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Strong Data Processing Inequalities in
Power-Constrained Gaussian Channels

Flavio P. Calmon, Yury Polyanskiy, Yihong Wu

Abstract—This work presents strong data processing results
for the power-constrained additive Gaussian channel. Explicit
bounds on the amount of decrease of mutual information un-
der convolution with Gaussian noise are shown. The analysis
leverages the connection between information and estimation (I-
MMSE) and the following estimation-theoretic result of indepen-
dent interest. It is proved that any random variable for which
there exists an almost optimal (in terms of the mean-squared
error) linear estimator operating on the Gaussian-corrupted
measurement must necessarily be almost Gaussian (in terms of
the Kolmogorov-Smirnov distance).

I. INTRODUCTION

Strong data-processing inequalities quantify the decrease

of mutual information under the action of a noisy channel.

Such inequalities have apparently been first discovered by

Ahlswede and Gács in a landmark paper [1]. Among the

work predating [1] and extending it we mention [1]–[5].

Notable connections include topics ranging from existence and

uniqueness of Gibbs measures and log-Sobolev inequalities to

performance limits of noisy circuits. We refer the reader to the

introduction in [6] and the recent monographs [7], [8] for more

detailed discussions of applications and extensions. Below we

only review the necessary minimum to set the stage for our

work.

For a fixed channel PY |X : X → Y , let PY |X ◦ P be

the distribution on Y induced by the push-forward of the

distribution P . One approach to strong data processing seeks

to find the contraction coefficients

ηf , sup
P,Q:P 6=Q

Df

(

PY |X ◦ P‖PY |X ◦Q
)

Df (P‖Q)
, (1)

where the Df (P‖Q) is an arbitrary f -divergence of

Csiszár [9]. When the divergence Df is the KL-divergence

and total variation1, we denote the coefficient ηf as ηKL and

ηTV, respectively.

For discrete channels, [1] showed equivalence of ηKL < 1,

ηTV < 1 and connectedness of the bipartite graph describing

the channel. Having ηKL < 1 implies reduction in the

usual data-processing inequality for mutual information [10,

Exercise III.2.12], [11]:

∀ W → X → Y : I(W ;Y ) ≤ ηKL · I(W ;X) .

When PY |X is an additive white Gaussian noise channel,

i.e. Y = X+Z with Z ∼ N (0, 1), the authors showed [6] that
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1The total variation between two distributions P and Q is TV(P,Q) ,

supE |P [E]−Q[E]|.

restricting maximization in (1) to distributions with a bounded

second moment (or any moment) still leads to no-contraction,

giving ηKL = ηTV = 1 for AWGN. Nevertheless, the

contraction does indeed take place, except not multiplicatively.

Namely [6] found the region
{

(TV(P,Q),TV(P ∗ PZ , Q ∗ PZ)) : E(P+Q)/2[X
2] ≤ γ

}

,

where ∗ denotes convolution. The boundary of this region,

deemed the Dobrushin curve of the channel, turned out to

be strictly bounded away from the diagonal (identity). In

other words, except for the trivial case where TV(P,Q) = 0,

total variation decreases by a non-trivial amount in Gaussian

channels.

Unfortunately, the similar region for KL-divergence turns

out to be trivial, so that no improvement in the inequality

D(PX ∗ PZ‖QZ ∗ PZ) ≤ D(PX‖QX)

is possible (given the knowledge of the right-hand side and

moment constraints on PX and QX ). In [6], in order to

study how mutual information dissipates on a chain of Gaus-

sian links, this problem was resolved by a rather lengthy

workaround which entails first reducing questions regarding

the mutual information to those about the total variation and

then converting back.

A more direct approach, in the spirit of the joint-range idea

of Harremoës and Vajda [12], is to find (or bound) the best

possible data-processing function FI defined as follows.

Definition 1. Let Yγ =
√
γX + Z, where Z ∼ N (0, 1) is

independent of X . We define

FI(t, γ) , sup {I(W ;Yγ) : I(W ;X) ≤ t,W → X → Yγ} ,
(2)

where the supremum is over all joint distributions PW,X such

that E
[

X2
]

≤ 1.

The significance of the function FI is that it gives the

optimal input-independent strong data processing inequality

on Gaussian channel:

I(W ;Yγ) ≤ FI(I(W ;X), γ).

Before discussing properties of FI , we mention two related

quantities considered previously in the literature. Witsen-

hausen and Wyner [13] defined

FH(PXY , h) = infH(Y |W ), (3)

with the infimum taken over all joint distributions satisfying

W → X → Y,H(X|W ) = h,P[X = x, Y = y] = PXY (x, y) .

Clearly, by a simple reparametrization h = H(X) − t, this

function would correspond to H(Y ) − FI(t) if FI(t) were

defined with restriction to a given input distribution PX .

The PX -independent version of (3) has also been studied by
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Fig. 1. The strong data processing function FI and gaps gd and gh to the
trivial data processing bound (4).

Witsenhausen [14]:

FH(PY |X , h) = infH(Y |W ),

with the infimum taken over all

W → X → Y,H(X|W ) = h,P[Y = y|X = x] = PY |X(y|x) .
This quantity plays a role in a generalization of Mrs. Gerber’s

lemma and satisfies a convenient tensorization property:

FH((PY |X)n, nh) = nF (PY |X , h) .

There is no one-to-one correspondence between FH(PY |X , h)
and FI(t) and in fact, alas, FI(t) does not satisfy any (known

to us) tensorization property.

Apriori, the only bounds we can state on FI are conse-

quences of capacity and the data processing inequality:

FI(t, γ) ≤ min {t, C(γ)} , (4)

where C(γ) = 1
2 ln(1 + γ) is the Gaussian channel capacity.

Recently, we were able to show (for any noise distribution

PZ subject to natural regularity conditions) the following two

inequalities hold [15]

FI(t, γ) ≤ t− gd(t, γ), (5)

FI(t, γ) ≤ C(γ)− gh(t, γ) (6)

with strictly positive gd and gh. See Fig. 1 for an illustration.

Extracting explicit expressions for gd and gh from [15] appears

tedious, however.

In this work, we treat the special case of the Gaussian noise

and derive explicit asymptotically sharp estimates showing that

FI(t, γ) is strictly bounded away from the trivial (4). To that

end, we leverage Fourier-analytic tools and methods specific

to Gaussian distributions, namely, Talagrand’s transportation

inequality [16] and information-estimation connection [17].

Specifically, Theorem 1 provides a lower bound for the

function gd(t, γ) defined in (5), which is asymptotically tight

as t → 0:

gd(t, γ) = e−
γ
t ln 1

t+Θ(ln 1
t ). (7)

A repeated application of (5) shows that the mutual informa-

tion between the input X0 and the output Yn of the chain

of n energy-constrained Gaussian relays converges to zero

I(X0;Yn) → 0. In fact, (7) recovers the convergence rate

of O( log logn
logn ) first reported in [6, Theorem 1].

We also characterize the asymptotic behaviour of FI(t, γ)
approaching C(γ) as t → ∞, which turns out to be double-

exponential. In Theorem 2 and Remark 4, we prove that
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Fig. 2. Lower bound on gd(t, 1) derived in Theorem 1.
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Fig. 3. Lower bound on gh(t, 1) derived in Theorem 2.

gh(t, γ), defined in (6), satisfies

e−c1(γ)e
4t ≤ gh(t, γ) ≤ e−c2(γ)e

t+O(ln γ) (8)

as t → ∞, where c1(γ) and c2(γ) are strictly positive

functions of γ. The lower bounds for gd and gh are illustrated

in Fig. 2 and 3.

In order to bound gh(t, γ) from below, we obtain two

ancillary results that are of independent interest. Lemma 1

shows that if the linear estimator of X given Yγ is near-optimal

in terms of the mean squared error, then X is almost Gaussian

in terms of Kolmogorov-Smirnov (KS) distance. By applying

the I-MMSE relationship, this result is then used to prove that

if I(X;Yγ) is close to C(γ), then X is also almost Gaussian

in terms of the KS-distance (Lemma 2).

The rest of the paper is organized as follows. Section II

presents a lower bound for gd(t, γ). Section III describes

explicit upper bounds for the KS-distance between the dis-

tribution of X and N (0, 1) when (i) the linear estimator of X
given Yγ performs almost as well as the mmse estimator, and

(ii) I(X;Yγ) is close to C(γ). These results are then used in

Section IV to lower bound gh(t, γ). Finally, in Section V we

consider the infinite-dimensional discrete Gaussian channel,

and show that in this case there exists no non-trivial strong

data processing inequality for mutual information.

II. DIAGONAL BOUND

In this section we show that FI(t) is bounded away from

t for all t > 0 (Theorem 1) and investigate the behaviour of

FI(t) for small t (Corollary 1).

Theorem 1. For t ≥ 0, FI(t, γ) = t− gd(t, γ),where

gd(t, γ) ≥ max
x∈[0,1/2]

2Q

(
√

γ

x

)

(

t− h (x)− x

2
ln

(

1 +
γ

x

))

,

(9)

h(x) , x ln 1
x+(1−x) ln 1

1−x and Q(x) , 1√
2π

∫∞
x

e−y2/2dy.
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Proof. Let E = 1{|X|>A/
√
γ} and E [E] = p. Observe that

E
[

γX2|E = 1
]

≤ γ/p and p ≤ γ/A2. (10)

Therefore, for p̄ , 1− p,

I(W ;Y ) ≤I(W ;E) + pI(W ;Y |E = 1) + p̄I(W ;Y |E = 0)

≤I(W ;E) + pI(W ;Y |E = 1)

+ p̄η(A)I(W ;X|E = 0), (11)

where the last inequality follows from [6], and η(t) = 1 −
2Q(t). Noting that

p̄I(W ;X|E = 0) =I(W ;X)− pI(W ;X|E = 1)− I(W ;E),

we can further bound (11) by

I(W ;Y ) ≤ (1− η(A))I(W ;E) + η(A)I(W ;X)

+ pη(A) (I(W ;Y |E = 1)− I(W ;X|E = 1))

+ p(1− η(A))I(W ;Y |E = 1)

≤ (1− η(A)) (I(W ;E) + pI(W ;Y |E = 1))

+ η(A)I(W ;X) (12)

= I(W ;X)− (1− η(A)) (I(W ;X)

−I(W ;E)− pI(W ;Y |E = 1)) , (13)

where (12) follows from I(W ;Y |E = 1) ≤ I(W ;X|E = 1).
Now observe that, for p = γ/A2 ≤ 1/2,

I(W ;E) ≤ H(E) ≤ h
(

γ/A2
)

. (14)

In addition,

pI(W ;Y |E = 1) ≤ pI(X;Y |E = 1)

≤ p

2
ln

(

1 +
γ

p

)

(15)

≤ γ

2A2
ln(1 +A2). (16)

Here (15) follows from the fact that mutual information is

maximized when X is Gaussian under the power constraint

(10), and (16) follows by noticing that x 7→ x ln(1 + a/x) is

monotonically increasing for any a > 0. Combining (14) and

(16), and for A ≥ √
2γ,

I(W ;E) + pI(W ;Y |E = 1) ≤ h
( γ

A2

)

+
γ

2A2
ln
(

A2 + 1
)

.

(17)

Choosing A =
√

γ/x, where 0 ≤ x ≤ 1/2, (17) becomes

I(W ;E) + pI(W ;Y |E = 1) ≤ h (x) +
x

2
ln
(

1 +
γ

x

)

.

(18)

Substituting (18) in (13) yields the desired result.

Remark 1. Note that fd(x, γ) , h (x) + x
2 ln

(

1 + γ
x

)

is 0

when x = 0 and is continuous and strictly positive for 0 <
x ≤ 1/2. Then gd(t, γ) is strictly positive for t > 0. The next

corollary characterizes the behaviour of gd(t, γ) for small t.

Corollary 1. For fixed γ, t = 1/u and u sufficiently large,

there is a constant c3(γ) > 0 dependent on γ such that

gd(1/u, γ) ≥
c3(γ)

u
√
uγ lnu

e−γu lnu. (19)

In particular, gd(1/u, γ) ≥ e−γu lnu+O(ln γu3/2).

Remark 2. Fix γ and define a binary random variable X
with P[X = a] = 1/a2 and P[X = 0] = 1− 1/a2 for a > 0.

Furthermore, let X̂ denote the minimum distance estimate of

X produced from Yγ . Then the probability of error satisfies

Pe = P[X 6= X̂] ≤ Q(
√
γa/2). In addition, h

(

Q(
√
γa/2)

)

=

O(e−γa2/8√γa) and H(X) = a−2 ln a(2 + o(1)) as a → ∞.

Therefore,

h (Q(
√
γa/2)) ≤ e−

γ
H(X)

ln 1
H(X)

+O(ln(γ/H(X)). (20)

Using Fano’s inequality, I(X;Yγ) can be bounded as

I(X;Yγ) ≥ I(X; X̂)

≥ H(X)− h(Pe)

≥ H(X)− h (Q(
√
γa/2))

= H(X)− e−
γ

H(X)
ln 1

H(X)
+O(ln(γ/H(X)).

Setting W = X , this result yields the sharp asymptotics (7).

III. MMSE

We now show that if the linear least-square error of esti-

mating X from Yγ is small (i.e. close to the minimum mean-

squared error), then X must be almost Gaussian in terms of

the KS-distance. With this result in hand, we use the I-MMSE

relationship [17] to show that if I(X;Yγ) is close to C(γ),
then X is also almost Gaussian. This result, in turn, will be

applied in the next section to bound FI(t, γ) aways from C(γ).
Denote the linear least-square error estimator of X given

Yγ by fL(y) ,
√
γy/(1 + γ), whose mean squared error is

lmmse(X|Yγ) , E
[

(X − fL(Yγ))
2
]

=
1

1 + γ
.

Assume that lmmse(X|Yγ) − mmse(X|Yγ) ≤ ǫ. It is well

known that ǫ = 0 if and only if X ∼ N (0, 1) (e.g. [18]). To

develop a finitary version of this result, we ask the following

question: If ǫ is small, how close is PX to Gaussian? The next

lemma provides a quantitative answer.

Lemma 1. If lmmse(X|Yγ) − mmse(X|Yγ) ≤ ǫ, then there

are absolute constants a0 and a1 such that

dKS(FX ,N (0, 1)) ≤a0

√

1

γ log(1/ǫ)

+ a1(1 + γ)ǫ1/4
√

γ log(1/ǫ), (21)

where FX is the CDF of X , and dKS is the Kolmogorov-

Smirnov distance, defined as dKS(F1, F2) , supx∈R
|F1(x)−

F2(x)|.
Remark 3. Note that the gap between the linear and non-

linear MMSE can be expressed as the Fisher distance be-

tween the convolutions, i.e., lmmse(X|Yγ)−mmse(X|Yγ) =
I(PYγ

‖N(0, 1+γ)), where I(P‖Q) =
∫

[(log dP
dQ )′]2dP is the

Fisher distance, which is very strong and dominates the KL

divergence according to the log-Sobolev inequality. Therefore

Lemma 1 can be interpreted as a deconvolution result, where

bounds on a stronger (Fisher) distance of the convolutions lead

to bounds on the distance between the original distributions

under a weaker (KS) metric.
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Proof. Denote fM (y) = E [X|Yγ = y]. Then

lmmse(X|Yγ)−mmse(X|Yγ)

=E
[

(X − fL(Yγ))
2
]

− E
[

(X − fM (Yγ))
2
]

=E
[

(fM (Yγ)− fL(Yγ))
2
]

≤ ǫ. (22)

Denote ∆(y) , fM (y) − fL(y). Then E [∆(Yγ)] = 0 and

E
[

∆(Yγ)
2
]

≤ ǫ. From the orthogonality principle:

E
[

eitYγ (X − fM (Yγ))
]

= 0. (23)

Let ϕX denote the characteristic function of X . Then

E
[

eitYγ (X − fM (Yγ))
]

= E
[

eitYγ (X − fL(Yγ)−∆(Yγ))
]

=
1

1 + γ

(

e−t2/2
E

[

ei
√
γtXX

]

−√
γϕX(

√
γt)E

[

ZeitZ
]

)

− E
[

eitYγ∆(Yγ)
]

=
−ie−u2/2γ

1 + γ
(ϕ′

X(u) + uϕX(u))− E
[

eitYγ∆(Yγ)
]

, (24)

where the last equality follows by changing variables u =√
γt. Consequently,

e−u2/2γ

1 + γ
|ϕ′

X(u) + uϕX(u)| =
∣

∣E
[

eitYγ∆(Yγ)
]∣

∣ (25)

≤ E [|∆(Yγ)|] ≤
√
ǫ. (26)

Put φX(u) = e−u2/2 (1 + z(u)). Then

|ϕ′
X(u) + uϕX(u)| = e−u2/2|z′(u)|,

and, from (26), |z′(u)| ≤ (1+ γ)
√
ǫe

u2(γ+1)
2γ . Since z(0) = 0,

|z(u)| ≤
∫ u

0

|z′(x)|dx ≤ u(1 + γ)
√
ǫe

u2(γ+1)
2γ . (27)

Observe that |ϕX(u) − e−u2/2| = e−u2/2|z(u)|. Then, from

(27),
∣

∣

∣

∣

∣

ϕX(u)− e−u2/2

u

∣

∣

∣

∣

∣

≤ (1 + γ)
√
ǫe

u2

2γ . (28)

Thus the Esseen inequality (cf. [19, Eq. (3.13), pg. 512]) yields

dKS(FX ,N (0, 1)) ≤ 1

π

∫ T

−T

(1 + γ)
√
ǫe

u2

2γ du+
12
√
2

π3/2T

≤ 2T

π
(1 + γ)

√
ǫe

T2

2γ +
12
√
2

π3/2T
.

Choosing T =
√

γ
2 ln( 1ǫ ), we find

dKS(FX ,N (0, 1)) ≤a0

√

1

γ ln(1/ǫ)

+ a1(1 + γ)ǫ1/4
√

γ ln(1/ǫ),

where a0 = 24
π3/2 and a1 =

√
2

π .

Through the I-MMSE relationship [17], the previous lemma

can be extended to bound the KS-distance between the distri-

bution of X and the Gaussian distribution when I(X;Yγ) is

close to C(γ).

Lemma 2. Let C(γ)− I(X;Yγ) ≤ ǫ. Then, for γ > 4ǫ,

dKS(FX ,N (0, 1)) ≤a0

√

2

γ ln
(

γ
4ǫ

)

+ a1(1 + γ)(γǫ)1/4
√

2 ln
( γ

4ǫ

)

. (29)

IV. HORIZONTAL BOUND

In this section we show that FI(t, γ) is bounded away from

the capacity C(γ) for all t. In particular, Theorem 2 proves

that if C(γ) − FI(t, γ) ≤ ǫ, then t = Ω(ln ln 1/ǫ) as ǫ → 0.

We first give an auxiliary lemma.

Lemma 3. If D(N (0, 1)‖PX∗N (0, 1)) ≤ 2ǫ, then there exists

an absolute constant a2 > 0 such that

P[|X| > ǫ1/8] ≤ a2ǫ
1/8. (30)

Theorem 2. Let C(γ)− FI(t, γ) ≤ ǫ. Then

t ≥ 1

4
ln ln

1

ǫ
− ln c1(γ), (31)

where c1(γ) is some constant depending on γ. In particular,

FI(t, γ) = C(γ)− gh(t, γ), (32)

where gh(t, γ) ≥ e−c1(γ)e
4t

.

Proof. Let C(γ)− I(W ;Yγ) ≤ ǫ. Observe that

I(W ;Yγ) =C(γ)−D(P√
γX ∗ N (0, 1)‖N (0, 1 + γ))

− I(X;Yγ |W ). (33)

Therefore, if I(W ;Yγ) is close to C(γ), then (a) PX needs

to be Gaussian like, and (b) PX|W needs to be almost deter-

ministic with high PW -probability. Consequently, PX|W and

PX are close to being mutually singular and hence I(W ;X)
will be large, since

I(W ;X) = D(PX|W ‖PX |PW ).

Let X̃ ,
√
γX and then W → X̃ → Y . Define

d(x,w) , D(PY |X̃=x‖PY |W=w)

= D(N (x, 1)‖PX̃|W=w ∗ N (0, 1)).

Then (x,w) 7→ d(x,w) is jointly measurable2 and

I(X;Y |W ) = E[d(X̃,W )]. Similarly, w 7→ τ(w) ,

D(PX|W=w‖PX) is measurable and I(X;W ) = E[τ(W )].
Since ǫ ≥ I(X;Y |W ) in view of (33), we have

ǫ ≥ E[d(X̃,W )] ≥ 2ǫ · P[d(X̃,W ) ≥ 2ǫ]. (34)

Therefore

P[d(X̃,W ) < 2ǫ] >
1

2
. (35)

Denote B(x, δ) , [x − δ, x + δ]. In view of Lemma 3, if

2By definition of the Markov kernel, x 7→ P
Y ∈A|X̃=x

and w 7→
PY ∈A|W=w are both measurable for any measurable subset A. Since Y
is real-valued, by data processing and lower semicontinuity of divergence, we
have D(P[Y ]k|X̃=x

‖P[Y ]k|W=w) → D(P
Y |X̃=x

‖PY |W=w) as k → ∞,

where [y]k = ⌊ky⌋/k denotes the uniform quantizer. Therefore the joint
measurability of (x,w) 7→ D(P

Y |X̃=x
‖PY |W=w) follows from that of

(x,w) 7→ D(P[Y ]k|X̃=x
‖P[Y ]k|W=w).
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d(x,w) < 2ǫ, then

P[X̃ ∈ B(x, ǫ1/8)|W = w]

=P

[

X ∈ B

(

x√
γ
,
ǫ1/8√
γ

)∣

∣

∣

∣

W = w

]

≥ 1− a2ǫ
1/8.

Therefore, with probability at least 1/2, X̃ and, consequently,

X is concentrated on a small ball. Furthermore, Lemma 2

implies that there exist absolute constants a3 and a4 such that

P

[

X ∈ B

(

x√
γ
,
ǫ1/8√
γ

)]

≤ P

[

Z ∈ B

(

x√
γ
,
ǫ1/8√
γ

)]

+ 2dKS(FX ,N (0, 1))

≤
√
2ǫ1/8√
πγ

+ a3

√

1

γ ln
(

γ
4ǫ

) + a4(1 + γ)(γǫ)1/4
√

ln
( γ

4ǫ

)

≤ κ(γ)

(

ln
1

ǫ

)−1/2

,

where κ(γ) is some positive constant depending only on γ.

Therefore, for any w ∈ B and ǫ sufficiently small, denoting

E = B( x√
γ ,

ǫ1/8√
γ ), we have by data processing inequality:

τ(w) = D(PX|W=w‖PX) ≥PX|W=w(E) ln
PX|W=w(E)

PX(E)

+ PX|W=w(E
c) ln

PX|W=w(E
c)

PX(Ec)

≥1

2
ln ln

1

ǫ
− lnκ(γ)− a5, (36)

where a5 is an absolute positive constant. Combining (36) with

(35) and letting c21(γ) , ea5κ(γ), we obtain

P

[

τ(W ) ≥ 1

2
ln ln

1

ǫ
− 2 ln c1(γ)

]

≥ P[d(X̃,W ) < 2ǫ] ≥ 1

2
,

which implies that I(W ;X) = E[τ(W )] ≥ 1
4 ln ln

1
ǫ −

ln c1(γ), proving the desired (31).

Remark 4. The double-exponential convergence rate in The-

orem 2 is in fact sharp. To see this, note that [20, Theorem

8] showed that there exists a sequence of zero-mean and unit-

variance random variables Xm with m atoms, such that

C(γ)− I(Xm;
√
γXm + Z) ≤ 4(1 + γ)

(

γ

1 + γ

)2m

. (37)

Consequently,

C(γ)− FI(t, γ) ≤ C(γ)− FI(ln⌊et⌋, γ)

≤ 4(1 + γ)

(

γ

1 + γ

)2(et−1)

= e−2et ln 1+γ
γ +O(ln γ),

proving the right-hand side of (8).

V. DIMENSION GREATER THAN 1

It is possible to reproduce the techniques above for the

case when the channel X → Y is a d-dimensional Gaussian

channel subject to a total-energy constraint E
[
∑

i X
2
i

]

≤ 1 .
Unfortunately, the resulting bound has strong dependence

on dimension and in particular does not improve the trivial

estimate (4) as d → ∞. It turns out this dependence is

unavoidable as we show next.

To that end we consider an infinite-dimension discrete-time

Gaussian channel. Here the input X = (X1, X2, . . . ) and Y =
(Y1, Y2, . . . ) are sequences, where Yi = Xi + Zi and Zi ∼
N (0, 1) are i.i.d. Similar to Definition 1, we denote

F∞
I (t, γ) = sup {I(W ;Y ) : I(W ;X) ≤ t,W → X → Y } ,

(38)

where the supremum is over all PWX such that E
[

‖X‖22
]

=
E
[
∑

X2
i

]

≤ γ. Note that, in this case, F∞
I (t, γ) ≤

min{t, γ/2}. The next theorem shows that unlike in the scalar

case, there is no improvement over the trivial upper bound

(38) in the infinite-dimensional case. This is in stark contrast

with the strong data processing behavior of total variation in

Gaussian noise which turns out to be dimension-independent

[6, Corollary 6].

Theorem 3. For 0 ≤ t ≤ γ/2, F∞
I (t, γ) = t.
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