Upper bound on list-decoding radius of binary codes
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Abstract—Consider the problem of packing Hamming balls of
a given relative radius subject to the constraint that they cover
any point of the ambient Hamming space with multiplicity at
most L. For odd L > 3 an asymptotic upper bound on the rate
of any such packing is proven. The resulting bound improves
the best known bound (due to Blinovsky’1986) for rates below a
certain threshold. The method is a superposition of the linear-
programming idea of Ashikhmin, Barg and Litsyn (that was used
previously to improve the estimates of Blinovsky for L = 2) and
a Ramsey-theoretic technique of Blinovsky. As an application it
is shown that for all odd L the slope of the rate-radius tradeoff
is zero at zero rate.

Index Terms—Combinatorial coding theory, list-decoding, con-
verse bounds

I. MAIN RESULT AND DISCUSSION

One of the most well-studied problems in information
theory asks to find the maximal rate at which codewords can
be packed in binary space with a given minimum distance
between codewords. Operationally, this (still unknown) rate
gives the capacity of the binary input-output channel subject
to adversarial noise of a given level. A natural generalization
was considered by Elias and Wozencraft [1], [2], who allowed
the decoder to output a list of size L. In this paper we provide
improved upper bounds on the latter question.

Our interest in bounding the asymptotic tradeoff for the list-
decoding problem is motivated by our study of fundamental
limits of joint source-channel communication [3]. The best
known converse bound for that problem — a straightforward
extension of [3, Theorem 7] to lists of size > 1 — reduces to
bounding rate for the list-decoding problem, cf. [4, Theorem
6].

We proceed to formal definitions and brief overview of
known results. For a binary code C C [} we define its list-size
L decoding radius as
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7.(C) ﬁmax{r:V:ceF; ICn{xz+ B} <L},

where Hamming ball B)’ and Hamming sphere S; are defined
as
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with |z| = |{i¢ : ; = 1}| denoting the Hamming weight of x.
Alternatively, we may define 77, as follows:!

@) = (s {5 ()} -1)

where rad(S) denotes radius of the smallest ball containing
S (known as Chebyshev radius):

A
d S = 1 - .
rad(S) ;g@glggw a|

The asymptotic tradeoff between rate and list-decoding
radius 77, is defined as usual:
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The best known upper (converse) bounds on this tradeoff
are as follows:
o List size L = 1: The best bound to date was found by
McEliece, Rodemich, Rumsey and Welch [5]:

Ri(1) < Rppa(27), (%)
Rp1p2(9) 2 min log2 — h(a) + h(B), (6)
where h(z) = —xlog x—(1—z)log(1—2) and minimum

is taken over all 0 < 8 < o < 1/2 satisfying
,el—a)—51-8) _
1+2/B(1-08)

For rates R < 0.305 this bound coincides with the
simpler bound:

7 (R) < 5oum(R), ™
Sue(R) 25— VB 5), ®

o List size L = 2: The bound found by Ashikhmin, Barg
and Litsyn [6] is given as®

R3(1) <log2 — h(27) + Ryp(27,27),

where R,,;(d, o) is the best known upper bound on rate
of codes with minimal distance dn constrained to live
on Hamming spheres S7;,,. The expression for R, (9, o)
can be obtained by using the linear programming bound

1(5) denotes the set of all subsets of C of size j.

2This result follows from optimizing [6, Theorem 4]. It is slightly stronger
than what is given in [6, Corollary 5].



from [5] and applying Levenshtein’s monotonicity, cf. [7,
Lemma 4.2(6)]. The resulting expression is

RLp2(2T), T<T0

log2 — h(27) + h(u(T)), - (10)

T>T0,

Ry(r) < {
where 79 ~ 0.1093 and
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o For list sizes L > 3: The original bound of Blinovsky [8]
appears to be the best (before this work):

[L/2] (2_z>2) .
TR < D ==, an
i=1
R=1—-h(\),xe[0,1/2] (12)

Note that [8] also gives a non-constructive lower bound
on 77 (R). Results on list-decoding over non-binary al-
phabets are also known, see [9], [10].

In this paper we improve the bound of Blinovsky for lists
of odd size and rates below a certain threshold. To that end
we will mix the ideas of Ashikhmin, Barg and Litsyn (namely,
extraction of a large spectrum component from the code) and
those of Blinovsky (namely, a Ramsey-theoretic reduction to
study of symmetric subcodes).

To present our main result, we need to define exponent of
Krawtchouk polynomial Kz, (én) = exp{nEsz(§) + o(n)}.
For £ € (0,5 — \/B(1 — B)] the value of E(¢) was found
in [11]. Here we give it in the following parametric form,
cf. [12] or [13, Lemma 4]:

Eg(§) = €log(l —w) + (1 —&)log(l +w) — Blogw (13)
§:1ﬂ—0—ﬂw—ﬁw*% (14)
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Our main result is the following:

where

Theorem 1. Fix list size L > 2, rate R and an arbitrary
B € [0,1/2] with h(B) < R. Then any sequence of codes
Cn, C {0,1}™ of rate R satisfies

limsup 7,(C,,) <
n— o0
S

&
??@”(“d@)+“_&m(%kfw)’(w)

where maximization is over &y satisfying

1
0§§0§§—

B -5 (16)

TABLE I
RATES FOR WHICH NEW BOUND IMPROVES STATE OF THE ART

List size L | Range of rates

L=3 0< & <0.361
L=5 0 < R<0.248
L=17 0< R<0.184
L=9 0< R<0.144
L=11 0 < R<0.108

and j ranging over {0,1,3,...,2k + 1,...,L} if L is odd
and over {0,2,...,2k,... L} if L is even. Quantity & =
¢1(&0,0, R) is a unique solution of

R+ h(B) - 2E5(é0) =

h(&o) — &oh (%) — (1= %)h <2(1€7_1€0)) , (7

on the interval [0, 2¢0(1—&o)] and functions g;(v) are defined
as

A Lv—E[2W — L — j|*
o) 2 L ZE -

L+j

, W ~ Bino(L,v)
(18)

As usual with bounds of this type, cf. [14], it appears that
taking h(3) = R can be done without loss. Under such choice,
our bound outperforms Blinovsky’s for all odd L and all rates
small enough (see Corollary 3 below). The bound for L = 3 is
compared in Fig. 1 with the result of Blinovsky numerically.
For larger odd L the comparison is similar, but the range
of rates where our bound outperforms Blinovsky’s becomes
smaller, see Table I.

Evaluation of Theorem 1 is computationally possible, but
is somewhat tedious.® Fortunately, for small L the maximum
over & and j is attained at §y = % —+/B(1—=p)and j =1.
We rigorously prove this for L = 3:

Corollary 2. For list-size L = 3 we have

3,1 ((25—51)3 &

16 +

52 (1-— 5)2> ’ (19)
where § € (0,1/2] and & € [0,20(1 — 0)] are functions of R

determined from

R_hG— 5(1—5)),

R =log2— 6h (%) —(1-6)h (ﬁ) 1)

T (R) < 1

(20)

Another interesting implication of Theorem 1 is that it
allows us to settle the question of slope of the curve R} (7) at
zero rate. Notice that Blinovsky’s converse bound (11) has a
negative slope, while his achievability bound has a zero slope.
Our bound always has a zero slope for odd L (but not for even
L, see [15] for details):

3Notice that proofs of each of the two Corollaries below contain a different
relaxation of the bound (15), which may appear useful separately.
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Fig. 1. Comparison of bounds on R; () for list size L = 3

Corollary 3. Fix arbitrary odd L > 3. There exists Ry =
Ro(L) > 0 such that for all rates R < Ry we have
TL(R) < g1(drp1(R)), (22)
where ¢1(-) is a degree-L polynomial defined in (18). In
particular,
d

o Ri(r)=0,

7=77(0)

(23)

where the zero-rate radius is 7} (0) = % — 27L71(LE1).
2

We close our discussion with some additional remarks:

1) The bound in Theorem 1 can be slightly improved by
replacing dr,p1(R), that appears in the right-hand side
of (16), with a better bound, a so-called second linear-
programming bound 07, p2(R) from [5]. This would
enforce the usage of the more advanced estimate of
Litsyn [16, Theorem 5] and complicate analysis sig-
nificantly. Notice that 7 p2(R) # drp1(R) only for
rates R > 0.305. If we focus attention only on rates
where new bound is better than Blinovsky’s, such a
strengthening only affects the case of L = 3 and results
in a rather minuscule improvement (for example, for rate
R = 0.33 the improvement is ~ 3 - 107?).

2) For even L it appears that h(8) = R is no longer
optimal. However, the resulting bound does not appear
to improve upon Blinovsky’s.

3) When L is large (e.g. 35) the maximum in (15) is not
always attained by either j = 1 or & = 0.p1(R).
It is not clear whether such anomalies only happen
in the region of rates where our bound is inferior to
Blinovsky’s.

4) The result of Corollary 3 follows by weakening (15) to

limsup 77,(Cp) < max g (§o) = max 9;(6rpP1(R)).

n—oo

The R < Ry(L) condition is only used to show that the
maximum is attained at j = 1.

II. PROOFS

Several key Lemmas are omitted for space constraints, those
can be found in [15].

A. Proof of Theorem 1

Consider an arbitrary sequence of codes C,, of rate R. As
in [6] we start by using Delsarte’s linear programming to select
a large component of the distance distribution of the code.
Namely, we apply result of Kalai and Linial [11, Proposition
3.2]: For every 8 with h(8) < R there exists a sequence
€n, — 0 such that for every code C of rate R there is a &
satisfying (16) such that

a1

Agon(C) = el > o —a!| = &n} (24)
z,x’'cC
> exp{n(R+ h(B) —2E3(&) +€n)} - (25)

Without loss of generality (by compactness of the interval
[0,1/2—+/B(1 — )] and passing to a proper subsequence of
codes Cy,, ) we may assume that & selected in (25) is the same
for all blocklengths n. Then there is a sequence of subcodes
C! of asymptotic rate

R’ > R+ h(B) — 2E5(&)

such that each C}, is situated on a sphere co + Sg, surrounding
another codeword ¢y € C. Our key geometric result is: If there
are too many codewords on a sphere cy+S¢, then it is possible
to find L of them that are includable in a small ball that also
contains cg. Precisely, we have:

Lemma 4. Fix & € (0,1) and positive integer L. There exist
a sequence €, — 0 such that for any code C|, C Sg,,, of rate
R’ > 0 there exist L codewords c1,...,cy, € Cl, such that

%rad(o,cl,...,cL) <0, R,L)+ e, (26)
where
0(¢, R', L) = max (¢, R, L) 27
j
ryLe (1 SL — (&
9](507R 7L) - fogj (1 250) + (1 60)9] <2(1 — 50)(> )
with & = &1(&) found as unique solution on interval
[0,280(1 — &o)] of
r_ 51 51
R’ = h(&) — &oh <2—€0> —(1=%)h (m) , (29)

functions g; are defined in (18) and j in maximization (27)
ranging over the same set as in Theorem 1.

Equipped with Lemma 4 we immediately conclude that

n—r00

Clearly, (30) coincides with (15). So it suffices to prove
Lemma 4.



B. Proof of Lemma 4
Let 77, be the (2 — 1)-dimensional space of probability
distributions on F%. If T € 77, then we have

T=(t,veF)) £,>0Y t,=1.

We define distance on 77, to be the L., one:

IT - T'|| & max |t, — ¢ .
UEFé

Permutation group Sy, acts naturally on FZ and this action
descends to probability distributions 77,. We will say that T
is symmetric if

T=0(T) <= t,=ty,, YveF}

for any permutation o : [L] — [L]. Note that symmetric T is
completely specified by L + 1 numbers (weights of Hamming

spheres in F£):
2t

vilo|=j

j=0,....L.

Next, fix some total ordering of 'y (for example, lexico-
graphic). Given a subset S C Fy we will say that S is given
in ordered form if S = {x1,..., 25/} and 1 < 22 --- < 25
under the fixed ordering on F%. For any subset of codewords

S = {x1,...,x2r} given in ordered form we define its joint
type T(S) as an element of 77, with
Al , .
ty = El] rx1(f) = 1,20 (f) = v,

where here and below y(j) denotes the j-th coordinate of
binary vector y € F%. In this way every subset S is associated
to an element of 7. Note that 7'(S) is symmetric if and
only if the L x n binary matrix representing S (by combining
row-vectors z;) has the property that the number of columns
equal to [1,0,...,0]” is the same as the number of columns
[0,1,...,0]T etc. For any code C C Fy we define its average
joint type:

10 = e L 2 oT).

L

7 se(i)

Evidently, 77, (C) is symmetric.
Our proof crucially depends on a (slight extension of the)
brilliant idea of Blinovsky [8]:

Lemma 5. For every L > 1, K > L and § > 0 there exist
a constant K1 = K1(L, K, ) such that for all n > 1 and all
codes C C FY of size |C| > K1 there exists a subcode C' C C

of size at least K such that for any S € (CL,) we have
I7(S) = T < 6. (31)

Remark 1. Note that if S" C S then every element of T'(S") is
a sum of < 2L elements of T(S). Hence, joint types T(S") are
approximately symmetric also for smaller subsets |S’| < L.

Proof. See [15]. (I

Before proceeding further we need to define the concept of
an average radius (or a moment of inertia):

A 1
rad(z1,...,om) = min — ; |z — yl.
Note that the minimizing y can be computed via a per-
coordinate majority vote (with arbitrary tie-breaking for even
m). Consider now an arbitrary subset S = {c1,...,cr} and
define for each j > 0 the following functions

aCL)-

1
hi(S) £ =Tad(0,...,0,c1, ...
n ————

j times
It is easy to find an expression for h;(S) in terms of the joint-
type of S:

1

h;i(S) = I+ (EW]-E[2W - L - j|*])

PW =wl = >
vi|v|=

=w

(32)

to, (33)

where ¢, are components of the joint-type T'(S) = {t,,v €
FZ}. To check (32) simply observe that if one arranges L
codewords of S in an L X n matrix and also adds j rows of
zeros, then computation of 5;(.S) can be done per-column:
each column of weight w contributes

min(w, L +j —w) = w — [2w — L — j|*

to the sum. In view of expression (32) we will abuse notation
and write

We now observe that for symmetric codes satisfying (31)
average-radii h;(S) in fact determine the regular radius:

Lemma 6. Consider an arbitrary code C satisfying conclu-
sion (31) of Lemma 5. Then for any subset S = {ci,...,cp} C
C we have

rad(0,cy,...,cr) —n-maxh;(TL(C))| < 2X(1 +dn),
j

(34)
where j in maximization (34) ranges over {0,1,3,...,2k +
1,...,L} if L is odd and over {0,2,...,2k,... L} if L is

even.

Proof. See [15]. O

Lemma 7. There exist constants Cy, Cy depending only on L
such that for any C C FY the joint-type T1,(C) is approximately
a mixture of product Bernoulli distributions*, namely:

Gy

<2, 35
= 1] (35)

_ 1 &
TL(C) -~ > Bern® ()
=1

“Distribution Bern®Z (\) assigns probability AI?!(1—X)E~ 1%l to element
v e IF2L



where \; = I%\ > ecc Heli) = 1} be the density of ones in
the j-th column of a |C| X n matrix representing the code. In
particular,

Cso
hi(Tp(C)) — = Z 9| < 7 (36)
where functions g; were defined in (18).
Proof. See [15] O

Lemma 8. Functions g; defined in (18) are concave on [0, 1].

Proof. See [15] (I

Proof of Lemma 4. Our plan is the following:

1) Apply Elias-Bassalygo reduction to pass from C/, to a
subcode C; on an intersection of two spheres S, and
Y + S£1n~

2) Use Lemma 5 to pass to a symmetric subcode C;/ C C/!

3) Use Lemmas 7-8 to estimate maxima of average radii
hj over C'.

4) Use Lemma 6 to transport statement about h; to a
statement on 77 (C)’).

We proceed to details. It is sufficient to show that for some
constant C' = C(L) and arbitrary 6 > 0 estimate (26) holds
with €, = C§ whenever n > ng(d). So we fix § > 0 and
consider a code C' C Sg,,, C Fy with |C'| > exp{nR'+o(n)}.
Note that for any r , even m with m/2 < min(r,n — r) and
arbitrary y € S intersection {y + S0} N S is isometric to

the product of two lower-dimensional spheres:

Therefore, we have for r = {yn and valid m:

S+ S }mC|—|C|( Som

o)

Consequently, we can select m = £yn—o(n), where &; defined
in (29), so that for some y € S}

(;7250)) _

|{y+5n}ﬂC'|>n

Note that we focus on solution of (29) satisfying & < 2&(1—
&o). For some choices of R, § and &, choosing & > 2£0(1—&p)
is also possible, but such a choice appears to result in a weaker
bound.

Next, we let C"” = {y + 5}, } N C'. For sufficiently large n
the code C” will satisfy assumptions of Lemma 5 with K > 1.
Denote the resulting large symmetric subcode C"”.

Note that because of (37) column-densities \;’s of C"”,
defined in Lemma 7, satisfy (after possibly reordering coordi-
nates):

&on

Z/\ =&n/24 o(n),

i=

Z Xi =&n/2+o(n).

i>&om

Therefore, from Lemmas 7-8 we have

%)
- 005 (572

hi(TL(C™)) < €og; (

&
38
a»)* w9

where €/, — 0. Note that by construction the last term in (38)
is O(9). Also note that the first two terms in (38) equal 6,
defined in (27).

Finally, by Lemma 6 we get that for any codewords
c1,...,cr, € C", some constant C' and some sequence ¢/, — 0
the followmg holds:

1
—rad(0,c1,...,c0) <0(&, R, L)+ e, +C§.
n

By the initial remark, this concludes the proof of Lemma 4.
O
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