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Abstract—This paper quantifies the fundamental limits of
variable-length transmission of a general (possibly analog) source
over a memoryless channel with noiseless feedback, under a
distortion constraint. We consider excess distortion, average
distortion and guaranteed distortion (d-semifaithful codes). In
contrast to the asymptotic fundamental limit, a general conclu-
sion is that allowing variable-length codes and feedback leads
to a sizable improvement in the fundamental delay-distortion
tradeoff.

Index Terms—Joint source-channel coding, single-shot method,
rate-distortion theory, feedback, Shannon theory.

I. INTRODUCTION

A famous result of Shannon [1] states that feedback cannot
increase the capacity of memoryless channels. Burnashev
[2] showed that feedback improves the error exponent in a
variable-length setting. Polyanskiy et al. [3] showed that allow-
ing variable-length coding and non-vanishing error-probability
ε boosts the ε-capacity of the discrete memoryless channel
(DMC) by a factor of 1 − ε. Furthermore, as shown in [3],
if both feedback and variable-length coding are allowed, the
asymptotic limit C

1−ε is approached at a fast speed O
(

log `
`

)
as the average allowable delay ` increases:1

(1− ε) logM?(`, ε) = `C +O (log `) , (1)

where M?(`, ε) is the maximum number of messages that can
be distinguished with error probability ε at the average delay
`, and C is the channel capacity. This is in contrast to channel
coding at fixed blocklength n where in most cases only a
O
(

1√
n

)
convergence rate is attainable, even when feedback

is available, see [3], [4]. Thus, variable-length coding with
feedback (VLF) not only boosts the ε-capacity of the channel,
but also markedly accelerates the speed of approach to it.
Moreover, zero-error communication is possible at an average
rate arbitrarily close to capacity via VLFT codes, a class of
codes that employs a special termination symbol to signal the
end of transmission, which always recognized error-free by
the receiver [3]. As discussed in [3], the availability of zero-
error termination symbols models that common situation in
which timing information is managed by a higher layer whose
reliability is much higher than that of the payload.
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under Grant CCF-1016625, by the NSF CAREER award under Grant CCF-
1253205, and by the Center for Science of Information (CSoI), an NSF
Science and Technology Center, under Grant CCF-0939370.

1Unless explicitly noted, all log and exp in this paper are to arbitrary
matching base, which also defines units of entropy and mutual information.

In [5], we treated variable-length data compression with
nonzero excess distortion probability. In particular, we showed
that in fixed-to-variable-length compression of a block of k
i.i.d. source outcomes, the minimum average encoded length
`?(k, d, ε) compatible with probability ε of exceeding distor-
tion threshold d satisfies, under regularity assumptions,

`?(k, d, ε) = (1− ε)kR(d)−
√
kV(d)
2π

e−
(Q−1(ε))2

2 +O (log k)

(2)
where R(d) and V(d) are the rate-distortion and the rate-
dispersion functions, and Q is the standard normal comple-
mentary cumulative distribution function. The second term in
the expansion (2) becomes more natural if one notices

E [Z · 1{Z > Q−1 (ε)] =
1√
2π
e−

Q−1(ε)2

2 .

As elaborated in [5], the expansion (2) has an unusual feature:
the asymptotic fundamental limit is approached from the
“wrong” side, e.g. larger dispersions and shorter blocklengths
reduce the average compression rate.

In this paper, we consider variable-length transmission of a
general (possibly analog) source over a DMC with feedback,
under a distortion constraint. This variable-length joint source-
channel coding (JSCC) setting can be viewed as a generaliza-
tion of the setups in [3], [5]. Related work includes an as-
sessment of nonasymptotic fundamental limits of fixed-length
JSCC in [6]–[8], a dynamic programming formulation of zero-
delay JSCC with feedback in [9], and a practical variable-
length almost lossless joint compression/transmission scheme
in [10]. Various feedback coding strategies are discussed in
[11]–[17]. Practical feedback communication schemes in the
literature that implement VLF include [18]–[21].

We treat several scenarios that differ in how the distortion
is evaluated and whether a termination symbol is allowed. In
all cases, we analyze the average delay required to achieve the
objective. The summary of our results in Section III, where
as before, C,R(d),V(d) denote the channel capacity, and the
source rate-distortion and rate-dispersion functions, is:
• Under average distortion criterion, E [d(Sk, Ŝk)] ≤ d, the

minimal average delay `?(k, d) attainable via VLF codes
transmitting k source symbols satisfies

`?(k, d)C = kR(d) +O (log k) . (3)

• Under excess distortion criterion, P[d(Sk, Ŝk) > d] ≤
ε, the minimal average delay attainable via VLF codes
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transmitting k source symbols satisfies

`?(k, d, ε)C = (1− ε)kR(d)−
√
kV(d)
2π

e−
(Q−1(ε))2

2

+O (log k) . (4)

• Under guaranteed distortion criterion, P[d(Sk, Ŝk) >
d] = 0, the minimal average delay attainable via VLFT
codes transmitting k source symbols satisfies

`?t (k, d, 0)C = kR(d) +O (log k) . (5)

Similar to (1), approaching the limits in (3), (4) and (5) only
requires an extremely thin feedback link, namely, the decoder
sends just a single acknowledgement signal once it is ready
to decode (stop-feedback)2. Note that (4) exhibits significant
similarities with (2): the asymptotic limit is approached from
below, i.e. in contrast to the results in [6], [22], [23], smaller
blocklengths and larger source dispersions are beneficial. Note
also that the first term of the expansion in (4) can be attained
with variable-length codes without feedback.

Interestingly, naive separated source/channel coding fails to
attain any of the limits mentioned. For example, even the sign
of the second term in (4) is not attainable. This observation led
us to believe, initially, that competitive schemes in this setting
should be of successive refinement and adaptation sort such
as in [24], [25], or dynamic programming-like as in [9], [26].
It turns out, however, that like the fixed-length JSCC achiev-
ability schemes in [6], [7], attaining limits (3)-(5) requires a
rather simple variation on the separation architecture: one only
needs to allow a variable-length interface between the source
coder and the channel coder. Note that typically, separation is
understood in the sense that the output of the source coder
(compressor) is treated as pure bits, which can be arbitrarily
permuted without affecting performance of the concatenated
scheme [8], [27]. Similarly, the performance of a variable-
length separated scheme is insensitive to permutations (but not
additions or deletions) of the bits at the output of the source
coder. These semi-joint achievability schemes are the subject
of Section II.

II. FEEDBACK CODES FOR NON-EQUIPROBABLE MESSAGES

In this section we consider joint source-channel coding
assessing reliability by the probability that the (possibly non-
equiprobable) message is reproduced correctly. Our key tool
will be two extensions of the channel coding bounds for the
DMC with feedback from [3]. VLF and VLFT codes are
formally defined as follows.

Definition 1. A variable-length feedback code (VLF) trans-
mitting message W (taking values in W) over the channel
{PYi|XiY i−1}∞i=1 with input/output alphabets A/B is defined
by:

1) A random variable U ∈ U revealed to the encoder and
decoder before the start of the transmission.

2Stop-feedback is not to be confused with the termination symbol, which
is a special symbol that the encoder can transmit error-free in order to tell
the decoder that the transmission has ended and it is time to decode.

2) A sequence of encoding functions fn : U ×W ×Bn−1 7→
A, defining the channel inputs

Xn = fn
(
U,W, Y n−1

)
(6)

3) A sequence of decoding functions gn : U × Bn 7→ W ,
n = 1, 2, . . .

4) A non-negative integer-valued random variable τ , a stop-
ping time of the filtration Fn = σ {U, Y1, . . . , Yn}.

The final decision Ŵ is computed at the time instant τ

Ŵ = gτ (U, Y
τ ) (7)

The value E [τ ] is the average transmission length of the given
code.

A very similar concept is that of an VLFT code:

Definition 2. A variable-length feedback code with termi-
nation (VLFT) transmitting W ∈ W over the channel
{PYi|XiY i−1}∞i=1 with input/output alphabets A/B is defined
similarly to VLF codes with the exception that condition 4) in
the Definition 1 is replaced by
4’) A non-negative integer-valued random variable τ , a stop-

ping time of the filtration Gn = σ{W,U, Y1, . . . , Yn}.

The idea of allowing τ to depend on the true message
W models the practical scenarios (see [3]) where there is a
highly reliable control layer operating in parallel with the data
channel, which notifies the decoder when it is time to make a
decision.

The two special cases of the above definitions are stop-
feedback and fixed-to-variable codes:

1) stop-feedback codes are a special case of VLF codes
where the encoder functions {fn}∞n=1 satisfy:

fn(U,W, Y
n−1) = fn(U,W ) . (8)

Such codes require very limited communication over
feedback: only a single signal to stop the transmission
once the decoder is ready to decode.

2) fixed-to-variable codes, defined in [28], are also required
to satisfy (8), while the stopping time is3

τ = inf{n ≥ 1 : gn(U, Y
n) =W} , (9)

and therefore, such codes are zero-error VLFT codes.
For both VLF and VLFT codes, we say that a code that

satisfies E [τ ] ≤ ` and P
[
W 6= Ŵ

]
≤ ε, when averaged over

U , message and channel, is an (`, ε) code for source/channel(
W, {PYi|XiY i−1}∞i=1

)
.

The random variable U serves as the common randomness
shared by both transmitter and receiver, which is used to
initialize the codebook. As a consequence of Caratheodory’s
theorem, the amount of this common randomness can always
be reduced to just a few bits: as shown in [3, Theorem 19], if
there exists an (`, ε) code with |U| =∞, then there exists an

3As explained in [28], this model encompasses fountain codes in which
the decoder can get a highly reliable estimate of τ autonomously without the
need for a termination symbol.



(`, ε) code with |U| ≤ 3. Allowing for common randomness
does not affect the asymptotic expansions, but leads to more
concise expressions for non-asymptotic achievability bounds.
Furthermore, if the channel is symmetric no common random-
ness is needed at all [3, Theorem 3].

Our first result generalizes the achievability result [3, (107)-
(118)] to the case of non-equiprobable messages.

Theorem 1. For every DMC with capacity C and random
variable W there exists an (`, ε) stop-feedback code for W
with

C` ≤ H(W ) + log
1

ε
+ a0 (10)

where

a0 , max
x1,x2,y1,y2

log
PY |X(y1|x1)
PY |X(y2|x2)

. (11)

and the maximum is taken over all pairs (xi, yi) with
PY |X(yi|xi) > 0, i = 1, 2.

Proof. See extended version [29].

A slightly less sharp bound could be derived via a variable-
length separated scheme: compress W losslessly into a
variable-length string {0, 1}∗ with average length less than
H(W ), cf. [30], then send the length via O(logH(W ))
channel symbols and very small probability of error and finally
send the data bits.

Next, we extend the zero-error bound in [3, Theorem 10]
to the case of non-equiprobable messages:

Theorem 2. For every DMC with capacity C there exists a
constant a1 such that for every discrete random variable W
there exists an (`, 0) VLFT code with

C` ≤ H(W ) + a1 (12)

Proof. See extended version [29].

III. ASYMPTOTIC EXPANSIONS OF THE RATE-DISTORTION
TRADEOFF

A. Definitions

We move from the setup of Section II where a discrete
message is transmitted over the feedback channel to a more
general scenario of Section III, in which a possibly analog
signal is transmitted over a channel with feedback, under a
fidelity constraint. We will consider the following scenarios:

1) excess distortion: A VLF code transmitting memoryless
source (Sk,Sk) with reproduction alphabet Ŝk and sepa-
rable distortion measure d : Sk×Ŝk 7→ [0,+∞] is called
a (k, `, d, ε) excess-distortion code if

E [τ ] ≤ ` (13)

P[d(Sk, Ŝk) ≤ d] ≤ ε (14)

The corresponding fundamental limit is

`?(k, d, ε)
4
= inf{` : ∃ an (k, `, d, ε) VLF code} . (15)

2) average distortion: A VLF code satisfying, instead
of (14), an average constraint

E [d(Sk, Ŝk)] ≤ d (16)

is called a (k, `, d) average-distortion code. The corre-
sponding fundamental limit is

`?(k, d)
4
= inf{` : ∃ an (k, `, d) VLF code} . (17)

3) guaranteed distortion: A VLFT code transmitting mem-
oryless source (Sk,Sk) with reproduction alphabet Ŝk
and separable distortion metric d is called a (k, `, d, 0)
guaranteed-distortion code if it achieves ε = 0 in (14).
The corresponding fundamental limit is

`?t (k, d, 0)
4
= inf{` : ∃ an (k, `, d, 0) VLFT code} .

(18)
We will use the following notation for the various mini-

mizations of information measures:

RS(d) , min
PZ|S : S7→Ŝ :
E[d(S,Z)]≤d

I(S;Z) (19)

RS(d, ε) , min
PZ|S : S7→Ŝ :
P[d(S,Z)>d]≤ε

I(S;Z) (20)

Hd,ε(S) , min
c : S7→Ŝ :

P[d(S,c(S))>d]≤ε

H(c(S)). (21)

The quantity in (21) is referred to as the (d, ε)-entropy of
the source S [31]. The (ε, 0)-entropy is also known as just
ε-entropy [31].

Provided that the infimum in (19) is achieved by some
transition probability kernel PZ?|S , the d-tilted information in
s ∈ S is defined as [23]

S(s, d) , − logE [exp (−λ?d(s, Z?) + λ?d)] (22)

where
λ? = −R′S(d). (23)

In the almost-lossless compression, Z? = S and

S(s, d) , ıS(s) (24)

, log
1

PS(s)
. (25)

B. Regularity assumptions on the source

We assume that the source, together with its distortion
measure, satisfies the following assumptions:
A1 The source {Si} is stationary and memoryless, PSk =

PS × . . .× PS.
A2 The distortion measure is separable, d(sk, zk) =

1
k

∑k
i=1 d(si, zi).

A3 The distortion level satisfies dmin < d < dmax, where
dmin is the infimum of values at which the minimal
mutual information quantity RS(d) is finite, and dmax =
inf

z∈M̂ E [d(S, z)], where the expectation is with respect
to the unconditional distribution of S.



A4 The rate-distotortion function is achieved by a unique
PZ?|S: RS(d) = I(S;Z?).

A5 E
[
d12(S,Z?)

]
<∞ where the expectation is with respect

to PS × PZ? .
The rate-dispersion function of the source satisfying as-

sumptions A1–A5 is given by [23]

V(d) = Var (S(S, d)) . (26)

We showed in [5] that under assumptions A1–A5 for all
0 ≤ ε ≤ 1

RSk(d, ε)
Hd,ε(S

k)

}
= (1−ε)kR(d)−

√
kV(d)
2π

e−
(Q−1(ε))2

2 +O (log k) .

(27)

C. Average distortion

Theorem 3. Under assumptions A1–A5 we have

C`∗(k, d) = kR(d) +O(log k) . (28)

Proof. See extended version [29].

D. Excess distortion

Theorem 4. Under assumptions A1–A5 and any ε > 0 we
have

`?(k, d, ε)C = (1−ε)kR(d)−
√
kV(d)
2π

e−
(Q−1(ε))2

2 +O (log k)

(29)

Proof. Achievability: Pair a lossy compressor Sk → W with
excess-distortion probability ε′ = ε − 1√

k
and H(W ) =

Hd,ε′(S
k) with a VLF code from Theorem 1 transmitting W

with probability of error 1√
k

. Apply (27) to (10).
Converse: Apply the data-processing inequality and [2,

Lemma 1-2] to get:

`C ≥ RSk(d, ε) (30)

for every (k, `, d, ε) VLF code.

E. Guaranteed distortion

Theorem 5. Under assumptions A1–A5, we have

`?t (k, d, 0)C = kR(d) +O (log k) (31)

Proof. For the achievability we note that the estimate of the
Hd,ε(S

k) in (27) applies with ε = 0 and thus

Hd,0(S
k) = kR(d) +O(log k) . (32)

Then, we can pair the mapping achieving Hd,0(S
k) with the

zero-error VLFT code from Theorem 2.
Conversely, repeating the argument of [3, Theorem 4], with

the replacement of the right side of [3, (67)] by RS(d, ε) we
conclude that any (`, d, ε) VLFT code must satisfy

RS(d, ε) ≤ C`+ log(`+ 1) + log e . (33)

F. Discussion

We make several remarks regarding the rate-distortion trade-
off in all three settings considered above:

1) The case d = dmin is special and is excluded in the
assumptions of Theorems 3–5. However, in the most im-
portant special case of a distortion measure that satisfies

d(a, b) =

{
dmin, a = b

> dmin, a 6= b
, (34)

d = dmin corresponds to almost-lossless transmission,
and both Theorems 3 and 4 apply with R(d) and V(d)
equal to the entropy and the varentropy of the source,
respectively, as long as the source is stationary and
memoryless and the third moment of ıS(S) is finite.

2) For almost-lossless transmission of finite alphabet
sources, the asymptotic expansion (29) can be achieved
by reliably (i.e. with probability of error ∼ 1

k ) sending
through the channel the type of the source outcome first,
and then reliably sending each message whose type is
one the most likely types with total mass 1− ε.

3) Note that (29) is achieved by a stop-feedback code. We
can further show that even without any feedback one can
still achieve the optimal first order performance

`C ≤ (1− ε)kR(d) +O(
√
k log k), (35)

provided variable-length channel coding is allowed. In-
deed, one can first use the variable-length excess-
distortion compressor from [5] on Sk to get a binary
string of average length (1− ε)kR(d) +O(

√
k), see (2).

Then, truncating the length at k2 and transmitting 2 log k
data bits with reliability 1

k2 , we can reliably inform the
encoder about the total number of data bits b to be
sent next. We may then use a capacity-achieving code
of length b

C + O(
√
b log b) to send the data bits with

reliability 1
k [22].

4) The naive separation achieves at most:

`C ≥ (1− ε)kR(d) + a
√
k log k, a > 0. (36)

5) The Schalkwijk-Bluestein [32] elegant linear feedback
scheme for the transmission of a single Gaussian sample
S ∼ N (0, σ2) over the AWGN channel achieves the
mean-square error σ2

(1+P )n , after n channel uses, where P
is the average transmit SNR. In other words, the minimum
delay in transmitting a Gaussian sample over a Gaussian
channel with feedback is given by

`?(1, d) =
R(d)

C
, (37)

as long as R(d)
C is integer.4 Note that (37) is achieved

with fixed, not variable length, and average, not maximal,
power constraint. If there are k Gaussian samples to

4If R(d)
C

= 1, no feedback is needed.



transmit, repeating the scheme for each of the samples
achieves

`?(k, d) = k
R(d)

C
, (38)

which implies, in particular, that in general our estimate
of O (log k) in (28) is too conservative. Beyond Gaussian
sources and channels, a sufficient condition for a fixed-
length JSCC feedback scheme to achieve (38) is provided
in [16].

IV. CONCLUSION

We have considered several scenarios for joint source-
channel coding with feedback. Our main conclusions are:

1) The average delay vs. distortion tradeoff with feedback
is governed by channel capacity, and the source rate-
distortion and rate-dispersion functions. In particular, the
channel dispersion plays no role.

2) In variable-length coding with feedback, the asymptoti-
cally achievable minimum average length is reduced by a
factor of 1−ε, where ε is the excess distortion probability.
This asymptotic fundamental limit is approached from be-
low, i.e., counter-intuitively, smaller source blocklengths
may lead to smaller attainable average delays.

3) Introducing a termination symbol that is always decoded
error-free allows for transmission over noisy channels
with guaranteed distortion.

4) Variable-length transmission without feedback still im-
proves the asymptotic fundamental limit by a factor of
1− ε, where ε is the excess distortion probability.

5) In all the cases we have analyzed the approach to the
fundamental limits is very fast: O

(
log k
k

)
, where k is

the source blocklength. This behavior is attained, under
average distortion, by a separated scheme with stop-
feedback.

6) Variable-length separated schemes perform remarkably
well in all considered scenarios.

REFERENCES

[1] C. E. Shannon, “The zero error capacity of a noisy channel,” IRE
Transactions on Information Theory, vol. 2, no. 3, pp. 8–19, Sep. 1956.

[2] M. V. Burnashev, “Data transmission over a discrete channel with
feedback: Random transmission time,” Problems of Information Trans-
mission, vol. 12, no. 4, pp. 10–30, 1976.

[3] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Feedback in the non-
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[23] V. Kostina and S. Verdú, “Fixed-length lossy compression in the finite
blocklength regime,” IEEE Transactions on Information Theory, vol. 58,
no. 6, pp. 3309–3338, June 2012.

[24] N. Farvardin and V. Vaishampayan, “Optimal quantizer design for
noisy channels: An approach to combined source-channel coding,” IEEE
Trans. on Information Theory, vol. 33, no. 6, pp. 827–838, 1987.

[25] A. Amanullah and M. Salehi, “Joint source-channel coding in the
presence of feedback,” in Proc. 27th Asilomar Conf. Sig. Syst. Comp.,
1993, pp. 930–934.

[26] S. Gorantla and T. Coleman, “Information-theoretic viewpoints on opti-
mal causal coding-decoding problems,” arXiv preprint arXiv:1102.0250,
2011.

[27] B. Hochwald and K. Zeger, “Tradeoff between source and channel
coding,” IEEE Transactions on Information Theory, vol. 43, no. 5, pp.
1412–1424, 1997.
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