|x, a)

W (y′|x, a)
, (35)

E[d̄(PY |X , PỸ |X)] ,
∑

x∈Xn

PX(x)d̄(PY |X=x, PỸ |X=x).

(36)

Proof. The function y 7→ logPY (y) is c-Lipschitz
with respect to the Hamming distance (cf. [10, Eqn.
(58)]). From Lipschitz continuity we conclude the
existence of a coupling PY,Ỹ , such that

E
[∣∣∣∣log

PY (Y )

PY (Ỹ )

∣∣∣∣] ≤ cnd̄(PY , PỸ ) .

The rest of the proof of (32) and (33) is straightfor-
ward [9]. To get the inequality for mutual informations,
apply (32) to estimate |H(Y |X = x)−H(Ỹ |X = x)|
in terms of d̄(PY |X=x, PỸ |X=x) and average it over
X .

We next show how to determine corner points of
capacity regions of discrete memoryless interference
channels (DMIC). We will need two extra results. First
is Marton’s transportation inequality that will help
convert Proposition 4 to bounds in terms of KL diver-
gence as follows. When Q is a product distribution [7,
Lemma 1] states:

d̄(P,Q) ≤

√
D(P‖Q)

2n log e
. (37)

Second is an auxiliary tensorization result which ap-
pears to be a standard exercise for degraded channels.2

Proposition 5. Let Xn → An → Bn, where the
memoryless channels PA|X and PB|A of blocklength n
satisfy PB|A=a 6⊥ PB|A=a′ , ∀a 6= a′, and PA|X=x 6=
PA|X=x′ , ∀x 6= x′. Then, there exists a continuous
function g : R+ → R+ satisfying g(0) = 0, such that,
for all n, I(Xn;An) ≤ I(Xn;Bn) + εn implies

H(Xn) ≤ I(Xn;Bn) + g(ε)n . (38)

We are now ready to state a non-trivial example of
corner points for the capacity region of DMIC.

Theorem 6. Consider the two-user DMIC

Y1 = X1 , (39)
Y2 = X2 +X1 + Z2 mod 3 , (40)

2This is the analog of the following property of Gaussian
channels: For i.i.d. Gaussian Z and t1 < t2 < t3 we have
I(X;X+t2Z) = I(X;X+t3Z)+o(n) implies I(X;X+t1Z) =
I(X;X + t3Z) + o(n). This follows from Costa’s EPI.
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where X1 ∈ {0, 1, 2}n, X2 ∈ {0, 1}n, Z2 ∈ {0, 1, 2}n
are mutually independent, and Z2 ∼ P⊗n2 is i.i.d. for
some non-uniform P2 containing no zeros. The maxi-
mal rate achievable by user 2 is

C2 = max
supp(Q)⊂{0,1}

H(Q ∗ P2)−H(P2). (41)

At this rate, the maximal rate of user 1 is

C ′1 = log 3− max
supp(Q)⊂{0,1}

H(Q ∗ P2). (42)

Proof. Given a sequence of codes with vanishing
probability of error and rate pairs (R1, R2), where
R2 = C2 − ε, we show that R1 ≤ C ′1 − ε′, where
ε′ → 0 as ε → 0. Let Q2 be the maximizer of (41),
i.e., the capacity-achieving distribution of the channel
X2 7→ X2 + Z2. Let X̃2 ∈ {0, 1}n be distributed
according to Qn

2 . Then, X̃2 + Z2 ∼ P⊗n3 , where
P3 = Q2 ∗ P2. By Fano’s inequality,

D(PX2+Z2
‖PX̃2+Z2

) ≤ nε+ o(n).

Since PX̃2+Z2
= P⊗n3 is a product distribution,

Marton’s inequality (37) yields

d̄(PX2+Z2
, PX̃2+Z2

) ≤
√

ε

2 log e
+ o(1).

Applying (34) in Proposition 4 and in view of the
translation invariance of the d̄-distance, we obtain

|I(X1;Y2)− I(X1;X1 + X̃2 + Z2)| ≤ (α
√
ε+ o(1))n,

for a finite constant α. On the other hand,

I(X1;X1 + Z2) = I(X1;Y2) + I(X1;X2|Y2) =

I(X1;Y2) + o(n), (43)

where I(X1;X2|Y2) ≤ H(X2|Y2) = o(n) by Fano’s
inequality. Combining the last two displays, we have

I(X1;X1+X̃2+Z2) ≤ I(X1;X1+Z2)+(α
√
ε+o(1))n.

Next we apply Proposition 5, with X = X1 → A =
X1 + Z2 → B = A+ X̃2, to get

H(X1) ≤ I(X1;X1+X̃2+Z2)+g(α
√
ε)n ≤ nC ′1+o(n),

where the last inequality follows from the fact that
maxX1 I(X1;X1 + X̃2 + Z2) = nC ′1, attained by X1

uniform on {0, 1, 2}n.
Finally, note that the rate pair (C ′1, C2) is achievable

by a random MAC-code for (X1, X2)→ Y2, with X1

uniform on {0, 1, 2}n and X2 ∼ Q⊗n2 .
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