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Abstract—This article continues the recent investigation of
combinatorial joint source-channel coding. For the special case
of a binary source and channel subject to distortion measured by
Hamming distance, the lower (converse) bounds on achievable
source distortion are improved for all values of channel noise.
Operational duality between coding with bandwidth expansion
factors ρ and 1

ρ
is established. Although the exact value of the

asymptotic noise-distortion tradeoff curve is unknown (except
at ρ = 1), some initial results on inter-relations between these
curves for different values of ρ are shown and lead to statements
about monotonicity and continuity in ρ.

I. INTRODUCTION

The joint source-channel problem seeks to encode the user
data in such a way that the noise applied to the encoded string
did not lead to excessive distortion of the original data. The
combinatorial joint source-channel (CJSCC) problem seeks
to provide answers under the assumption that the noise is
taken in the worst-case sense. Namely, for this paper we will
focus on binary Hamming source/channel and correspond-
ingly, the (D, δ) CJSCC is a pair of encoder and decoder such
that addition of any string of (normalized) Hamming weight
up to δ does not lead to post-decoding distortion larger than
D, as measured by (normalized) Hamming distance.

The CJSCC problem and a framework for analysis were
originally introduced in [1] and expanded in [2]. For thorough
motivation and background on the problem we refer the
reader to [2]. Here we only recall perhaps the more surprising
observation from [1] about asymptotic sub-optimality of
separated schemes in CJSCC.

In binary Hamming space, the adversarial source problem
is a covering problem and the adversarial channel problem is
a packing problem. For the covering problem, the asymptot-
ically optimal covering has been found exactly, see e.g. [3].
The packing problem is addressed extensively in [4] and an
exact asymptotic solution is still open. The best known lower
bound is the Gilbert-Varshamov bound and the best known
upper bound is the MRRW bound [5]. As such, these bounds,
and the exact solution for the covering problem, characterize
separation based schemes for the BSC. The observation that
spurred our interest in this problem was made in [1], where
it was shown that some simple CJSCC (such as repetition)
achieve performance strictly better than any separated scheme
for certain values of parameters.

In this paper, we extend the previous work in several
directions. First, new converse bounds are proved that to-
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gether improve the state-of-the-art for all values of bandwidth
expansion factor ρ > 0 and channel parameters 0 < δ < 1, cf.
Fig. 2. One interesting implication is the following (perhaps
counter-intuitive) conclusion: For certain values of (D, δ)
increasing the redundancy factor ρ can lead to decrease in
performance. For example, this holds for all δ > 1

2 , cf.
Section III-A.

Second, an exact operational duality is established between
the CJSCC problems at ρ and at 1

ρ . In particular, this allows
us to extend our directory of basic CJSCC codes and close,
for example, the question of the largest channel noise δ for
which distortion D is still less than 1. (This critical value,
that is always greater than 1

2 , establishes the threshold at
which the adversarial binary channel becomes fully useless
for conveying binary-coded information.) For more details,
see (20).

The structure of the paper is as follows. Converse bounds
occupy Section III. For δ ≥ 1/2, a converse relating cover-
ings in the source and channel spaces, Section III-A, estab-
lishes that D is bounded below by a function monotonically
increasing in ρ and ρ = 1 is strictly optimal in the region
ρ ≥ 1. For 1/4 ≤ δ < 1/2, a converse relating packings in
the source and channel spaces, Section III-B, demonstrates
that, for all ρ > 0, D & δ and, for linear codes, Section III-C,
D ≥ δ. In Section III-D a further stronger converse bound is
proved for all schemes based on the idea of repeating a small
code, cf. [6]. Sections IV and V introduce the concepts of
ρ↔ 1

ρ duality and the composition of CJSCCs, respectively.
Finally, Section VI concludes with numerical comparisons
and discussions.

II. PRELIMINARIES

A. Hamming Space
For the BSC, the alphabets of interest are all binary

Hamming space and the adversary is restricted to outputs
whose hamming distance to the input is bounded according
to the channel parameter. The notation for the n fold product
of the field of two elements Fn2 is used for n dimensional
Hamming space and Euclidean notation |·| is used for both
the Hamming distance and weight.

Given a set S ⊂ Fn2 its Chebyshev radius is the radius of
the smallest Hamming ball containing all of its points,

rad(S) = min
y∈Fn2

max
x∈S

d(x, y),

a point y0 achieving this minimum is called a Chebyshev
center, and its covering radius is the radius of the smallest
covering by points in S

rcov(S) = max
y∈Fn2

min
x∈S

d(x, y).



These two quantities satisfy an important relation

rad(S) = n− rcov(S), (1)

which follows from the following property of binary Ham-
ming space: for all x ∈ Fn2 and r ∈ R

B(x, r)c = B(x̄, dn− r − 1e), (2)

where B(x, r) := {y ∈ Fn2 : |x − y| ≤ r} and x̄ is the
entrywise binary negation.

There are also some combinatorial quantities of interest:
• K(n, r) – minimal number of points covering Fn2 with

radius r balls;
• A(n, d) – maximal number of points with distance

between any two points greater than d;
• AL(n, r) – the maximal number of points such that any

ball of radius r contains at most L points1.

B. Basic Definitions

Definition 1. A pair of maps f : Fk2 → Fn2 and g : Fn2 → Fk2
is a (k, n ;D, δ) CJSCC if

|f(x)− y| ≤ δn =⇒ |x− g(y)| ≤ Dk,

or equivalently D(δ ; k, n, f, g) ≤ D, where

D(δ ; k, n, f, g)k := max
(x,y):|f(x)−y|≤δn

|x− g(y)| .

In the sequel the k and n may be dropped when understood
from the context. Moreover, the notation D(δ ;h) is used
when h is either an encoder or decoder, an encoder being
a map from the source space to the channel space and a
decoder being a map from the channel space to the source
space. In the interest of notational consistency, typically, an
encoder is denoted with an f , a decoder with a g, the source
dimensional is k and the channel dimension is n.

Definition 2. The optimal distortion for a (k, n ;D, δ)
CJSCC is

D∗(δ ; k, n) := min
f,g

D(δ ; f, g),

with minimization over f : Fk2 → Fn2 and g : Fn2 → Fk2 .

Asymptotically we allow the user to choose the optimal
sequence of source and channel dimensions.

Definition 3. For bandwidth expansion factor ρ > 0, the
asymptotically optimal CJSCC is

D∗(δ ; ρ) := inf
{km},{nm}

lim inf
m→∞

D(δ ; km, nm),

where the infimum is over subsequences of the natural
numbers such that

lim
m→∞

nm
km

= ρ.

Remark 4. Note that (D∗(δ ; ρ), δ) is just a lower boundary
of all asymptotically achievable (D, δ) with bandwidth ex-
pansion factor ρ. Formally, we say (D, δ) is asymptotically
achievable if there exists a sequence of (km, nm ;Dm, δm)
CJSCC such that Dm → δ and δm → δ and (3). We call a

1Note: A1(n, r) = A(n, 2r + 1).

pair of integer sequences ({km}, {nm}) satisfying (3) to be
an admissible ρ source-channel sequence.

The following is a simplified characterization of the
CJSCC performance of encoders and decoders, due to [1].

i) For all f : Fk2 → Fn2
D(δ ; f)k = max

y∈Fn2
rad
(
f−1Bδn(y)

)
. (3)

ii) For all g : Fn2 → Fk2
D(δ ; g)k = max

x∈Fk2
min
z∈Fn2

max
y∈Bδn(z)

d(g(y), x).

In the sequel an encoder f : Fk2 → Fn2 (resp. decoder g :
Fn2 → Fk2) may be called a (k, n ;D, δ) CJSCC if D(δ ; f) ≤
Dk (resp. D(δ ; g) ≤ Dk).

III. CONVERSE BOUNDS

This section serves primarily to extend the known converse
bounds of [1] and any converses explicitly named reference
converses given therein. A common theme for these bounds
is to study the behavior of intrinsic combinatorial objects
under the action of a CJSCC, e.g. coverings and packings,
and asymptotic results are obtained by analyzing the limit
of the normalized rate for such objects. In particular, the
information theoretic converse (IT) and asymptotic coding
converse (CC) are

DIT(δ ; ρ) :=

{
h−1(|1− ρ(1− h(δ))|+) 0 ≤ δ ≤ 1

2

1/2 1/2 < δ ≤ 1

DCC(δ ; ρ) :=


1
2h
−1(1−ρRMRRW(2δ)) 0 ≤ δ ≤ 1

4
1
4

1
4 ≤ δ ≤

1
2

1
2

1
2 < δ ≤ 1

, (4)

where, h : [0, 1/2] → [0, 1], h(x) := −x log x − (1 −
x) log(1− x) with base 2 logarithms and

RMRRW(δ) := min
0≤u≤1−2δ

1 + ĥ(u2)− ĥ(u2 + 2(1 + u)δ),

where ĥ(u) := h((1 −
√

1− u)/2). The maximum of these
two lower bounds represents the current state of the art, and
our contribution is an improvement for all δ and ρ, excluding
the combination of δ ≤ 1/2 and ρ ≤ 1.

A. Covering Converse

The following serves as both an extension of the infor-
mation theoretic converse to δ > 1/2 and non-asymptotic
strengthening.

Theorem 5. (Covering Converse) If a (k, n ;D, δ) CJSCC
exists, then

K(k, (1−D)k − 1) ≥ K(n, (1− δ)n− 1) (5)
K(k,Dk) ≤ K(n, δn) (6)

Proof: Let C ⊂ Fn2 be a minimal K(n, δn) covering.
Partition Fn2 into {Uc : c ∈ C} with rad(Uc) ≤ δn for all c.
By the CJSCC condition, {f−1Uc} is a partition of Fk2 with
rad(f−1Uc) ≤ Dk. For each c choose c′ to be the minimizer
achieving rad(f−1Uc). Let C ′ = {c′}, then rcov(C ′) ≤ Dk



and thusly K(k,Dk) ≤ |C ′| = |C| = K(n, δn). The second
statement follows by Theorem 9.

Asymptotically this yields a lower-bound on D∗(δ ; ρ)
given by the following function:

Dcov(δ; ρ) =

{
h−1(|1− ρ(1− h(δ)|+) δ < 1

2

1− h−1(|1− ρ(1− h(δ))|+) δ ≥ 1
2

.

It should be noted that, for 1/2 < δ ≤ 1, Dcov(δ ; ρ) is
monotonically increasing in ρ with Dcov(δ ; ρ) > δ for ρ > 1
and

lim
ρ→0

Dcov(δ ; ρ) = 1
2 lim

ρ→∞
Dcov(δ ; ρ) =


0 0 ≤ δ < 1

2
1
2 δ = 1

2

1 1
2 < δ ≤ 1

.

Combined with and (18) this shows

lim
ρ→0

D∗(δ ; ρ) = 1
2 ∀ δ < 1

2 lim
ρ→∞

D∗(δ ; ρ) = 1 ∀ δ > 1
2 .

B. Packing Converse

The coding converse has a natural extension to multiple
packings.

Theorem 6. Let f be a (k, n ;D, δ) CJSCC. If an L-multiple
packing of radius Dk exists in Fk2 , then its image under f is
an L-multiple packing of radius δn and

AL(k,Dk) ≤ LAL(n, δn).

Proof: Let C be an L-multiple packing of radius Dk.
Suppose f(C) is not an L-multiple packing of radius δn.
Then there exists y0 ∈ Fn2 such that |f(C) ∩ Bδn(y0)| >
L. By construction rad(f(C) ∩ Bδn(y0)) ≤ δn. Thus there
exists x0 such that f−1(f(C) ∩ Bδn(y0)) ⊂ BDk(x0). For
all c0 ∈ C,

f(c0) ∈ f(C) ∩B =⇒ c0 ∈ f−1(f(C) ∩B)

=⇒ c0 ∈ C ∩ f−1(f(C) ∩B).

Hence |C ∩ BDk(x0)| ≥ |C ∩ f−1(f(C) ∩ Bδn(y0))| ≥
|f(C) ∩ Bδn(y0)| > L, a contradiction. The bound follows
from |f−1f((c0))| ≤ L.

With L = 1, Theorem 6 is asymptotically equivalent to
(4), and the novelty here is using it for δ > 1/4 or L > 1.
Blinovsky showed explicit upper and lower bounds

Rach(L, δ) + o(1) ≤ 1

n
logAL(n, nδ) ≤ Rconv(L, δ) + o(1).

The upper bound was improved in [7] for L = 2 and [8] for
odd L. As per the numerical evaluations given in Section VI,
for 0 ≤ δ < 1/4 the best bound is given by L = 2.

The following “staircase” converse shows that coding with
greater than unit bandwidth expansion factor probably yields
no improvement in the region 1/4 < δ < 1/2.

Proposition 7. Let ρ > 0.
i) (Plotkin-Levenshtein) Provided an infinite sequence of

Hadamard matrices exists in k-space, for all m ∈ N,

D∗

((
1

2

m

2m− 1

)+

; ρ

)
≥ 1

2

m

2m− 1
. (7)

ii) (Blinovsky) For all ` ∈ N,

D∗

(
1

2

(
1−
(

2`

`

)
2−2`

)−
; ρ

)
≥ 1

2

(
1−
(

2`

`

)
2−2`

)
.

Proof: (Sketch)

i) Evaluate the coding converse using the Plotkin-
Levenshtein solution to A(n, d), [4] ch. 7.3.

ii) Evaluate the endpoint for Blinovsky’s upper and lower
bounds for ranging values of L.

C. Linear Encoder Converse

A linear (k, n ;D, δ) CJSCC is a n× k matrix A ∈ Fn×k2

and satisfies, for all x ∈ Fk2 ,

wt(x) ≥ 2Dk + 1 =⇒ wt(Ax) ≥ 2bδnc+ 1. (8)

For linear encoders we can sharpen the double staircase
result of the previous section:

Theorem 8. For all ρ > 0 and 1/4 ≤ δ ≤ 1/2, the
asymptotic distortion for linear encoders satisfies

D∗lin(δ ; ρ) ≥ δ.

Proof. Boundary cases are handled by (7), so assume δ ∈
( 1
4 ,

1
2 ). Let Ak be a sequence of linear (k, bρkc ;Dk, δ)

CJSCC with D = lim infk→∞Dk. Let Xk be i.i.d.
Bernoulli(q) vector with q > max(2D, 12 ). By the law of
large numbers

lim sup
k→∞

P[|Xk| ≥ 2Dkk + 1] = 1 . (9)

On the other hand, we have

P[|Xk| ≥ 2Dkk + 1] ≤ P[|AkXk| ≥ 2bδbρkcc+ 1] (10)

≤ E[|AkXk|]
2bδbρkcc+ 1

(11)

≤ qρk

2δρk − 3
, (12)

where (10) is from (8), (11) is by Chebyshev, and (12) follows
because for arbitrary coefficients aj we have

P[
∑

ajXj = 1] ≤ q

when q ≥ 1
2 and thus the average Hamming weight of

the vector AkXk does not exceed qρk.Putting together (9)
and (12) we conclude that q ≥ 2δ, and thusly D ≥ δ.

D. Repetition Scheme Converse

An L-repetition scheme f⊕L : FLk2 → FLn2 is the L
times concatenation of a based code f : Fk2 → Fn2 . Previous
results [1] demonstrated that repeating a small base code
may yield good CJSCC. The asymptotic performance of L-
repetition schemes is characterized in [6, Thm. 2] where it
is shown that, for all ρ > 0, k ∈ N and f : Fk2 → Fbρkc2 , the
limit function

D(δ ; f∞) := lim
L→∞

D(δ ; f⊕L)
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Fig. 1. Repetition code (17) and repetition converse (13) for ρ = 3.

exists and is concave in δ. The concavity in δ and the cov-
ering converse, Dcov(δ ρ), yield the following lower bound
on the asymptotic performance of any repetition scheme:

D(δ ; f⊕∞) ≥


Dcov(δ0 ;ρ)

δ0
δ 0 ≤ δ ≤ δ0

Dcov(δ ; ρ) δ0 < δ < θρ

1 θρ ≤ δ ≤ 1

, (13)

where δ0 is the unique solution in 1/2 < δ < θρ to
δD′cov(δ ; ρ)−Dcov(δ ; ρ) = 0.

See Fig. 2 for an illustration for ρ = 3.

IV. DUALITY

A. Dual Problem
As introduced, the combinatorial joint source-channel

problem seeks the minimal distortion for a given channel
parameter. Conversely, the dual problem asks for the largest
admissible channel parameter for a given distortion. This
optimization is defined as follows:
δ∗(D ; k, n)n+ 1 := max

f,g
min

(x,y) : d(x,g(y))≥Dk+1
d(f(x), y)

= max
g

min
x∈Fk2

rcov(g−1BCDk(x))

= max
f

min
y∈Fn2

max
x∈Fk2

min
z∈fBCDk(x)

d(z, y),

where f : Fk2 → Fn2 and g : Fn2 → Fk2 .
The following theorem relates the primal and dual CJSCC

problems operationally:

Theorem 9. (Duality) Let k, n, kD, nδ be integers. There
exists a (k, n;D, δ) CJSCC if and only if there exists a
(n, k;D1, δ1) CJSCC with

D1 = 1− δ − 1

n
, δ1 = 1−D − 1

k
.

Remark 10. Optimizing over the CJSCC we get:
δ∗(D ; k, n) = 1−D∗(1−D − 1/k ;n, k)− 1/n.

Speaking asymptotically, the point (D, δ) is achievable at
bandwidth ρ if and only if (1 − δ, 1 − D) achievable at
bandwidth 1

ρ . That is, the (D, δ) regions at ρ and 1
ρ are related

by reflection in the diagonal (0, 1)− (1, 0).

Proof: Consider f : Fk2 → Fn2 and g : Fn2 → Fk2
comprising a (k, n;D, δ) code. Equivalently, for all s ∈ Fn2
we have:
∀e′ ∈ Fk2 , |e′| > kD : |f(g(s) + e′)− s| > nδ . (14)

Define the new encoder/decoder pair as follows:

f1(s) , g(s) , g1(x) , 1n+f(x+1k) , s ∈ Fn2 , x ∈ Fk2 ,

where 1k and 1n are the all-one vectors with respective
dimensions. Let e ∈ Fk2 s.t. |e| < k − kD, then we have

|g1(f1(s) + e)− s| = |1n + f(g(s) + e+ 1k)− s|
= n− |f(g(s) + e′)− s|
< n− nδ , (15)

where we defined e′ , e+ 1k and applied (14). Clearly, (15)
shows that (f1, g1) defines a (n, k;D1, δ1) CJSCC.

V. D − δ TRADE-OFF AS A FUNCTION OF ρ

In the information theoretic setting there is both mono-
tonicity and continuity in ρ. This section partially extends
these properties to the combinatorial setup. A basis for
this analysis is the performance of CJSCCs combined by
composition.

Lemma 11. (Composition of Encoders) Let k,m, n ∈ N and
0 ≤ δ ≤ 1. For all f1 : Fk2 → Fm2 and f2 : Fm2 → Fn2

D(δ ; f2 ◦ f1) ≤ D(D(δ ; f2) ; f1)

and
D∗(δ ; k, n) ≤ D∗(D∗(δ ;m,n) ; k,m).

Proof: Let g1 and g2 be the optimal Cheby-
shev decoders. Then d((f2 ◦ f1)(x), y) ≤ δn implies
d(f1(x), g2(y)) ≤ D(δ ; f2)m implies d(x, (g1 ◦ g2)(y)) ≤
D(D(δ ; f2) ; f1)k. The second statement follows immediat-
ley from the first by using the optimal encoders.

Of particular interest is the canonical admissible ρ source-
channel sequence (k, bρkc). To facilitate in the analysis of
such sequences we define upper and lower limits

E(δ ; ρ) := lim sup
k→∞

D(δ ; k, bρkc)

E(δ ; ρ) := lim inf
k→∞

D(δ ; k, bρkc).

The notation E(δ ; ρ) is used in statements that apply to both.
An immediate application of the composition Lemma

shows that E(δ ; ρ) is more or less impervious to small
deviations in ρ and provides a limited monotonicity result.
• For all ρ > 0 and a, b ∈ N

E(δ− ; ρ) ≤ lim sup
k→∞

D(δ ; k + a, bρkc+ b) ≤ E(δ+ ; ρ)

E(δ− ; ρ) ≤ lim inf
k→∞

D(δ ; k + a, bρkc+ b) ≤ E(δ+ ; ρ).

• If ρ, τ > 0 and lim supk→∞D(δ ; bτkc, bρkb) ≤ δ, then
E(δ ; ρ) ≤ E(δ+ ; τ).

• If ρ, τ ∈ Q, then

lim sup
k→∞

D(δ ; bτkc, bρkb) ≤ E(δ+ ; ρ/τ).

VI. DISCUSSION

In this section we discuss how our converse results com-
pare against simple achievability results.



A. Basic CJSCCs

The following is a collection of basic CJSCCs that we will
compare our converse bounds against:
• (Pseudo)-identity code Ik,n: maps k → min{k, n} bits

followed by n−min{k, n} zeros. The distortion of the
(pseudo)-identity map is

D(δ ; Ik,n) = (δn+ max{0, k − n})/k. (16)

• Repetition code Rρ,k: for ρ ∈ N each bit is repeated ρ
times. For odd ρ the distortion of the ρ-repetition code
is better than (16):

D(δ ;Rρ,k)k =
bδρkc
dρ/2e

. (17)

• Dual repetition codes: For ρ equal to reciprocal of the
odd integer, one may define a small code f1 : F

1
ρ

2 → F2

to be a majority vote. Repeating this code asymptotically
achieves

D = 1− (1− δ)1 + ρ

2
.

This is an improvement over the pseudo-identity for
large δ.

• Separated code SM,k,n: Given a covering C1 ⊂ Fk2 (of
radius kD) and a packing C2 ⊂ Fn2 (of radius δn) of
equal cardinality M , the separation code takes x ∈ Fk2 ,
finds the closest point in C1 and outputs a corresponding
point from C2. Asymptotically, these codes achieve [1,
Sec. III-C],

D =

{
h−1(|1− ρ(1− h(2δ))|+) 0 ≤ δ < 1

4 ,
1
2

1
4 ≤ δ <

1
2

. (18)

• Dual separated codes S′M,k,n
2: Given the packing C1 ⊂

Fk2 of radius k(1−D) and covering C2 ⊂ Fn2 of radius
n(1 − δ) of the same cardinality M , the encoder takes
x ∈ Fk2 , finds the closest point in C1 and outputs a
corresponding point in C2.
To verify that this construction indeed yields a
(k, n;D, δ) CJSCC we will use (3). Indeed, by (2)
every ball of radius nδ must miss at least one point
of C2. Thus, f−1B(y, nδ) must exclude a ball of radius
k(1 −D), and thus again by (2) is contained in a ball
of radius kD, QED.
Asymptotically, these codes achieve:

D = 1− 1

2
h−1(|1− ρ(1− h(δ))|+),

1

2
≤ δ ≤ 1 .

(19)

B. Comparison for ρ = 3

Figure 2 gives the best known converse and achievability
bounds for bandwidth expansion factor ρ = 3. The dotted
black line representes the uncoded or ρ = 1 case where the
identity scheme is optimal. Deviation from this line is of
interest.

The achievability bound is given as follows:
• for 0 ≤ δ < .185 the best code is the separated

code (18).
2The name reflects the fact that these codes can be constructed by applying

Theorem 9 to SM,n,k .

1
4

1
2

3
4

1

1
4

1
2

3
4

1

δ

D

Achievability
New Converse
Old Converse

Identity

Fig. 2. State of the art for achievability and converse bounds when ρ = 3.

• for .184 ≤ δ < 1/3 – the [3, 1, 3]-repetition code (17).
• for 1/3 ≤ δ < 1/2, – the separated code with M = 2,

see (18))
• for 1/2 ≤ δ < 1, – the dual separated code (19).

The converse bound is given as follows:3

• for 0 ≤ δ ≤ 1/4, the best bound is Theorem 6 using
L = 2 and the upper bound from [7],

• for 1/4 < δ ≤ 1/2, the interlacing of the bounds in
Proposition 7 (double staircase) and,

• for 1/2 < δ ≤ 1, Theorem 5 the covering converse.
We also note that together the dual-separated codes and the

covering converse establish that the supremum of δ for which
distortion D < 1 is asymptotically achievable at bandwidth
expansion factor ρ is given by

δ∗(1 ; ρ) = 1− h−1
(∣∣∣∣1− 1

ρ

∣∣∣∣+
)

(20)
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3Added in print: The bound in the first interval is superceded by [9,
Theorem 1], while the double staircase can be replaced by the straight line
by [9, Theorem 3].


