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Abstract—This paper investigates the minimum energy re-
quired to transmit, with a given reliability, k information bits
over a stationary memoryless Rayleigh-fading channel, under
the assumption that neither the transmitter nor the receiver have
a priori channel state information (CSI). It is well known that
the ratio between the minimum energy per bit and the noise
level converges to −1.59 dB as k goes to infinity, regardless of
whether CSI is available at the receiver or not. This paper shows
that lack of CSI at the receiver causes a slowdown in the speed
of convergence to −1.59 dB as k → ∞ compared to the case
of perfect receiver CSI. Specifically, we show that in the no-
CSI case, the gap to −1.59 dB is proportional to ((log k)/k)1/3,
whereas when perfect CSI is available at the receiver, this gap is
proportional to 1/

√
k. Numerically, we observe that to achieve

an energy per bit of −1.5 dB in the no-CSI case, one needs to
transmit at least 7× 107 information bits, whereas 6× 104 bits
suffice for the case of perfect CSI at the receiver (same number of
bits as for nonfading AWGN channels). Interestingly, all results
(asymptotic and numerical) are unchanged if multiple transmit
antennas and/or block fading is assumed.

I. INTRODUCTION

A classic result in information theory is that, for a wide class
of channels including AWGN channels and fading channels,
the minimum energy per information bit required for reliable
communication satisfies [1], [2]

Eb

N0 min

= loge 2 = −1.59 dB (1)

where Eb is the energy per bit, and N0 is the noise power per
complex degree of freedom. For fading channels with unitary
average channel gain, this result holds regardless of whether
the instantaneous fading realizations are known to the receiver
or not [2, Th. 1], [3].1

The expression in (1) is asymptotic in several aspects:
• the number of degrees of freedom n is infinite;
• the number of information bits k, or equivalently, the

number of messages M = 2k is infinite;
• the error probability ε vanishes;
• the total energy E is infinite;
• the rate k/n vanishes.

The limit in (1) does not change if we allow the error
probability to be positive. However, keeping any of the other
parameters fixed results in a backoff from (1) [2], [4]–[7].

In this paper, we study the maximum number of information
bits k that can be transmitted with a finite energy E and a
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1Knowledge of the fading realizations at the transmitter may improve (1),
because it enables the transmitter to signal along the channel maximum-
eigenvalue eigenspace [2].

fixed error probability ε > 0 over a stationary memoryless
Rayleigh-fading channel, when there is no constraint on the
number of degrees of freedom n. Equivalently, we determine
the minimum energy E required to transmit k information
bits with error probability ε. Our analysis is targeted to sensor
networks, where energy constraints are often more stringent
than bandwidth constraints, and where data packets are usually
short. Furthermore, we assume that neither the transmitter nor
the receiver have a priori knowledge of the realizations of
the fading channel, but both know its statistics perfectly. The
assumption of no a priori channel state information (CSI)
allows us to assess the cost of learning the fading channel
in a fundamental fashion.

Related work: For nonfading AWGN channels with un-
limited number of degrees of freedom, Polyanskiy, Poor, and
Verdú [7] showed that the maximum number of codewords
M∗(E, ε) that can be transmitted with energy E and error
probability ε satisfies2

logM∗(E, ε) =
E

N0
log e−

√
2E

N0
Q−1(ε) log e

+
1

2
log

E

N0
+O(1), E →∞. (2)

Here, Q−1(·) denotes the inverse of the Gaussian Q-function.
The first term on the right-hand side (RHS) of (2) gives the
−1.59 dB limit. The second term captures the penalty due
to the stochastic variations of the channel. This term plays
the same role as the channel dispersion in finite-blocklength
analyses [6], [8]. In terms of minimum energy per bit E∗b(k, ε),
the asymptotic expansion (2) implies that, for large E,

E∗b(k, ε)

N0
≈ loge 2 +

√
2 loge 2

k
Q−1(ε) (3)

i.e., the gap to −1.59 dB is proportional to 1/
√
k.

Moving to fading channels, for the case of no receiver CSI
(no-CSIR), flash signalling [2, Def. 2] must be used to reach
the −1.59 dB limit [2]. In the presence of a finite peak-power
constraint, (1) can not be achieved [9]–[12]. Verdú [2] studied
the rate of convergence of the minimum energy per bit to
−1.59 dB as the signal-to-noise ratio vanishes. He showed
that, differently from the perfect CSIR setup, in the no-CSIR
case, the −1.59 dB limit is approached with zero wideband
slope. This implies that operating close to the −1.59 dB limit
is expensive in terms of bandwidth. For the case of finite
blocklength n, fixed energy budget E, and fixed probability

2Unless otherwise indicated, the log and the exp functions in this paper
are taken with respect to an arbitrary fixed base.



of error ε, bounds and approximations for the maximum
channel coding rate over fading channels (under various CSI
assumptions) are reported in [13]–[16].

Contributions: Focusing on the regime of unlimited num-
ber of degrees of freedom n but finite energy E, and nonzero
error probability ε, we provide upper and lower bounds on
the maximum number of codewords M∗(E, ε) for the case of
stationary memoryless Rayleigh-fading channels with no CSI
at transmitter and receiver. An asymptotic analysis of these
bounds reveals that

logM∗(E, ε) =
E

N0
log e− V0(ε)

(
E

N0

) 2
3

log
1
3
E

N0

+O
(
E

2
3 log logE

log
2
3 E

)
, E →∞ (4)

where V0(ε) > 0 is given in (39). In terms of minimum energy
per bit, (4) implies that, for large E,

E∗b(k, ε)

N0
≈ loge 2 + V0(ε) log

4
3
e 2 ·

(
loge k

k

) 1
3

(5)

i.e., the gap to −1.59 dB is proportional to ((loge k)/k)1/3.
For the case of perfect CSIR, we prove that the asymptotic

expansion of M∗(E, ε) coincides with the one given in (2) for
the AWGN case up to the third-order term. By comparing (2)
with (4), we see that, although the minimum energy per bit
approaches (1) as E increases regardless of whether CSIR
is available or not, the convergence is slower for the no-
CSIR case. Our nonasymptotic bounds reveal that to achieve
an energy per bit of −1.5 dB, one needs to transmit at least
7×107 information bits in the no-CSIR case, whereas 6×104

bits suffice in the perfect CSIR case. Furthermore, we observe
that it takes 2 dB more of energy to transmit 1000 information
bits in the no-CSIR case compared to the perfect CSIR case.

The results (asymptotic and numerical) provided in this
paper continue to hold for multiple-input multiple-output
Rayleigh block-fading channels (up to a suitable normalization
of the received energy) [17]. Due to space limitations, we omit
the proofs of some of the results provided in this paper. The
proofs can be found in [17].

II. PROBLEM FORMULATION

We consider a single-antenna stationary memoryless
Rayleigh-fading channel with input-output relation

Vi = Hiui + Zi, i = 1, 2, . . . (6)

Here, ui ∈ C and Vi ∈ C are the input and output of the
channel; both the {Hi} and the {Zi} are i.i.d. CN (0, N0)-
distributed; furthermore, {Hi} and {Zi} are independent. We
assume that neither the transmitter nor the receiver have a
priori knowledge of the realizations of {Hi}, but both know
the statistics of {Hi}. In the remainder of the paper, we shall
assume that N0 = 1, for notational convenience. Moreover, we
shall denote infinite-dimensional vectors such as [A1, A2, . . .]
and [b1, b2, . . .] by A and b, respectively.

Given U = u, the output V of the channel (6) follows a
circularly symmetric Gaussian distribution

PV |U=u =

∞∏
i=1

CN (0, (1 + |ui|2)). (7)

Since V depends on the input symbols {ui} only through
their squared magnitude {|ui|2}, without loss of generality
(w.l.o.g.) we can reduce the input space to R∞+ . We also note
that the {|Vi|2} are a sufficient statistics for the detection of u
from V . Letting xi , |ui|2 and Yi , |Vi|2, i = 1, 2, . . ., we
obtain the following equivalent input-output relation

Yi = (1 + xi)Si, i = 1, 2, . . . (8)

where xi and Yi are nonnegative real numbers, and {Si} are
i.i.d. Exp(1)-distributed.3 In the remainder of the paper, we
shall focus on the equivalent channel (8). Since ‖x‖1 = ‖u‖22
and ‖x‖∞ = ‖u‖2∞, we shall measure the energy and the
peakiness of an input codeword x for the channel (8) by its
`1-norm ‖x‖1 and `∞-norm ‖x‖∞, respectively.

Definition 1: An (E,M, ε)-code for the channel (8) con-
sists of a set of codewords {c1, . . . , cM} ∈ (R∞+ )M satisfying
the energy constraint

‖cj‖1 ≤ E, j ∈ {1, . . . ,M} (9)

and a decoder g : R∞+ → {1, . . . ,M} satisfying the maximum
error probability constraint

max
j∈{1,...,M}

P[g(Y ) 6= j |X = cj ] ≤ ε (10)

where Y is the output vector induced by the codeword X = cj
according to (8). The maximum number of messages that can
be transmitted with energy E and error probability ε is

M∗(E, ε) , max
{
M : ∃ (E,M, ε)-code

}
. (11)

III. MAIN RESULTS

A. General Achievability Bounds
Below, we present the κβ and the random-coding union

(RCU) versions of Verdú’s achievability bound [4, pp. 1023–
1024] on the capacity per unit cost of memoryless channels
with a zero-cost input symbol (which we label as “0”). As
in [4], we use b[x] to denote the cost of the symbol x in the
input alphabet X .

Theorem 1 (κβ, capacity per unit cost): Consider a sta-
tionary memoryless channel PY |X . For every N ∈ N, 0 <
ε < 1, and every input symbol x0 ∈ X such that b[x0] > 0,
there exists an (E,M, ε)-code with E = b[x0]N and

M − 1 ≥ sup
0<τ<ε

τ

β1−ε+τ (P⊗NY |X=x0
, P⊗NY |X=0)

(12)

where β(·)(·, ·) is the function given in [6, Eq. (100)], and

P⊗NY |X=x , PY |X=x × · · · × PY |X=x︸ ︷︷ ︸
N times

. (13)

Proof: As in [4, p. 1023], we choose the set of codewords
{c1, . . . , cM} ∈

(
X∞

)M
as follows:

cj , [0, . . . , 0︸ ︷︷ ︸
(j−1)N

, x0, . . . , x0︸ ︷︷ ︸
N

, 0, . . .], j = 1, . . . ,M. (14)

Fix 0 < τ < ε. For a given received signal Y ∈ Y∞, the
decoder runs M parallel binary hypothesis tests Zj between

3We use Exp(µ) to denote the exponential distribution with mean µ.



PY |X=0 and PY |X=cj
, where Zj = 1 indicates that the test

selects PY |X=cj
. The tests {Zj} are chosen to satisfy4

P[Zj = 1 |X = cj ] ≥ 1− ε+ τ (15)
P[Zj = 1 |X = 0] = β1−ε+τ (PY |X=cj

, PY |X=0) (16)

for all j = 1, . . . ,M . The decoder outputs the index m if both
Zm = 1 and Zj = 0 for all j 6= m. It outputs 1 if no such
index can be found.

By construction, the maximum probability of error ε of the
code just defined is upper-bounded by

ε ≤ P[Z1 = 0 |X = c1] + (M − 1)P[Z1 = 1 |X = 0] (17)
≤ ε− τ + (M − 1)β1−ε+τ (PY |X=c1

, PY |X=0) (18)

where (17) follows because for each optimal test Zj , j 6= 1,

P[Zj = 1|X = c1] = P[Zj = 1|X = 0] (19)
= P[Z1 = 1|X = 0] (20)

and (18) follows from (15) and (16). From (18), we con-
clude that

M − 1 ≥ τ

β1−ε+τ (PY |X=c1
, PY |X=0)

. (21)

The proof is completed by noting that, for every α ∈ (0, 1),

βα(PY |X=c1
, PY |X=0) = βα(P⊗NY |X=x0

, P⊗NY |X=0) (22)

and by maximizing the RHS of (21) over 0 < τ < ε.
Remark: A slightly weakened version of (21), with M−1

replaced by M , follows from the κβ bound [6, Th. 25] upon
setting QY = PY |X=0 and choosing FN as

FN =
{
x ∈ X∞ : x = [0, . . . , 0︸ ︷︷ ︸

kN

, x0, . . . , x0︸ ︷︷ ︸
N

, 0, . . .]

for some k ∈ N
}
. (23)

Indeed, it suffices to observe that κτ (FN , PY |X=0) = τ .
Using the same codebook as in Theorem 1 together with a

maximum likelihood decoder, we obtain the following achiev-
ability bound.

Theorem 2 (RCU, capacity per unit cost): Consider a sta-
tionary memoryless channel PY |X . For every N ∈ N, 0 <
ε < 1, and every input symbol x0 ∈ X such that b[x0] > 0,
there exists an (E,M, ε)-code satisfying E = b[x0]N and

ε ≤ E
[
min

{
1, (M − 1)P

[
ıN(x0;Y N ) ≤ ıN(x0; Ȳ N ) |Y N

]}]
(24)

where PY N Ȳ N (aN , bN ) , P⊗NY |X=x0
(aN )P⊗NY |X=0(bN ) and

ıN (x; yN ) , log
dP⊗NY |X=x

dP⊗NY |X=0

(yN ). (25)

In the AWGN case, the bound (2) takes the same value for
all N ∈ N. Hence, it suffices to set N = 1 (see [7]).

4The Neyman-Pearson lemma [18] implies the existence of tests that
satisfy (15) and (16).

B. Nonasymptotic Bounds

Particularizing Theorems 1 and 2 to the channel (8) and set-
ting x0 = E/N , we obtain the following achievability bounds.

Corollary 3: For every E > 0, and 0 < ε < 1, there exists
an (E,M, ε)-code for the channel (8) satisfying

M − 1 ≥ sup
0<τ<ε,N∈N

τ

P[GN ≥ (1 + E/N)ξN,τ ]
(26)

where GN ∼ Gamma(N, 1) and ξN,τ satisfies

P[GN ≤ ξN,τ ] = ε− τ. (27)

Corollary 4: For every M > 0 and 0 < ε < 1, there exists
an (E,M, ε)-code for the channel (8) satisfying

ε ≤ min
N∈N

E
[
min

{
1, (M−1)P

[
ḠN ≥ (1 + E/N)GN

∣∣∣GN]}]
(28)

where GN and ḠN are i.i.d. Gamma(N, 1) random variables.
Numerical evidence (provided in Section III-E) suggests

that (28) is tighter than (26). However, (26) turns out to be
more suitable for asymptotic analyses.

On the converse side, we have the following result, which
is based on the meta-converse theorem [6, Th. 31].

Theorem 5: Let {Si} be i.i.d. Exp(1) random variables.
Then, every (E,M,ε)-code for the channel (8) satisfies

1

M
≥ sup

η∈R

inf
x

P
[ ∞∑
i=1

(
xiSi log e− log(1 + xi)

)
≤ η

]
− ε

exp(η)
(29)

where the infimum is over the subset of x ∈ R∞+ taking one
of the following two forms:

x = [q3, q2, . . . , q2︸ ︷︷ ︸
N

, q1, 0, 0, . . .] (30)

x = [q̃2, . . . , q̃2︸ ︷︷ ︸
Ñ2

, q̃1, . . . , q̃1︸ ︷︷ ︸
Ñ1

, 0, 0, . . .]. (31)

Here, N ∈ N and 0 < q1 < q2 < q3 satisfy q1 + Nq2 +
q3 = E; furthermore, Ñ1, Ñ2 ∈ N and 0 ≤ q̃1 ≤ q̃2 satisfy
Ñ1q̃1 + Ñ2q̃2 = E.

Proof: We assume w.l.o.g. that each codeword cj satisfies
the energy constraint (9) with equality. We use the meta-
converse bound [6, Th. 31] with the auxiliary output distri-
bution QY = PY |X=0. This results in

1

M
≥ inf

x∈R∞
+ :‖x‖1=E

β1−ε(PY |X=x, PY |X=0). (32)

Next, we lower-bound β1−ε using [6, Eq. (102)]. Specifically,
we fix an arbitrary η ∈ R and obtain

β1−ε(PY |X=x, PY |X=0)

≥ exp(−η)
(
PY |X=x[ı(x,Y ) ≤ η]− ε

)
(33)

where

ı(x,y) , log
dPY |X=x

dPY |X=0
(y). (34)



Under PY |X=x, the random variable ı(x,Y ) has the same
distribution as

∞∑
i=1

(
xiSi log e− log(1 + xi)

)
. (35)

Substituting (35) into (33), and then (33) into (32), we obtain

1

M
≥

inf
x

P
[ ∞∑
i=1

(
xiSi log e− log(1 + xi)

)
≤ η

]
− ε

exp(η)
(36)

where the infimum is over all x ∈ R∞+ that satisfy ‖x‖1 =
E. Lemma 6 below provides a partial characterization of the
solution to the minimization problem on the RHS of (36).

Lemma 6: Let x∗ be a minimizer of

inf
x∈R∞

+ :‖x‖1=E
P
[ ∞∑
i=1

(
xiSi log e− log(1 + xi)

)
≤ η

]
. (37)

Assume w.l.o.g. that the entries of x∗ are in nonincreasing
order. Then, x∗ must take the form (30) or (31).

The proof of (29) is concluded by using Lemma 6 in (36)
and by maximizing the RHS of (36) over η.

Remark: Lemma 6 reduces the infinite-dimensional opti-
mization problem (37) into a 3-dimensional one, which can
be solved numerically. The proof of Lemma 6 relies on an
elegant argument of Abbe, Huang, and Telatar [19], used in the
proof of Telatar’s minimum outage probability conjecture for
multiple-input single-output Rayleigh-fading channels. Indeed,
both [19] and Lemma 6 deal with optimization of quantiles of
convolutions of exponential distributions.

C. Asymptotic Analysis
Evaluating the bounds in Corollary 3 and Theorem 5 for

large E, we obtain the following closed-form characterization
of M∗(E, ε) for large E.

Theorem 7: The maximum number of messages M∗(E, ε)
that can be transmitted with energy E and error probability ε ∈
(0, 1/2) over the channel (8) admits the following expansion

logM∗(E, ε) = E log e− V0(ε)E
2
3 log

1
3 E

+O
(
E

2
3 log logE

log
2
3 E

)
(38)

where

V0(ε) =

(
12−

1
3 +

(2

3

) 1
3

)(
Q−1(ε) log e

) 2
3 . (39)

The intuition behind (38) is as follows. It is well known
that in the no-CSIR case, to achieve the asymptotic limit
−1.59 dB, it is necessary to use flash signalling, i.e., signals
with unbounded peak power [2]. Indeed, if all codewords
satisfy a peak-power constraint ‖x‖∞ ≤ A in addition to (9),
then logM(E, ε)/E converges to (see [11] and [12, Eq. (59)])

log e−A−1 log(1 +A) (40)

as E →∞. The second term in (40) can be interpreted as the
penalty due to bounded peakiness, which vanishes as A→∞.
When the energy E is finite,

logM(E, ε)

E
≈ log e− log(1 +A)

A
−
√
A

E
Q−1(ε) log e. (41)

The second term on the RHS of (41) captures the fact that
codewords that satisfy (9) for a finite E are necessarily peak-
power limited (we denote again the peak power by A). The
third term captures the penalty resulting from the stochastic
variations of the fading channel and the noise processes,
which cannot be averaged out for finite E. Since the channel
is multiplicative (see (8)), this penalty increases with the
peak power. Indeed, peakier codewords result in less channel
averaging. To summarize, peakiness in the codewords reduces
the second term on the RHS of (41) but increases the third
term. The optimal peak power A∗ that minimizes the sum of
these two penalties in (41) turns out to be

A∗ =

(
3

2
Q−1(ε) log e

)− 2
3

E
1
3 log

2
3 E + o(E

1
3 ). (42)

Substituting (42) into (41) we obtain (38). See [17] for a
rigorous proof.

D. Perfect CSIR
To assess the penalty due to lack of CSIR, we provide in

this section achievability and converse bounds for the case of
perfect CSIR.

Theorem 8: Every (E,M, ε)-code for the AWGN channel
can be converted into an (E,M, ε)-code for the fading chan-
nel (6) with perfect CSIR.

Remark: Theorem 8 continues to hold also if the fading
is not Rayleigh, provided that the coefficients {Hi} are i.i.d.
and satisfy E

[
|Hi|2

]
= 1.

Proof: Take an arbitrary (E,M, ε)-code for the AWGN
channel. We can assume w.l.o.g. that only the first M co-
ordinates of each codeword are nonzero . This is because
for the AWGN channel, the error probability of the optimal
decoder depends only on the Euclidean distance between
codewords. Therefore, we can embed the M codewords in an
M -dimensional space while preserving the distance between
codewords. We assume that the decoder is maximum likeli-
hood. Then, the decoding regions are M -dimensional Voronoi
regions, and can be further assumed open.

Now, we simulate an AWGN channel via a fading channel
with perfect CSIR as follows: fix an N > 0; for every
codeword u = [u1, . . . , uM , 0, . . .] for the AWGN channel, we
generate the following codeword ũ for the fading channel (6)

ũ ,
1√
N

[u1, . . . , u1︸ ︷︷ ︸
N

, u2, . . . , u2︸ ︷︷ ︸
N

, . . .]. (43)

By construction, u and ũ have the same energy. For a given
channel output V (see (6)), the receiver computes

Ṽj =
1√
N

N∑
i=1

H̄(j−1)N+iV(j−1)N+i (44)

=
uj
∑N
i=1 |H(j−1)N+i|2

N
+
H̄jZj√
N

, j = 1, . . . ,M (45)

where ·̄ stands for the complex conjugate. As N → ∞, the
first term in (45) converges in distribution to uj by the law
of large numbers. The second term converges in distribution
to Zj ∼ CN (0, 1) by the central limit theorem. Therefore, Ṽj
converges in distribution to uj + Zj . Thus, our progressively
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Fig. 1. Minimum energy per bit versus number of information bits; here
ε = 10−3.

TABLE I
MINIMUM ENERGY E AND OPTIMAL NUMBER OF CHANNEL USES N∗ VS.

NUMBER OF INFORMATION BITS k; HERE, ε = 10−3 .

Cor. 3 Cor. 4 Asymptotics
k E/N0 N∗ E/N0 N∗ E/N0 N∗

101 98 25 67 18 120 50

102 2.6× 102 39 2.4× 102 38 2.9× 102 63

103 1.3× 103 96 1.3× 103 96 1.4× 103 124

104 9.6× 103 304 9.6× 103 304 9.7× 103 336

105 8.2× 104 1089 8.2× 104 1090 8.2× 104 1137

improving simulations are such that PṼM |UM=uM converges
(in distribution) to an AWGN channel law. Since the decoding
regions are open, the probability of correct decoding for the
fading case converges to that for the AWGN case.

Theorem 8 implies that the asymptotic expansion (2) is
achievable also for fading channels with perfect CSIR. Theo-
rem 9 below establishes that, for 0 < ε < 1/2, the converse
holds as well.

Theorem 9: In the presence of perfect CSIR, the maximum
number of messages M∗(E, ε) that can be transmitted with
energy E and error probability 0 < ε < 1/2 over the
channel (6) satisfies

logM∗(E, ε) = E log e−
√

2EQ−1(ε) log e

+
1

2
logE +O(

√
logE), E →∞. (46)

Note that, unlike Theorem 8, Theorem 9 requires the fading
to be Rayleigh distributed.

E. Numerical Results
Fig. 1 shows the achievability bounds (Corollaries 3 and 4)

and the converse bound (Theorem 5) for the channel (8) (no
CSIR) for the case ε = 10−3. Specifically, the energy per bit
Eb = E/ log2M

∗(E, ε) (for the case N0 = 1) is plotted
against the number of information bits log2M

∗(E, ε). For
reference, we also plot the achievability bound corresponding
to the AWGN case [7, Eq. (15)]. As proved in Theorem 8,
this bound is also achievable in the Rayleigh-fading case
when perfect CSIR is available. As expected, as the number
of information bits increases, the minimum energy per bit

converges to the same limit (−1.59 dB) regardless of whether
CSIR is available or not. However, for a fixed number of
information bits, it is more costly to communicate in the
no-CSIR case than in the perfect-CSIR case. For example,
it takes 2 dB more of energy to transmit 1000 information
bits in the no-CSIR case compared to the perfect-CSIR case.
Additionally, to achieve an energy per bit of −1.5 dB, we need
to transmit 7 × 107 information bits in the no-CSI case, but
only 6× 104 bits when perfect CSIR is available.

The codebook used in Corollaries 3 and 4 uses only one
symbol in the input alphabet in addition to 0. In Table I
we list the number of channel uses N∗ = E/x∗0 that the
optimal input symbol x∗0 occupies to minimize the energy per
bit, as a function of the number of information bits k. For
comparison, we also list the number of channel uses N∗ used
in the asymptotic analysis in Theorem 7.
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