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Abstract—A channel coding achievability bound expressed in
terms of the ratio between two Neyman-Pearson β functions is
proposed. This bound is the dual of a converse bound established
earlier by Polyanskiy and Verdú (2014). The new bound turns
out to simplify considerably the analysis in situations where the
channel output distribution is not a product distribution, for
example due to a cost constraint or a structural constraint (such
as orthogonality or constant composition) on the channel inputs.
Connections to existing bounds in the literature are discussed.
The bound is then used to derive 1) the channel dispersion of
additive non-Gaussian noise channels with random Gaussian
codebooks, 2) the channel dispersion of an exponential-noise
channel, 3) a second-order expansion for the minimum energy
per bit of an additive white Gaussian noise channel, and 4) a
lower bound on the maximum coding rate of a multiple-input
multiple-output Rayleigh-fading channel with perfect channel
state information at the receiver, which is the tightest known
achievability result.

I. INTRODUCTION

We consider an abstract channel that consists of an in-
put set A, an output set B, and a random transformation
PY |X : A → B. An (M, ε) code for the channel (A, PY |X ,B)
comprises a message set M , {1, . . . ,M}, an encoder f :
M→A, and a decoder g : B →M∪{e} (e denotes an error
event) that satisfies the average error probability constraint

1

M

M∑
j=1

(
1− PY |X

(
g−1(j) | f(j)

))
≤ ε. (1)

Here, g−1(j) , {y ∈ Y : g(y) = j}. For a fixed arbitrary
ε ∈ (0, 1), we are interested in finding a lower bound (i.e., an
achievability bound) on the largest number M∗ of codewords
for which an (M, ε) code exists.

For stationary memoryless channels, Shannon’s channel
coding theorem establishes that the rate of the best code
converges to the channel capacity

C = max
PX

I(X;Y ) (2)

as the blocklength grows to infinity. Here, I(X;Y ) denotes
the mutual information between the channel input and output.
The mutual information can be expressed through an arbitrary
output distribution QY as follows [1, Eq. (8.7)]:

I(X;Y ) = D(PY |X‖QY |PX)−D(PY ‖QY ). (3)
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This identity—also known as the golden formula—has found
many applications in information theory. For example, it
allows us to prove upper bounds on channel capacity (by
dropping the term −D(PY ‖QY ); see [2]). It is also used
in the derivation of the capacity per unit cost [3], in the
Blahut-Arimoto algorithm [4], [5], in Gallager’s formula for
the minimax redundancy in universal source coding [6], and
in characterizing properties of good channel codes [7], [8].

As a first step, Polyanskiy and Verdú recently proved that
every (M, ε) code satisfies the following converse bound [8,
Th. 15]:

M ≤ inf
0≤δ<1−ε

inf
QY

β1−δ(PY , QY )
β1−ε−δ(PXY , PXQY )

. (4)

Here, PX and PY denote the empirical input and output
distributions induced by the code (for the case of uniformly
distributed messages). The function βα(P,Q) in (4) for two
probability measures P and Q on X measures the difficulty of
distinguishing P from Q in terms of hypothesis testing, and
is defined as1

βα(P,Q) , min

∫
PZ |X(1 |x)Q(dx) (5)

where the minimum is over all conditional probability distri-
butions (i.e., tests) PZ |X : X → {0, 1} satisfying∫

PZ |X(1 |x)P (dx) ≥ α. (6)

The analogy between (3) and (4) follows from Stein’s lemma:

− log βα(P
n, Qn) = nD(P‖Q) + o(n), ∀α ∈ (0, 1). (7)

Contributions: In this paper, we continue the program of
establishing a finite-blocklength analog of the golden formula
by proving the following achievability counterpart of (4).

Theorem 1 (ββ achievability bound): For every 0 < ε < 1
and every input distribution PX , there exists an (M, ε) code
for the channel (A, PY |X ,B) satisfying

M

2
≥ sup

0<τ<ε
sup
QY

βτ (PY , QY )

β1−ε+τ (PXY , PXQY )
(8)

where PY , PY |X ◦ PX .
The proof of this bound relies on Shannon’s random coding

technique and on a suboptimal decoder that is based on the

1By the Neyman-Pearson lemma [9], there exists an optimal PZ|X that
attains the minimum in (5). This test, which we shall refer to as the Neyman-
Pearson test, involves thresholding the Radon-Nikodym derivative of P with
respect to Q.
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Neyman-Pearson test between PXY and PXQY . Hypothesis
testing is used twice in the proof: to relate the decoding error
probability to β1−ε+τ (PXY , PXQY ), and to perform a change
of measure from PY to QY .

The bound (8) is useful in situations where PY is not
a product distribution (although the underlying channel law
PY |X is stationary and memoryless), for example due to cost
constraints, or structural constraints on the channel input,
such as orthogonality or constant composition. In such cases,
traditional achievability bounds such as Feinstein’s bound [10]
and the dependence-testing (DT) bound [11, Th. 18], which are
explicit in dPY |X/dPY , become difficult to evaluate. In con-
trast, the ββ bound (8) requires the evaluation of dPY |X/dQY ,
which factorizes for product QY . This allows for an analytical
computation of (8). Furthermore, the term βτ (PY , QY ), which
captures the cost of the change of measure from PY to QY , can
be evaluated or bounded even when a closed-form expression
for PY is not available. To illustrate these points, we present
the following applications of Theorem 1:
• We obtain the channel dispersion [11, Def. 1] of addit-

ive non-Gaussian noise channels, for the case in which
the encoder uses a power-constrained random Gaussian
codebook. We show that the power constraint introduces
an additional term in the expression of the achievable
dispersion, which depends on the minimum mean square
error (MMSE) of estimating the channel input given the
channel output.

• We characterize the channel dispersion of the additive
exponential noise channel introduced in [12]. The channel
dispersion of a discrete couterpart of the exponential-
noise channel is studied in [13].

• We prove a second-order expansion for the minimum
energy per bit of an additive white Gaussian noise
(AWGN) channel at finite blocklength, hence establishing
a nonasymptotic counterpart of the wideband slope result
of Verdú [14]. Even though this result can be obtained via
other techniques (such as the κβ bound [11, Th. 25]), the
proof based on (8) is conceptually simpler and generalizes
to other channel models. Furthermore, the converse part
of this result is proved using the ββ converse bound (4).

• We evaluate (8) for a multiple-input multiple-output
(MIMO) Rayleigh-fading channel with perfect channel
state information at the receiver (CSIR). In this case, (8)
yields the tightest known achievability result.
Notation: For an input distribution PX and a channel

PY |X , we let PY |X ◦ PX denote the distribution of Y in-
duced by PX through PY |X . The distribution of a circularly
symmetric complex Gaussian random vector with covariance
matrix A is denoted by CN (0,A). With χ2

k(λ) we denote the
noncentral chi-sqared distribution with k degrees of freedom
and noncentrality parameter λ. Finally, Exp(µ) stands for the
exponential distribution with mean µ.

II. PROOF OF THEOREM 1
Fix ε ∈ (0, 1), τ ∈ (0, ε), and let PX and QY be

two arbitrary probability measures on A and B, respectively.

Furthermore, let

M =

⌈
2βτ (PY , QY )

β1−ε+τ (PXY , PXQY )

⌉
. (9)

Finally, let PZ |X,Y : A×B → {0, 1} be the Neyman-Pearson
test that satisfies

PXY [Z(X,Y ) = 1] ≥ 1− ε+ τ (10)
PXQY [Z(X,Y ) = 1] = β1−ε+τ (PXY , PXQY ). (11)

For a given codebook {c1, . . . , cM} and a received signal y,
the decoder computes the values of Z(cj , y) and returns
the smallest index j for which Z(cj , y) = 1. If no such
index is found, the decoder declares an error. The average
probability of error of the given codebook {c1, . . . , cM}, under
the assumption of uniformly distributed messages, is given by

Pe(c1, . . . , cM ) = P
[{
Z(cW , Y ) = 0

} ⋃
m<W

{
Z(cm, Y ) = 1

}]
(12)

where W is equiprobable on {1, . . . ,M} and Y ∼ PY |W .
Following Shannon’s random coding idea, we next aver-

age (12) over all codebooks {C1, . . . , CM} whose codewords
are generated as pairwise independent random variables with
distribution PX . This yields

E[Pe(C1, . . . , CM )]

≤ P
[
Z(X,Y ) = 0

]
+ P

[
max
m<W

Z(Cm, Y ) = 1

]
(13)

≤ ε− τ + P
[
max
m<W

Z(Cm, Y ) = 1

]
. (14)

Here, (13) follows from the union bound and (14).
To conclude the proof of (8), it suffices to show that

P
[
max
m<W

Z(Cm, Y ) = 1

]
≤ τ. (15)

Consider the randomized test PZ̃ |Y : Y → {0, 1}

Z̃(y) , max
m<W

Z(Cm, y). (16)

It follows that

βPY [Z̃=1](PY , QY ) ≤ QY [Z̃(Y ) = 1] (17)

≤ 1

M

M∑
j=1

(j − 1)PXQY [Z(X,Y ) = 1]

(18)

=
M − 1

2
PXQY [Z(X,Y ) = 1] (19)

=
M − 1

2
β1−ε+τ (PXY , PXQY ) (20)

≤ βτ (PY , QY ). (21)

Here, (17) follows from (5); (18) follows from (16) and from
the union bound; (20) follows from (11); and (21) follows
from (9). Since α 7→ βα(PY , QY ) is nondecreasing, we
conclude that

PY [Z̃ = 1] ≤ τ (22)

which is equivalent to (15).
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III. CONNECTION TO EXISTING BOUNDS

We next illustrate the connection between Theorem 1 and
other achievability bounds.

1) The κβ bound [11, Th. 25]: The κβ bound is based on
Feinstein’s maximal coding approach and on a suboptimal de-
coder similar to the one used in Theorem 1. By further lower-
bounding the κ term in the κβ bound using [15, Lemma 4],
we can relax it to the following bound:

M ≥ sup
τ∈(0,ε)

sup
QY

βτ (PY |X ◦ PX , QY )
supx∈F β1−ε+τ (PY |X=x, QY )

(23)

which holds under a maximum error probability constraint.
Here, F ⊂ A denotes the permissible set of codewords,
and PX is an arbitrary distribution on F . The similarity
between (23) and (8) suggests that we can interpret the ββ
bound as the average-error-probability counterpart of the κβ
bound. For the case in which βα(PY |X=x, QY ) does not
depend on x ∈ F , by relaxing M/2 to M in (8) and by
using [11, Lemma 29] we obtain a weaker version of (23) that
holds under the average error probability constraint. However,
for the case in which βα(PY |X=x, QY ) does depend on
x ∈ F , (8) can be both easier to analyze and numerically
tighter than (23) (see Section IV-D for an example).

2) The dependence-testing (DT) bound [11, Th. 18]:
Setting QY = PY in (8), using that βτ (PY , PY ) = τ , and
rearranging terms, we obtain

ε ≤ inf
α∈(0,1)

{
1− α+

M

2
βα(PXY , PXPY )

}
. (24)

Setting α = PXY [log
(
dPXY /d(PXPY )

)
≥ log(M/2)] and

using the Neyman-Pearson lemma, we conclude that (24) is
equivalent to a slightly weakened version of the DT bound
with (M−1)/2 replaced by M/2. Since this weakened version
of the DT bound implies Shannon’s bound [16] and the bound
in [17, Th. 2], our bound implies these two bounds as well.

IV. APPLICATIONS

We shall take A and B to be n-fold Cartesian products of
alphabets X and Y . A channel is a sequence of conditional
probabilities PY n |Xn : Xn → Yn. We shall refer to an (M, ε)
code for the channel {Xn, PY n |Xn ,Yn} as an (n,M, ε) code.
Furthermore, the maximum coding rate R∗(n, ε) is defined as2

R∗(n, ε) , sup

{
logM

n
: ∃(n,M, ε) code

}
. (25)

Due to space limitations, we have omitted the proofs of all
theorems in the section. They can be found in [18].

A. Additive non-Gaussian noise channels

We consider the additive-noise channel

Yi = Xi + Zi, i = 1, . . . , n (26)

2Unless otherwise indicated, the log and exp functions in this paper are
taken with respect to an arbitrary fixed basis.

where {Zi} are independent and identically distributed (i.i.d.)
PZ-distributed (not necessarily Gaussian) and Xi, Yi, Zi ∈ R.
Each codeword xn must satisfy the constraint

‖xn‖2 =
n∑
i=1

x2i ≤ nP. (27)

Let QXn = N (0, P In), and let PXn denote the conditional
distribution of Xn ∼ QXn conditioned on

Xn ∈ An ,
{
xn ∈ Rn : nP − log n ≤ ‖xn‖2 ≤ nP

}
. (28)

In other words, PXn is a truncated Gaussian distribution that
is supported on the spherical shell An. We shall consider an
ensemble of codes C in which the codewords are generated
independently from the distribution PXn . This ensemble of
codes is used by Gallager to derive the random coding error
exponent for channels with cost constraint [19, p. 326]. Let
Pe(C) be the average probability of error under maximum
likelihood (ML) decoding for a given code C. Let R∗G(n, ε) ,
max{(log |C|)/n : E[Pe(C)] ≤ ε}, where the expectation is
over the random code C, and |C| denotes the cardinality of C.
In the following theorem we present an ensemble-tight second-
order asymptotic expansion for R∗G(n, ε).

Theorem 2: Let QX = N (0, P ), let QY = PY |X ◦ QX ,
and denote the information density of QXPY |X by

i(x; y) ,
dPY |X
dQY

(x; y). (29)

Furthermore, let

I(P ) , EQXPY |X [i(X;Y )] . (30)

Assume that the noise Z satisfies the following conditions:
1) PZ is absolutely continuous with respect to the Lebesgue

measure on R;
2) EQXPZ

[
|i(X;X + Z)− I(P )|3

]
<∞; and

3) E
[
|Z|6

]
<∞.

Then, for every 0 < ε < 1, we have

R∗G(n, ε) = I(P )−
√
V (P )

n
Q−1(ε) +O

(
log n

n

)
. (31)

Here, Q−1(·) denotes the inverse of the Gaussian Q-function,

V (P ) , Var[i(X;Y ) + c(X2 − P )] (32)

where
c ,

log e

2P 2

(
mmse(X|Y )− P

)
(33)

and
mmse(X|Y ) , E

[
(X − E[X|Y ])2

]
. (34)

In (32) and (34), the pair (X,Y ) is distributed according to
QXPY |X .

Remark 1: For PZ = N (0, 1), (32) recovers the dispersion
V (P ) = P (2+P )

2(1+P )2 log
2 e of the AWGN channel [11, Th. 54].

Remark 2: By removing the codewords x for which∣∣∑n
i=1D(PY |X=xi

‖QY ) − nI(P )| � 1 from An, it is pos-
sible to achieve a dispersion that is equal to Var[i(X;Y )|X],
provided that the noise distribution PZ satisfies further regu-
larity conditions; see [20, Th. 5 and Section VI].
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B. The exponential-noise channel

We next consider the exponential-noise case, i.e., PZ =
Exp(1). As in [12], we assume that each codeword xn ∈ Rn
must satisfy

xi ≥ 0 and
n∑
i=1

xi ≤ nσ. (35)

The practical relevance of such a channel is discussed in [12]
and [21]. The capacity of the exponential-noise channel with
constraint (35) is given by [12, Th. 3]

C(σ) = log(1 + σ) (36)

and is achieved by the input distribution P ∗X , according to
which X takes the value zero with probability 1/(1 + σ)
and follows an Exp(1 + σ) distribution conditioned on it
being positive. Furthermore, the capacity-achieving output
distribution is Exp(1 + σ).

Theorem 3: For the additive exponential-noise channel sub-
ject to the constraint (35) and for 0 < ε < 1,

R∗(n, ε) = log(1 + σ)−
√
V (σ)

n
Q−1(ε) +O

(
log n

n

)
(37)

where

V (σ) =
σ2

(1 + σ)2
log2 e. (38)

C. Minimum energy per bit over AWGN channels

For a complex-valued AWGN channel, we set A = Cn,
B = Cn, and PY n |Xn=xn = CN (xn, In). We assume that
every codeword xn satisfies the equal power constraint

‖xn‖2 = nP. (39)

Let R∗e(n, ε, P ) denote the maximum coding rate R∗(n, ε) un-
der the constraint (39). Theorem 4 below provides expressions
for the β functions in (4) and (8) for the AWGN case.

Theorem 4: Consider the complex-valued AWGN channel
PY n|Xn . Let Sn ∼ χ2

2n(2nP ), Ln ∼ χ2
2n(0), and QY n =

CN (0, In). Furthermore, let Sn , {xn ∈ Cn : ‖xn‖2 = nP}.
Then, for every distribution PXn supported on Sn

βα(PXnY n , PXnQY n) = Q
(√

2nP +Q−1(α)
)

(40)

and
βa(PY n|Xn ◦ PXn , QY n) ≤ P[Ln ≥ γ] (41)

where γ satisfies
P[Sn ≥ γ] = a. (42)

Furthermore, (41) holds with equality if PXn is the uniform
distribution over Sn.

By evaluating (40) and (41) in the asymptotic regime P → 0
and nP 2 → ∞ as n → ∞,3 and by substituting them in
Theorem 1 and in (4), we obtain the following result.

3As we shall see, this regime is of interest for the characterization of the
minimum energy per bit.
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Figure 1. Minimum energy per bit versus spectral efficiency of the AWGN
channel; here, k = 2000 bits, and ε = 10−3.

Theorem 5: For an AWGN channel with SNR Pn satisfying
Pn → 0 and nP 2

n →∞ as n→∞, the maximum coding rate
R∗e(n, ε, Pn) behaves as

R∗e(n, ε, Pn)
log e

= Pn −
√

2Pn
n
Q−1(ε)− 1

2
P 2
n

+o

(√
Pn
n

)
+ o
(
P 2
n

)
, n→∞. (43)

We now relate (43) to the minimum energy per bit
E∗b(k, ε, R) to transmit k information bits at rate R and error
probability ε. Specifically, Theorem 5 implies that

10 log10E
∗
b(k, ε, R)

= 10 log10
Pn

R∗e(n, ε, Pn)
(44)

= 10 log10

(
loge 2 +

√
2 loge 2

k
Q−1(ε) +

log2e 2

2
R

)
+ o(R) + o(1/

√
k) (45)

= 10 log10E
∗
b(k, ε, 0) +

10 log102

2
R+ o(R) + o

(
1√
k

)
. (46)

The last step follows from [22, Th. 3]. Note that (46) is
the finite-blocklength counterpart of Verdú’s wideband-slope
result [14, Eq. (172)].

In Fig. 1, we present a comparison between the approxima-
tion (46) (with the o(·) terms omitted), the converse bound [11,
Th. 28], and the achievability bound (8). In both cases QY is
chosen to be the capacity-achieving output distribution. For
the parameters considered in Fig. 1, the approximation (46) is
accurate.

D. MIMO block-fading channel with perfect CSIR

Consider an mt×mr Rayleigh MIMO block-fading channel
that stays constant for nc channel uses. The input-output
relation within the kth coherence interval is given by

Yk = XkHk +Wk. (47)

Here, Xk ∈ Cnc×mt and Yk ∈ Cnc×mr are the transmitted
and received matrices, respectively; the entries of the fading
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Figure 2. Bounds on the maximum rate for a 4× 4 MIMO Rayleigh block-
fading channel; here SNR=0 dB, ε = 0.001, and nc = 4.

matrix Hk ∈ Cmt×mr and the noise Wk ∈ Cnc×mr are
i.i.d. CN (0, 1). We assume that {Hk} and {Wk} take on
independent realizations over successive coherence intervals.
The channel matrices {Hk} are assumed to be known to the
receiver but not to the transmitter. We shall also assume that
each codeword spans l ∈ N coherence intervals, i.e., the
blocklength of the code is n = lnc. Finally, each codeword Xl

is constrained to satisfy∥∥Xl∥∥
F
≤
√
nP . (48)

To obtain an achievability bound on R∗(n, ε), we apply
Theorem 1 with PXl chosen as the uniform distribution on
S ′n , {Xl :

∥∥Xl∥∥2
F
= nP} and QYlHl chosen as the capacity-

achieving output distribution. With these choices, we have

R∗(n, ε) ≥ 1

n
log

βτ (PHlYl , QHlYl)

β1−ε+τ (PXlHlYl , PXlQHlYl)
. (49)

The denominator β1−ε+τ (PXlHlYl , PXlQHlYl) in (49) can be
computed via standard Monte Carlo techniques. However,
computing βτ (PHlYl , QHlYl) in the numerator is more in-
volved, since there is no closed-form expression for PHlYl .
To circumvent this, we further lower-bound βτ (PHlYl , QHlYl)
using the data-processing inequality [23] for βα as follows.
Let X̃l be a sequence of nc × mt complex matrices with
i.i.d. CN (0, P/mt) entries. Then, PXl can be obtained via
X̃l through Xl =

√
nP X̃l/

∥∥X̃l∥∥
F
. Furthermore, QHlYl =

PYlHl |Xl◦PX̃l . Let P (s)

YlHl |Xl , PHlP
(s)

Yl |Hl,Xl , where P (s)

Yl |Hl,Xl

denotes the channel law defined by

Yk = XkHk
√
nP

‖Xl‖F
+Wk, k = 1, . . . , l. (50)

We have that PYlHl = PYlHl |Xl ◦PXl = P
(s)

YlHl | fXl ◦PX̃l . Now,
by the data-processing inequality,

βτ (PHlYl , QHlYl) ≥ βτ (PX̃lP
(s)

YlHl |Xl , PX̃lPYlHl |Xl). (51)

Since the Radon-Nikodym derivative
d(PX̃lP

(s)

YlHl | Xl
)

d(PX̃lPYlHl | Xl )
can be

computed in closed form, the right-hand side of (51) can be
computed via Monte Carlo techniques. The resulting bound

is compared with the normal approximation of R∗(n, ε) in
Fig. 2. In contrast, the κβ bound [11, Th. 25] with F = S ′n is
much more difficult to compute due to the maximization over
codewords Xl ∈ S ′n. Furthermore, for blocklength values of
practical interest, we expect that

max
Xl∈S′

n

βα(PHlYl |Xl=Xl , QHlYl)� βα(PXlHlYl , PXlQHlYl) (52)

which means that the resulting bound is much looser than (49).
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finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp.
2307–2359, May 2010.
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