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Abstract—This paper analyzes the channel dispersion of quasi-
static multiple-input multiple-output fading channels with no
channel state information at the transmitter. We show that the
channel dispersion is zero under mild conditions on the fading
distribution. The proof of our result is based on Stokes’ theorem,
which deals with the integration of differential forms on manifolds
with boundary.

I. INTRODUCTION

We study the maximal channel coding rate R∗(n, ε) achiev-
able at a given blocklengthn and error probability ε over a quasi-
static multiple-input multiple-output (MIMO) fading channel,
i.e., a random channel that remains constant during the trans-
mission of each codeword. We assume that no channel state
information (CSI) is available at the transmitter. Hereafter, we
write CSIT and CSIR to denote the availability of perfect CSI
at the transmitter and the receiver, respectively.

For quasi-static fading channels, the Shannon capacity, which
is the limit of R∗(n, ε) for n → ∞ and then ε → 0, is
zero for many fading distributions of practical interest (e.g.,
Rayleigh, Rician, and Nakagami fading). For applications in
which a positive block error probability ε > 0 is acceptable, the
maximal achievable rate as a function of the outage probability
(also known as capacity versus outage) [1, p. 2631], [2] may be
a more relevant performance metric than Shannon capacity. The
capacity versus outage coincides with the ε-capacity Cε, which
is obtained by letting n → ∞ in R∗(n, ε) for a fixed ε > 0, at
the points where Cε is a continuous function of ε [3, Sec. IV].

Building upon Dobrushin’s and Strassen’s asymptotic results,
Polyanskiy, Poor, and Verdú recently showed that for many
channels, including the additive white Gaussian noise (AWGN)
channel, R∗(n, ε) can be tightly approximated by [4]

R∗(n, ε) = C −
√
V

n
Q−1(ε) +O

(
log n

n

)
. (1)

Here, Q−1(·) denotes the inverse of the Gaussian Q-function,
and C and V denote the channel capacity and the channel
dispersion [4, Def. 1], respectively. The approximation (1) im-
plies that to sustain the desired error probability ε at a finite
blocklength n, one pays a penalty on the rate (compared to the
channel capacity) that is proportional to 1/

√
n.

For quasi-static single-input multiple-output (SIMO) fading
channels, the channel dispersion was recently shown to be zero,

This work was partly supported by a Marie Curie FP7 Integration Grant
within the 7th European Union Framework Programme under Grant 333680,
by the Spanish government (TEC2009-14504-C02-01, CSD2008-00010, and
TEC2012-38800-C03-01), and by the National Science Foundation CAREER
award under grant agreement CCF-1253205.

provided that the distribution of the fading gain satisfies mild
conditions [5]. This result suggests that outage capacity, de-
spite being an asymptotic quantity, is a sharp proxy for the
finite-blocklength fundamental limit of quasi-static SIMO fad-
ing channels.

Contributions: In this paper, we generalize the zero-
dispersion result in [5] to the MIMO setup with no CSIT.1 The
case where CSIT is available, which is addressed in the journal
version of this paper [6], is easier to deal with compared to the
no-CSIT case and the zero-dispersion result can be proven using
similar techniques as in [5]. Indeed, when CSIT is available,
the MIMO channel can be transformed into a set of parallel
single-antenna quasi-static channels; water-filling over the par-
allel channels then turns out to achieve both the outage capacity
and the dispersion [6], [7].

Deriving the dispersion for the no-CSIT case is more involved
as we shall discuss next. The zero-dispersion result in [5] for
the SIMO case is based on a central-limit theorem argument
that relates the cumulative distribution function (cdf) of the
information density [4, Eq. (3)] to the cdf of a Gaussian random
variable. It is further based on the following convergence result

ε ≈ E
[
Q

(√
n
C(ρG)−R√

V (ρG)

)]
= P[C(ρG) ≤ R] +O

(
1

n

)
(2)

where the equality holds under the condition that the probabil-
ity density function (pdf) of the random variable

(
C(ρG) −

R
)
/
√
V (ρG) in (2) and its derivative are bounded. Here, ρ

denotes the signal-to-noise ratio (SNR), G stands for the fading
gain, andC(·) and V (·) denote the channel capacity and channel
dispersion of an AWGN channel, respectively.

In the no-CSIT MIMO case, the error probability of a code-
word X depends on its Gram matrix Q , XHX/n. Unfortu-
nately, the optimalQ to be used to maximize the rate is unknown
even in the asymptotic regime n→∞. Therefore, in order to
prove zero-dispersion, we need to establish a convergence result
similar to (2) for all positive semidefinite (PSD) matrices Q
satisfying the power constraint tr{Q} ≤ ρ. The main technical
difficulty lies in showing that the pdf of theQ-dependent random
variable ϕγ,Q(H) defined in (29)—which is the MIMO general-
ization of the random variable

(
C(ρG)−R

)
/
√
V (ρG) in (2)—

and its derivative are uniformly bounded in Q. We solve this
problem by using Stokes’ theorem [8, Th. III.7.2], which states
that the integral of a compactly supported differential form ω

1For quasi-static fading channels, neither capacity nor dispersion depend on
whether CSIR is available [1, p. 2632], [6].



over the boundary of an oriented manifold M is equal to the
integral of its exterior derivative dω overM. This result allows
us to write the pdf of ϕγ,Q(H) and its derivative as integrals of
differential forms on a Riemannian manifold. The boundedness
of the integrals is then established by showing that both the
forms and the manifold are bounded.

II. CHANNEL MODEL AND FUNDAMENTAL LIMITS

We consider a quasi-static MIMO channel with t transmit
and r receive antennas. The channel input-output relation is

Y = XH + W. (3)

Here, X ∈ Cn×t is the transmitted codeword; Y ∈ Cn×r is the
corresponding received signal; H ∈ Ct×r contains the complex
fading coefficients, which are random but remain constant over
then channel uses;W ∈ Cn×r denotes the additive noise, which
has independent and identically distributed (i.i.d.) unit-variance
circularly symmetric complex Gaussian entries CN (0, 1).

When the receiver has CSIR, an (n,M, ε) code for the chan-
nel (3) consists of:

1) An encoder f : {1, . . . ,M} → Cn×t that maps the message
J ∈ {1, . . . ,M} to a codeword X ∈ {C1, . . . ,CM}
satisfying the power constraint

‖Ci‖2F ≤ nρ, i = 1, . . . ,M (4)

where ‖·‖F stands for the Frobenius norm.
2) A decoder g: Cn×r × Ct×r → {1, . . . ,M} satisfying

max
1≤j≤M

P[g(Y,H) 6= J | J = j] ≤ ε. (5)

When no CSIR is available, the decoder g(·) takes as input
only Y. The maximal achievable rate is defined as

R∗(n, ε) , sup

{
logM

n
: ∃(n,M, ε) code

}
. (6)

Let

Ue
t , {A ∈ Ct×t : A � 0, tr(A) = ρ}. (7)

When CSIT is not available, the ε-capacity is given by [7], [9]

Cε = lim
n→∞

R∗(n, ε) = sup{R : Pout(R) ≤ ε} (8)

where

Pout(R) = inf
Q∈Ue

t

P
[
log det

(
Ir + HHQH

)
< R

]
(9)

is the outage probability. The matrix Q that minimizes the right-
hand-side (RHS) of (9) is in general not known.

III. MAIN RESULT

Following [4], we define the ε-dispersion of the channel (3) as

Vε , lim sup
n→∞

n

(
Cε −R∗(n, ε)

Q−1(ε)

)2

, ε ∈ (0, 1)\{1/2}. (10)

To state our main result, we will need the following definition
of the gradient ∇g of a differentiable function g : Ct×r → R:
we shall write ∇g(H) = L if

d

dt
g(H + tA)

∣∣∣
t=0

= Re
{

tr
(
AHL

)}
, ∀A ∈ Ct×r. (11)

Theorem 1 below characterizes the ε-dispersion of the quasi-
static MIMO fading channel (3) with no CSIT.

Theorem 1: Let fH be the pdf of the fading matrixH. Assume
that H satisfies the following conditions:

1) fH is a smooth function, i.e., it has derivatives of all orders.
2) There exists a positive constant a such that

fH(H) ≤ a ‖H‖−2tr−b(r+1)2/2c−1
F (12)

‖∇fH(H)‖F ≤ a ‖H‖
−2tr−5
F . (13)

3) The function Pout(·) satisfies

lim inf
δ→0

Pout(Cε + δ)− Pout(Cε)

δ
> 0. (14)

Then, independent of whether CSIR is available,

R∗(n, ε) = Cε +O
( log n

n

)
. (15)

Hence, the ε-dispersion is zero:

Vε = 0, ε ∈ (0, 1)\{1/2}. (16)

Remark 1: Conditions 1–3 in Theorem 1 are satisfied by
the probability distributions commonly used to model MIMO
fading channels, such as Rayleigh, Rician, and Nakagami [6].

Proof: Due to space limitations, we only present the proof
of the converse part of (15), namely, that

R∗(n, ε) ≤ Cε +O
( log n

n

)
. (17)

The proof of the achievability part2 of (15) can be found in [6].
The proof consists of three steps: 1) application of the meta-

converse theorem, 2) large-n analysis via central-limit theorem,
and 3) uniform boundedness via Stokes’ theorem.

1) Application of the meta-converse theorem: As in [4,
Lem. 39] it suffices to consider codes which satisfy (4) with
equality. To prove (17), we use the meta-converse theorem [4,
Th. 30] with the auxiliary channel

QYH |X = PH ×
∏n

i=1
QYi |X,H (18)

where {Yi}, i = 1, . . . , n, denote the rows of Y, and

QYi |X=X,H=H = CN
(
0, Ir + n−1HHXHXH

)
. (19)

By [4, Th. 30], we have that for a given (n,M, ε) code

inf
X∈Fn

β1−ε
(
PYH |X=X, QYH |X=X

)
≤ 1− ε′ (20)

where β(·)(·, ·) is defined in [4, Eq. (100)],

Fn , {X ∈ Cn×t : ‖X‖2F = nρ} (21)

and ε′ is the maximal probability of error incurred by using the
selected (n,M, ε) code over the auxiliary channel QYH |X.

To evaluate the left-hand side (LHS) of (20), we note that,
underPYH |X=X, the random variable log

dPYH | X=X

dQYH | X=X
has the same

distribution as

Sn(X) ,
n∑
l=1

m∑
j=1

(
log(1 + Λj) + 1−

∣∣√ΛjZlj − 1
∣∣2

1 + Λj

)
(22)

2The converse result (17) is derived for the CSIR case, whereas the achiev-
ability result assumes no CSIR.



where m , min{t, r}, Λ1 ≥ · · · ≥ Λm are the ordered eigen-
values of HHXHXH/n, and {Zlj}, l = 1, . . . , n, j = 1, . . . ,m,
are i.i.d. CN (0, 1)-distributed. Using [4, Eq. (102)], we obtain

β1−ε
(
PYH |X=X, QYH |X=X

)
≥ e−nγ

(
P[Sn(X) ≤ nγ]− ε

)
(23)

for every γ > 0. The following lemma establishes an upper
bound on the RHS of (20).

Lemma 2: Let H ∈ Ct×r satisfy (12) in Theorem 1. Then,
there exists a k1 < ∞ such that for every code with M code-
words and blocklength n ≥ r, the maximum probability of
error ε′ over the auxiliary channel (18) satisfies

1− ε′ ≤ k1n
r2/2

M
. (24)

Proof: The bound (24) follows by a computation similar
to [10, Lem. 6]. See [6, Lem. 19] for more details.

Substituting (23) and (24) into (20), and then taking the log-
arithm of both sides of (20), we obtain

logM ≤ nγ − log
(

inf
X∈Fn

P[Sn(X) ≤ nγ]− ε
)

+O(log n) . (25)

2) Large-n analysis via central-limit theorem: To evaluate
P[Sn(X) ≤ nγ], we note that the distribution of the random
variable Sn(X) depends on X only through Q , XHX/n. Given
H = H, Sn(X) is the sum of n i.i.d. random variables with mean

C(Q,H) , log det
(
I + HHQH

)
(26)

and variance

V (Q,H) , tr
(
Ir − (Ir + HHQH)−2

)
. (27)

Applying a Cramer-Esseen-type central-limit theorem [11,
Th. VI.1], we obtain after algebraic manipulations

P[Sn(X) ≤ nγ] ≥ E
[
Q(−√nU(γ,Q))

]
−E

[∣∣1− nU2(γ,Q)
∣∣+e−nU2(γ,Q)/2

6
√
n

]
+O

(
1

n

)
. (28)

Here, U(γ,Q) , ϕγ,Q(H) with

ϕγ,Q(H) ,
γ − C(Q,H)√

V (Q,H)
. (29)

We proceed to lower-bound the first two terms on the RHS
of (28). Using [6, Lem. 17], we conclude that for every δ > 0

E
[
Q(−√nU(γ,Q))

]
≥ P[C(Q,H) ≤ γ]− 1

n

2

δ2

− 1

n

(1

δ
+

1

2

)
sup

u∈(−δ,δ)
max

{
fU(γ,Q)(u),

∣∣f ′U(γ,Q)(u)
∣∣} (30)

where fU(γ,Q) is the pdf of U(γ,Q). To show that the second
term on the RHS of (28) is of order 1/n, we upper-bound it for
n > 1/δ as follows:

E
[∣∣1− nU2(γ,Q)

∣∣+e−nU2(γ,Q)/2

6
√
n

]
=

1

6
√
n

∫ 1/
√
n

−1/
√
n

fU(γ,Q)(t)(1− nt2)e−nt
2/2dt (31)

≤ 1

3n
sup

u∈(−δ,δ)
fU(γ,Q)(u). (32)

3) Uniform boundedness via Stokes’ theorem: Let γ in (23)
be chosen from the interval (Cε − δ1, Cε + δ1) for some δ1 ∈
(0, Cε). To prove (17), it remains to show that fU(γ,Q)(u) and its
derivative are uniformly bounded for every γ ∈ (Cε− δ1, Cε+
δ1), every Q ∈ Ue

t , and every u ∈ (−δ, δ). This is done in
Lemma 3 below, which is based on Stokes’ theorem.

Lemma 3: Let H have pdf fH satisfying Conditions 1 and 2
in Theorem 1. Let U(γ,Q) with pdf fU(γ,Q) denote the random
variable ϕγ,Q(H) in (29). Then, there exist δ1 ∈ (0, Cε) and
δ > 0 such that u 7→ fU(γ,Q)(u) is continuously differentiable
on (−δ, δ) and that

sup
γ∈(Cε−δ1,Cε+δ1)

sup
Q∈Ue

t

sup
u∈(−δ,δ)

fU(γ,Q)(u) <∞ (33)

sup
γ∈(Cε−δ1,Cε+δ1)

sup
Q∈Ue

t

sup
u∈(−δ,δ)

∣∣f ′U(γ,Q)(u)
∣∣ <∞. (34)

Proof: See Section IV.
Using (30), (32), and Lemma 3 in (28), then (28) in (25), and

finally (9), we obtain that

logM ≤ nγ − log
(
Pout(γ) +O(1/n)− ε

)
+O(log n) . (35)

We next set γ so that

Pout(γ) +O(1/n)− ε = 1/n. (36)

In words, we choose γ so that the argument of the logarithm
in (35) is equal to 1/n. Such a γ indeed exists since the function
Pout(·) is continuous. Using (14) and (8) in (36), we obtain that
for sufficiently large n,

|γ − Cε| ≤ O(1/n). (37)

This implies that, for sufficiently large n, γ belongs indeed
to the interval (Cε − δ1, Cε + δ1). We then obtain (17) by
combining (35) with (36) and (37).

IV. PROOF OF LEMMA 3

Throughout this section, we shall use const to indicate a finite
constant that does not depend on any parameter of interest; its
magnitude and sign may change at each occurrence.

Denote byMl the open subset

Ml , {H ∈ Ct×r : ‖H‖F < l}. (38)

We shall use the following flat Riemannian metric [12, pp. 13
and 165] onMl

〈H1,H2〉 , Re
{

tr
(
HH

1 H2

)}
. (39)

Using this metric, we define the gradient ∇g of an arbitrary
function g : Ml → R as in (11). Note that the metric (39)
induces a norm on the tangent space ofMl that can be identified
with the Frobenius norm.

Our proof consists of two steps. Let fl denote the conditional
pdf ofU(γ,Q) given thatH ∈Ml. We first show that there exist
l0 ∈ N, δ > 0, and δ1 ∈ (0, Cε), such that fl(u) and f ′l (u) are
uniformly bounded for every γ ∈ (Cε−δ1, Cε+δ1), every Q ∈
Ue
t , every u ∈ [−δ, δ], and every l ≥ l0. We then show that u 7→
fU(γ,Q)(u) is continuously differentiable on (−δ, δ), and that for
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Figure 1. The shaded area denotes the manifold ϕ−1((u, u + ε)). By
Stokes’ theorem, the integral of a differential form ω over the boundary
ϕ−1(u) ∪ ϕ−1(u + ε) is equal to the integral of its exterior derivative dω
over ϕ−1((u, u+ ε)).

every u ∈ (−δ, δ), the sequences {fl(u)} and {f ′l (u)} converge
uniformly to fU(γ,Q)(u) and f ′U(γ,Q)(u), respectively, i.e.,

lim
l→∞

sup
u∈(−δ,δ)

∣∣fl(u)− fU(γ,Q)(u)
∣∣ = 0 (40)

lim
l→∞

sup
u∈(−δ,δ)

∣∣∣f ′l (u)− f ′U(γ,Q)(u)
∣∣∣ = 0 (41)

from which Lemma 3 follows.
1) Uniform Boundness of {fl} and {f ′l}: The following

lemma provides an explicit expression of fU(γ,Q) and f ′U(γ,Q)

in terms of fH and ϕγ,Q.
Lemma 4: LetM be an oriented Riemannian manifold with

Riemannian metric (39) and let ϕ : M → R be a smooth
function with ‖∇ϕ‖F 6= 0 onM. Let P be a random variable
onM with smooth pdf f . Then,

1) the pdf f∗ of ϕ(P ) at u is

f∗(u) =

∫
ϕ−1(u)

f
dS

‖∇ϕ‖F
(42)

whereϕ−1(u) denotes the preimage {x ∈M : ϕ(x) = u}
and dS denotes the surface area form on ϕ−1(u), chosen
so that dS(∇ϕ) > 0;

2) if f is compactly supported, then the derivative of f∗ is

f ′∗(u) =

∫
ϕ−1(u)

ψ1
dS

‖∇ϕ‖F
(43)

where ψ1 is defined implicitly via

ψ1dV = d

(
f

dS

‖∇ϕ‖F

)
(44)

with dV denoting the volume form onM, and d(·) denot-
ing exterior differentiation [12, Def. 2.1.15].

Proof: To prove (42), we note that for arbitrary a, b ∈ R∫ b

a

f∗(u)du =

∫
ϕ−1((a,b))

fdV (45)

=

∫ b

a

(∫
ϕ−1(u)

f
dS

‖∇ϕ‖F

)
du (46)

where (46) follows from the smooth coarea formula [8, p. 160].
This implies (42).

To prove (43), we use that for every ε > 0,

f∗(u+ ε)− f∗(u)

=

∫
ϕ−1(u+ε)

f
dS

‖∇ϕ‖F
−
∫
ϕ−1(u)

f
dS

‖∇ϕ‖F
(47)

=

∫
ϕ−1((u,u+ε))

d

(
f

dS

‖∇ϕ‖F

)
(48)

=

∫
ϕ−1((u,u+ε))

ψ1dV. (49)

Here, in (48) we used Stokes’ theorem [8, Th. III.7.2] and that f
is compactly supported; (49) follows from the definition of ψ1

(see (44)). A graphical illustration of the steps (47) and (48) is
provided in Fig. 1. Equation (43) follows from similar steps as
in (45) and (46).

Using Lemma 4, we obtain

fl(u) =

∫
ϕ−1
γ,Q(u)∩Ml

fH
P[H ∈Ml]

dS

‖∇ϕγ,Q‖F
(50)

f ′l (u) =

∫
ϕ−1
γ,Q(u)∩Ml

ψ1

P[H ∈Ml]

dS

‖∇ϕγ,Q‖F
(51)

where ψ1 satisfies

ψ1dV = d

(
fH

dS

‖∇ϕγ,Q‖F

)
. (52)

Since P[H ∈ Ml] → 1 as l → ∞, there exists a l0 such that
P[H ∈Ml] ≥ 1/2 for every l ≥ l0.

We next show that there exist δ > 0, 0 < δ1 < Cε, such
that for every γ ∈ (Cε − δ1, Cε + δ1), every u ∈ (−δ, δ), every
Q ∈ Ue

t , every H ∈ ϕ−1γ,Q(u) ∩Ml, and every l ≥ l0
fH(H) ≤ const · ‖H‖−2tr−3F (53)

|ψ1(H)| ≤ const · ‖H‖−2tr−3F (54)

Al(u) ,
∫
ϕ−1
γ,Q(u)∩Ml

‖H‖−2tr−3F dS

‖∇ϕγ,Q‖F
≤ const. (55)

The uniform boundedness of {fl} and {f ′l} follows then by
using the bounds (53)–(55) in (50) and (51).

Proof of (53): Since fH(H) is continuous by assumption,
it is uniformly bounded for every H ∈ M1. Hence, (53) holds
for every H ∈M1. For H /∈M1, we have by (12)

fH(H) ≤ a ‖H‖−2tr−b(1+r)
2/2c−1

F ≤ a ‖H‖−2tr−3F . (56)

This proves (53).
Proof of (54): The area form dS on ϕ−1γ,Q(u) ∩Ml is

dS =
?dϕγ,Q
‖∇ϕγ,Q‖F

(57)

where ? denotes the Hodge star operator [12, p. 103] induced
by the metric (39). Using (57) in (52), we obtain

ψ1 =
〈∇fH,∇ϕγ,Q〉
‖∇ϕγ,Q‖2F

− fH〈∇ ‖∇ϕγ,Q‖2F ,∇ϕγ,Q〉
‖∇ϕγ,Q‖4F

− fH ·∆ϕγ,Q
‖∇ϕγ,Q‖2F

(58)



where ∆ denotes the Laplace operator [12, Eq. (3.1.6)]. The
bound (54) follows from (12) and (13) and from algebraic ma-
nipulations (see [6, App. VIII-A]).

Proof of (55): For every γ ∈ (Cε − δ1, Cε + δ1), every
Q ∈ Ue

t , and every l ≥ l0, there exists a k0 > 0 so that [6,
App. VIII-A](
ϕ−1γ,Q((−δ, δ)) ∩Ml

)
⊂M′ , {H ∈ Ct×r : ‖H‖F ≥ k0}.

(59)

To upper-bound Al(u), we note that∫ δ

−δ
Al(u)du =

∫
ϕ−1
γ,Q((−δ,δ))∩Ml

‖H‖−2tr−3F dV (60)

≤
∫
M′
‖H‖−2tr−3F dV (61)

= const. (62)

Here, (60) follows from the smooth coarea formula [8, p. 160];
(61) follows from (59); (62) follows by using that k0 > 0. By
the mean value theorem, it follows from (62) that there exists a
u0 ∈ (−δ, δ) satisfying

Al(u0) =
1

2δ

∫ δ

−δ
Al(u)du ≤ const. (63)

Next, for every u ∈ (u0, δ) we have that

Al(u)−Al(u0)

=

∫
ϕ−1
γ,Q(u)∩Ml

‖H‖−2tr−3F dS

‖∇ϕγ,Q‖F
−
∫
ϕ−1
γ,Q(u0)∩Ml

‖H‖−2tr−3F dS

‖∇ϕγ,Q‖F
(64)

=

∫
ϕ−1
γ,Q((u0,u))∩Ml

d

(
‖H‖−2tr−3F dS

‖∇ϕγ,Q‖F

)
. (65)

Here, (65) follows from Stokes’ theorem. Following similar
steps as the ones reported in (57)–(62), we conclude that the
RHS of (65) is bounded. This implies that

Al(u) ≤ Al(u0) + const ≤ const (66)

where the bound (66) is uniform in γ, Q, u, and l. Following
similar steps as in (64)–(66), we obtain the same result for u ∈
(−δ, u0). This proves (55).

2) Convergence of fl(u) and f ′l (u): We next prove (40)
and (41). By Lemma 4,

fU(γ,Q)(u) =

∫
ϕ−1
γ,Q(u)

fHdS

‖∇ϕγ,Q‖F
. (67)

We have the following chain of inequalities

|fl(u)− fU(γ,Q)(u)|
≤
∣∣P[H ∈Ml]fl(u)− fU(γ,Q)(u)

∣∣+
∣∣P[H /∈Ml]fl(u)

∣∣(68)

≤
∫
ϕ−1
γ,Q(u)∩(Ct×r\Ml)

fHdS

‖∇ϕγ,Q‖F
+ const · P[H /∈Ml] (69)

≤ const ·
∫
ϕ−1
γ,Q(u)∩(Ct×r\Ml)

‖H‖−2tr−3F dS

‖∇ϕγ,Q‖F
+ const · P[H /∈Ml]. (70)

Here, (68) follows from the triangle inequality; (69) fol-
lows from (50) and (67) and because {fl(u)} is uniformly
bounded; (70) follows from (53). Following similar steps as
in (60)–(62), we upper-bound the first term on the RHS of (70)
as ∫

ϕ−1
γ,Q(u)∩(Ct×r\Ml)

‖H‖−2tr−3F dS

‖∇ϕγ,Q‖F
≤ const

l
. (71)

Substituting (71) into (70), and using that P[H /∈ Ml] → 0 as
l→∞, we obtain (40).

To prove (41), we proceed as follows. LetC1([−δ, δ]) denote
the set of continuously differentiable functions on the compact
interval [−δ, δ]. The space C1([−δ, δ]) is a Banach space (i.e.,
a complete normed vector space) when equipped with the C1

norm [13, p. 92]

‖f‖C1([−δ,δ]) , sup
x∈[−δ,δ]

(|f(x)|+ |f ′(x)|). (72)

Following similar steps as in (64)–(66), we conclude that {f ′l}
is continuous on [−δ, δ], i.e., the restriction of {fl} to [−δ, δ]
belongs to C1([−δ, δ]). Moreover, following similar steps as
in (68)–(71), we obtain that for all m > l > 0

lim
l→∞

sup
u∈[−δ,δ]

(
|fm(u)− fl(u)|+ |f ′m(u)− f ′l (u)|

)
= 0. (73)

This means that {fl} restricted to [−δ, δ] is a Cauchy sequence,
and, hence, converges in C1([−δ, δ]) with respect to the C1

norm (72). Moreover, by (40), the limit of {fl} is fU(γ,Q).
Therefore, we conclude that fU(γ,Q) ∈ C1([−δ, δ]), and that
the sequence {f ′l} converges to f ′U(γ,Q) with respect to the sup-
norm ‖ · ‖∞. This proves (41).
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