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Abstract—Consider the problem of packing Hamming balls of
a given relative radius subject to the constraint that they cover
any point of the ambient Hamming space with multiplicity at
most L. For odd L ≥ 3 an asymptotic upper bound on the rate
of any such packing is proven. The resulting bound improves
the best known bound (due to Blinovsky’1986) for rates below a
certain threshold. The method is a superposition of the linear-
programming idea of Ashikhmin, Barg and Litsyn (that was used
previously to improve the estimates of Blinovsky for L = 2) and
a Ramsey-theoretic technique of Blinovsky. As an application it
is shown that for all odd L the slope of the rate-radius tradeoff
is zero at zero rate.

Index Terms—Combinatorial coding theory, list-decoding, con-
verse bounds

I. MAIN RESULT AND DISCUSSION

One of the most well-studied problems in information

theory asks to find the maximal rate at which codewords can

be packed in binary space with a given minimum distance

between codewords. Operationally, this (still unknown) rate

gives the capacity of the binary input-output channel subject

to adversarial noise of a given level. A natural generalization

was considered by Elias and Wozencraft [1], [2], who allowed

the decoder to output a list of size L. In this paper we provide

improved upper bounds on the latter question.

Our interest in bounding the asymptotic tradeoff for the list-

decoding problem is motivated by our study of fundamental

limits of joint source-channel communication [3]. The best

known converse bound for that problem – a straightforward

extension of [3, Theorem 7] to lists of size > 1 – reduces to

bounding rate for the list-decoding problem, cf. [4, Theorem

6].

We proceed to formal definitions and brief overview of

known results. For a binary code C ⊂ F
n
2 we define its list-size

L decoding radius as

τL(C)
△
=

1

n
max{r : ∀x ∈ F

n
2 |C ∩ {x+ Bn

r }| ≤ L} ,

where Hamming ball Bn
r and Hamming sphere Sn

r are defined

as

Bn
r

△
= {x ∈ F

n
2 : |x| ≤ r} , (1)

Sn
r

△
= {x ∈ F

n
2 : |x| = r} (2)
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with |x| = |{i : xi = 1}| denoting the Hamming weight of x.

Alternatively, we may define τL as follows:1

τL(C) =
1

n

(

min

{

rad(S) : S ∈

(
C

L+ 1

)}

− 1

)

,

where rad(S) denotes radius of the smallest ball containing

S (known as Chebyshev radius):

rad(S)
△
= min

y∈F
n

2

max
x∈S

|y − x| .

The asymptotic tradeoff between rate and list-decoding

radius τL is defined as usual:

τ∗L(R)
△
= lim sup

n→∞
max

C:|C|≥2nR

τL(C) (3)

R∗
L(τ)

△
= lim sup

n→∞
max

C:τL(C)≥τ

1

n
log |C| (4)

The best known upper (converse) bounds on this tradeoff

are as follows:

• List size L = 1: The best bound to date was found by

McEliece, Rodemich, Rumsey and Welch [5]:

R∗
1(τ) ≤ RLP2(2τ) , (5)

RLP2(δ)
△
= min log 2− h(α) + h(β) , (6)

where h(x) = −x log x−(1−x) log(1−x) and minimum

is taken over all 0 ≤ β ≤ α ≤ 1/2 satisfying

2
α(1− α)− β(1− β)

1 + 2
√

β(1 − β)
≤ δ

For rates R < 0.305 this bound coincides with the

simpler bound:

τ∗1 (R) ≤
1

2
δLP1(R) , (7)

δLP1(R)
△
=

1

2
−
√

β(1 − β) , (8)

R = log 2− h(β) , β ∈ [0, 1/2] (9)

• List size L = 2: The bound found by Ashikhmin, Barg

and Litsyn [6] is given as2

R∗
2(τ) ≤ log 2− h(2τ) +Rup(2τ, 2τ) ,

where Rup(δ, α) is the best known upper bound on rate

of codes with minimal distance δn constrained to live

on Hamming spheres Sn
αn. The expression for Rup(δ, α)

can be obtained by using the linear programming bound

1
(C
j

)

denotes the set of all subsets of C of size j.
2This result follows from optimizing [6, Theorem 4]. It is slightly stronger

than what is given in [6, Corollary 5].



from [5] and applying Levenshtein’s monotonicity, cf. [7,

Lemma 4.2(6)]. The resulting expression is

R∗
2(τ) ≤

{

RLP2(2τ) , τ ≤ τ0

log 2− h(2τ) + h(u(τ)), τ > τ0 ,
(10)

where τ0 ≈ 0.1093 and

u(τ) =
1

2
−

√

1

4
− (

√

τ − 3τ2 − τ)2

(cf. [7, (9)]).

• For list sizes L ≥ 3: The original bound of Blinovsky [8]

appears to be the best (before this work):

τ∗L(R) ≤

⌈L/2⌉
∑

i=1

(
2i−2
i−1

)

i
(λ(1 − λ))i , (11)

R = 1− h(λ) , λ ∈ [0, 1/2] (12)

Note that [8] also gives a non-constructive lower bound

on τ∗L(R). Results on list-decoding over non-binary al-

phabets are also known, see [9], [10].

In this paper we improve the bound of Blinovsky for lists

of odd size and rates below a certain threshold. To that end

we will mix the ideas of Ashikhmin, Barg and Litsyn (namely,

extraction of a large spectrum component from the code) and

those of Blinovsky (namely, a Ramsey-theoretic reduction to

study of symmetric subcodes).

To present our main result, we need to define exponent of

Krawtchouk polynomial Kβn(ξn) = exp{nEβ(ξ) + o(n)}.

For ξ ∈ [0, 12 −
√

β(1 − β)] the value of Eβ(ξ) was found

in [11]. Here we give it in the following parametric form,

cf. [12] or [13, Lemma 4]:

Eβ(ξ) = ξ log(1− ω) + (1 − ξ) log(1 + ω)− β logω (13)

ξ =
1

2
(1− (1 − β)ω − βω−1) , (14)

where

ω ∈

[

β

1− β
,

√

β

1− β

]

.

Our main result is the following:

Theorem 1. Fix list size L ≥ 2, rate R and an arbitrary

β ∈ [0, 1/2] with h(β) ≤ R. Then any sequence of codes

Cn ⊂ {0, 1}n of rate R satisfies

lim sup
n→∞

τL(Cn) ≤

max
j,ξ0

ξ0gj

(

1−
ξ1
2ξ0

)

+ (1 − ξ0)gj

(
ξ1

2(1− ξ0)

)

, (15)

where maximization is over ξ0 satisfying

0 ≤ ξ0 ≤
1

2
−
√

β(1 − β) (16)

TABLE I
RATES FOR WHICH NEW BOUND IMPROVES STATE OF THE ART

List size L Range of rates

L = 3 0 < R ≤ 0.361
L = 5 0 < R ≤ 0.248
L = 7 0 < R ≤ 0.184
L = 9 0 < R ≤ 0.144
L = 11 0 < R ≤ 0.108

and j ranging over {0, 1, 3, . . . , 2k + 1, . . . , L} if L is odd

and over {0, 2, . . . , 2k, . . . L} if L is even. Quantity ξ1 =
ξ1(ξ0, δ, R) is a unique solution of

R+ h(β)− 2Eβ(ξ0) =

h(ξ0)− ξ0h

(
ξ1
2ξ0

)

− (1 − ξ0)h

(
ξ1

2(1− ξ0)

)

, (17)

on the interval [0, 2ξ0(1−ξ0)] and functions gj(ν) are defined

as

gj(ν)
△
=

Lν − E [|2W − L− j|+]

L+ j
, W ∼ Bino(L, ν)

(18)

As usual with bounds of this type, cf. [14], it appears that

taking h(β) = R can be done without loss. Under such choice,

our bound outperforms Blinovsky’s for all odd L and all rates

small enough (see Corollary 3 below). The bound for L = 3 is

compared in Fig. 1 with the result of Blinovsky numerically.

For larger odd L the comparison is similar, but the range

of rates where our bound outperforms Blinovsky’s becomes

smaller, see Table I.

Evaluation of Theorem 1 is computationally possible, but

is somewhat tedious.3 Fortunately, for small L the maximum

over ξ0 and j is attained at ξ0 = 1
2 −

√

β(1 − β) and j = 1.

We rigorously prove this for L = 3:

Corollary 2. For list-size L = 3 we have

τ∗L(R) ≤
3

4
δ −

1

16

(
(2δ − ξ1)

3

δ2
+

ξ31
(1− δ)2

)

, (19)

where δ ∈ (0, 1/2] and ξ1 ∈ [0, 2δ(1− δ)] are functions of R
determined from

R = h

(
1

2
−
√

δ(1− δ)

)

, (20)

R = log 2− δh

(
ξ1
2δ

)

− (1− δ)h

(
ξ1

2(1− δ)

)

(21)

Another interesting implication of Theorem 1 is that it

allows us to settle the question of slope of the curve R∗
L(τ) at

zero rate. Notice that Blinovsky’s converse bound (11) has a

negative slope, while his achievability bound has a zero slope.

Our bound always has a zero slope for odd L (but not for even

L, see [15] for details):

3Notice that proofs of each of the two Corollaries below contain a different
relaxation of the bound (15), which may appear useful separately.
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Fig. 1. Comparison of bounds on R∗
L(τ) for list size L = 3

Corollary 3. Fix arbitrary odd L ≥ 3. There exists R0 =
R0(L) > 0 such that for all rates R < R0 we have

τ∗L(R) ≤ g1(δLP1(R)) , (22)

where g1(·) is a degree-L polynomial defined in (18). In

particular,

d

dτ

∣
∣
∣
∣
τ=τ∗

L
(0)

R∗
L(τ) = 0 , (23)

where the zero-rate radius is τ∗L(0) =
1
2 − 2−L−1

(
L

L−1

2

)
.

We close our discussion with some additional remarks:

1) The bound in Theorem 1 can be slightly improved by

replacing δLP1(R), that appears in the right-hand side

of (16), with a better bound, a so-called second linear-

programming bound δLP2(R) from [5]. This would

enforce the usage of the more advanced estimate of

Litsyn [16, Theorem 5] and complicate analysis sig-

nificantly. Notice that δLP2(R) 6= δLP1(R) only for

rates R ≥ 0.305. If we focus attention only on rates

where new bound is better than Blinovsky’s, such a

strengthening only affects the case of L = 3 and results

in a rather minuscule improvement (for example, for rate

R = 0.33 the improvement is ≈ 3 · 10−5).

2) For even L it appears that h(β) = R is no longer

optimal. However, the resulting bound does not appear

to improve upon Blinovsky’s.

3) When L is large (e.g. 35) the maximum in (15) is not

always attained by either j = 1 or ξ0 = δLP1(R).
It is not clear whether such anomalies only happen

in the region of rates where our bound is inferior to

Blinovsky’s.

4) The result of Corollary 3 follows by weakening (15) to

lim sup
n→∞

τL(Cn) ≤ max
j,ξ0

gj (ξ0) = max
j

gj(δLP1(R)) .

The R < R0(L) condition is only used to show that the

maximum is attained at j = 1.

II. PROOFS

Several key Lemmas are omitted for space constraints, those

can be found in [15].

A. Proof of Theorem 1

Consider an arbitrary sequence of codes Cn of rate R. As

in [6] we start by using Delsarte’s linear programming to select

a large component of the distance distribution of the code.

Namely, we apply result of Kalai and Linial [11, Proposition

3.2]: For every β with h(β) ≤ R there exists a sequence

ǫn → 0 such that for every code C of rate R there is a ξ0
satisfying (16) such that

Aξ0n(C)
△
=

1

|C|

∑

x,x′∈C

1{|x− x′| = ξ0n} (24)

≥ exp{n(R+ h(β) − 2Eβ(ξ0) + ǫn)} . (25)

Without loss of generality (by compactness of the interval

[0, 1/2−
√

β(1− β)] and passing to a proper subsequence of

codes Cnk
) we may assume that ξ0 selected in (25) is the same

for all blocklengths n. Then there is a sequence of subcodes

C′
n of asymptotic rate

R′ ≥ R+ h(β)− 2Eβ(ξ0)

such that each C′
n is situated on a sphere c0+Sξ0 surrounding

another codeword c0 ∈ C. Our key geometric result is: If there

are too many codewords on a sphere c0+Sξ0 then it is possible

to find L of them that are includable in a small ball that also

contains c0. Precisely, we have:

Lemma 4. Fix ξ0 ∈ (0, 1) and positive integer L. There exist

a sequence ǫn → 0 such that for any code C′
n ⊂ Sξ0n of rate

R′ > 0 there exist L codewords c1, . . . , cL ∈ C′
n such that

1

n
rad(0, c1, . . . , cL) ≤ θ(ξ0, R

′, L) + ǫn , (26)

where

θ(ξ0, R
′, L)

△
= max

j
θj(ξ0, R

′, L) (27)

θj(ξ0, R
′, L)

△
= ξ0gj

(

1−
ξ1
2ξ0

)

+ (1− ξ0)gj

(
ξ1

2(1− ξ0)

)

,

(28)

with ξ1 = ξ1(ξ0) found as unique solution on interval

[0, 2ξ0(1 − ξ0)] of

R′ = h(ξ0)− ξ0h

(
ξ1
2ξ0

)

− (1− ξ0)h

(
ξ1

2(1− ξ0)

)

, (29)

functions gj are defined in (18) and j in maximization (27)

ranging over the same set as in Theorem 1.

Equipped with Lemma 4 we immediately conclude that

lim sup
n→∞

τL(Cn) ≤ max
ξ0∈[0,δ]

θ(ξ0, R+h(β)−2Eβ(ξ0), L) . (30)

Clearly, (30) coincides with (15). So it suffices to prove

Lemma 4.



B. Proof of Lemma 4

Let TL be the (2L − 1)-dimensional space of probability

distributions on F
L
2 . If T ∈ TL then we have

T = (tv, v ∈ F
L
2 ) tv ≥ 0,

∑

v

tv = 1 .

We define distance on TL to be the L∞ one:

‖T − T ′‖
△
= max

v∈F
L

2

|tv − t′v| .

Permutation group SL acts naturally on F
L
2 and this action

descends to probability distributions TL. We will say that T
is symmetric if

T = σ(T ) ⇐⇒ tv = tσ(v) ∀v ∈ F
L
2

for any permutation σ : [L] → [L]. Note that symmetric T is

completely specified by L+1 numbers (weights of Hamming

spheres in F
L
2 ):

∑

v:|v|=j

tv , j = 0, . . . , L .

Next, fix some total ordering of F
n
2 (for example, lexico-

graphic). Given a subset S ⊂ F
n
2 we will say that S is given

in ordered form if S = {x1, . . . , x|S|} and x1 < x2 · · · < x|S|

under the fixed ordering on F
n
2 . For any subset of codewords

S = {x1, . . . , xL} given in ordered form we define its joint

type T (S) as an element of TL with

tv
△
=

1

n
|j : x1(j) = v1, . . . , xL(j) = vj | ,

where here and below y(j) denotes the j-th coordinate of

binary vector y ∈ F
n
2 . In this way every subset S is associated

to an element of TL. Note that T (S) is symmetric if and

only if the L×n binary matrix representing S (by combining

row-vectors xj) has the property that the number of columns

equal to [1, 0, . . . , 0]T is the same as the number of columns

[0, 1, . . . , 0]T etc. For any code C ⊂ F
n
2 we define its average

joint type:

T̄L(C) =
1

L! ·
(
|C|
L

)

∑

σ

∑

S∈(CL)

σ(T (S)) .

Evidently, T̄L(C) is symmetric.

Our proof crucially depends on a (slight extension of the)

brilliant idea of Blinovsky [8]:

Lemma 5. For every L ≥ 1, K ≥ L and δ > 0 there exist

a constant K1 = K1(L,K, δ) such that for all n ≥ 1 and all

codes C ⊂ F
n
2 of size |C| ≥ K1 there exists a subcode C′ ⊂ C

of size at least K such that for any S ∈
(
C′

L

)
we have

‖T (S)− T̄L(C
′)‖ ≤ δ . (31)

Remark 1. Note that if S′ ⊂ S then every element of T (S′) is

a sum of ≤ 2L elements of T (S). Hence, joint types T (S′) are

approximately symmetric also for smaller subsets |S′| < L.

Proof. See [15].

Before proceeding further we need to define the concept of

an average radius (or a moment of inertia):

rad(x1, . . . , xm)
△
= min

y

1

m

m∑

i=1

|xi − y| .

Note that the minimizing y can be computed via a per-

coordinate majority vote (with arbitrary tie-breaking for even

m). Consider now an arbitrary subset S = {c1, . . . , cL} and

define for each j ≥ 0 the following functions

hj(S)
△
=

1

n
rad(0, . . . , 0

︸ ︷︷ ︸

j times

, c1, . . . , cL) .

It is easy to find an expression for hj(S) in terms of the joint-

type of S:

hj(S) =
1

L+ j

(
E [W ]− E [|2W − L− j|+]

)
(32)

P[W = w] =
∑

v:|v|=w

tv , (33)

where tv are components of the joint-type T (S) = {tv, v ∈
F
L
2 }. To check (32) simply observe that if one arranges L

codewords of S in an L × n matrix and also adds j rows of

zeros, then computation of hj(S) can be done per-column:

each column of weight w contributes

min(w,L + j − w) = w − |2w − L− j|+

to the sum. In view of expression (32) we will abuse notation

and write

hj(T (S))
△
= hj(S) .

We now observe that for symmetric codes satisfying (31)

average-radii hj(S) in fact determine the regular radius:

Lemma 6. Consider an arbitrary code C satisfying conclu-

sion (31) of Lemma 5. Then for any subset S = {c1, . . . , cL} ⊂
C we have
∣
∣
∣
∣
rad(0, c1, . . . , cL)− n ·max

j
hj(T̄L(C))

∣
∣
∣
∣
≤ 2L(1 + δn) ,

(34)

where j in maximization (34) ranges over {0, 1, 3, . . . , 2k +
1, . . . , L} if L is odd and over {0, 2, . . . , 2k, . . . L} if L is

even.

Proof. See [15].

Lemma 7. There exist constants C1, C2 depending only on L
such that for any C ⊂ F

n
2 the joint-type T̄L(C) is approximately

a mixture of product Bernoulli distributions4, namely:
∥
∥
∥
∥
∥
T̄L(C)−

1

n

n∑

i=1

Bern⊗L(λi)

∥
∥
∥
∥
∥
≤

C1

|C|
, (35)

4Distribution Bern⊗L(λ) assigns probability λ|v|(1−λ)L−|v| to element
v ∈ F

L
2

.



where λi = 1
|C|

∑

c∈C 1{c(i) = 1} be the density of ones in

the j-th column of a |C| × n matrix representing the code. In

particular,
∣
∣
∣
∣
∣
∣

hj(T̄L(C))−
1

n

∑

j

gj(λj)

∣
∣
∣
∣
∣
∣

≤
C2

|C|
, (36)

where functions gj were defined in (18).

Proof. See [15]

Lemma 8. Functions gj defined in (18) are concave on [0, 1].

Proof. See [15]

Proof of Lemma 4. Our plan is the following:

1) Apply Elias-Bassalygo reduction to pass from C′
n to a

subcode C′′
n on an intersection of two spheres Sξ0n and

y + Sξ1n.

2) Use Lemma 5 to pass to a symmetric subcode C′′′
n ⊂ C′′

n

3) Use Lemmas 7-8 to estimate maxima of average radii

hj over C′′′
n .

4) Use Lemma 6 to transport statement about hj to a

statement on τL(C
′′′
n ).

We proceed to details. It is sufficient to show that for some

constant C = C(L) and arbitrary δ > 0 estimate (26) holds

with ǫn = Cδ whenever n ≥ n0(δ). So we fix δ > 0 and

consider a code C′ ⊂ Sξ0n ⊂ F
n
2 with |C′| ≥ exp{nR′+o(n)}.

Note that for any r , even m with m/2 ≤ min(r, n − r) and

arbitrary y ∈ Sn
r intersection {y + Sn

m} ∩ Sn
r is isometric to

the product of two lower-dimensional spheres:

{y + Sn
m} ∩ Sn

r
∼= Sr

r−m/2 × Sn−r
m/2 . (37)

Therefore, we have for r = ξ0n and valid m:

∑

y∈Sn
r

|{y + Sn
m} ∩ C′| = |C′|

(
ξ0n

ξ0n−m/2

)(
n(1− ξ0)

m/2

)

.

Consequently, we can select m = ξ1n−o(n), where ξ1 defined

in (29), so that for some y ∈ Sn
r :

|{y + Sn
ρn} ∩ C′| > n .

Note that we focus on solution of (29) satisfying ξ1 < 2ξ0(1−
ξ0). For some choices of R, δ and ξ0 choosing ξ1 > 2ξ0(1−ξ0)
is also possible, but such a choice appears to result in a weaker

bound.

Next, we let C′′ = {y + Sn
ρn} ∩ C′. For sufficiently large n

the code C′′ will satisfy assumptions of Lemma 5 with K ≥ 1
δ .

Denote the resulting large symmetric subcode C′′′.

Note that because of (37) column-densities λi’s of C′′′,

defined in Lemma 7, satisfy (after possibly reordering coordi-

nates):

ξ0n∑

i=1

λi = ξ1n/2 + o(n),
∑

i>ξ0n

λi = ξ1n/2 + o(n) .

Therefore, from Lemmas 7-8 we have

hj(T̄L(C
′′′)) ≤ ξ0gj

(

1−
ξ1
2ξ0

)

+

(1 − ξ0)gj

(
ξ1

2(1− ξ0)

)

+ ǫ′n +
C1

|C′′′|
, (38)

where ǫ′n → 0. Note that by construction the last term in (38)

is O(δ). Also note that the first two terms in (38) equal θj
defined in (27).

Finally, by Lemma 6 we get that for any codewords

c1, . . . , cL ∈ C′′′, some constant C and some sequence ǫ′′n → 0
the following holds:

1

n
rad(0, c1, . . . , cL) ≤ θ(ξ0, R

′, L) + ǫ′′n + Cδ .

By the initial remark, this concludes the proof of Lemma 4.
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