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Abstract—This work addresses the question of finite block-
length fundamental limits of coherently demodulated multi-
antenna channels, subject to frequency non-selective isotropic
fading. Specifically we present achievability bound for the chan-
nel dispersion – a quantity known to determine the delay required
to achieve capacity. It is shown that a commonly used isotropic
Gaussian input, which is only one of many possible capacity
achieving distributions, is suboptimal. Optimal inputs minimizing
channel dispersion turn out to include a family of modulation
techniques known as orthogonal designs (in particular, Alam-
outi’s scheme). For 8 transmit antennas numerical evaluation
shows that up to 40% of additional penalty in delay is incurred
by using isotropic codewords (compared to dispersion-optimal
architecture exploiting transmit diversity).

I. INTRODUCTION

Given a noisy communication channel, the maximal cardi-
nality of a codebook of blocklength n which can be decoded
with block error probability no greater than ε is denoted
as M∗(n, ε). Evaluation of this function – the fundamental
performance limit of block coding – is alas computationally
impossible for most channels of interest. As a resolution of this
difficulty [1] proposed a closed-form normal approximation,
based on the asymptotic expansion:

logM∗(n, ε) = nC −
√
nV Q−1(ε) +O(log n) , (1)

where capacity C and dispersion V are two intrinsic char-
acteristics of the channel and Q−1(ε) is the inverse of the
Q-function1. One immediate consequence of the normal ap-
proximation is an estimate for the minimal blocklength (delay)
required to achieve a given fraction η of channel capacity:
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Asymptotic expansions such as (1) are rooted in the central-
limit theorem and have been known classically for discrete
memoryless channels [2], [3] and later extended in a wide
variety of directions; see [4] for a survey.

Motivated by a recent surge of orthogonal frequency divi-
sion (OFDM) technology, this paper focuses on the frequency-
nonselective coherent real block fading discrete-time channel
with multiple transmit antennas and a single receive antenna
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∫∞
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1√
2π

e−t
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(MISO). (See [5, Section II] for background on this model.)
Formally, let nt ≥ 1 be the number of transmit antennas and
T ≥ 1 be the coherence time of the channel. The input-output
relation at block j (spanning time instants (j−1)T +1 to jT )
with j = 1, . . . , n is given by

Yj = HjXj + Zj , (3)

where {Hj , j = 1, . . .} is a 1×nt vector-valued random fading
process, Xj is a nt × T matrix channel input, Zj is a 1× T
Gaussian random vector with independent entries of variance
1, and Yj is the 1 × T vector-valued channel output. The
process Hj is assumed to be i.i.d. with isotropic distribution
PH satisfying

E [‖H‖2] = 1 . (4)

Rayleigh fading is a special case of this assumption where
Hj is an i.i.d. Gaussian random vector. Note that because
of merging channel inputs at time instants 1, . . . , T into one
matrix-input, the block-fading channel becomes memoryless.
We assume coherent demodulation so that the channel state
information Hj is fully known to the receiver (CSIR).

An (nT,M, ε, P )CSIR code of blocklength nT , probability
of error ε and power-constraint P is a pair of maps: the
encoder f : [M ]→ (Rnt×T )n and the decoder g : (R1×T )n×
(R1×nt)n → [M ] such that

P[W 6= Ŵ ] ≤ ε . (5)

and
n∑

j=1

‖Xj‖2F ≤ nTP P-a.s. ,

( ‖A‖2F =
∑

ij |aij |2 is the Frobenius norm of the matrix) on
the probability space

W → Xn → (Y n, Hn)→ Ŵ ,

Where W is uniform on [M ], Xn = f(W ), Xn → (Y n, Hn)
is as described in (3) and Ŵ = g(Y n, Hn).

Under the isotropy assumption on PH , the capacity C
appearing in (1) of this channel is given by [6]

C(P ) = E
[
CAWGN

(
P

nt
‖H‖2

)]
, (6)

where CAWGN (P ) = 1
2 log(1 + P ) is the capacity of the

additive white Gaussian noise (AWGN) channel with SNR P .
The goal of this line of work is to characterize dispersion

of the present channel. Since the channel is memoryless it is
natural to expect, given the results in [1], [7], that dispersion
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(for ε < 1/2) is given by

Vmin = inf
PX :I(X;Y |H)=C

1

T
Var[i(X;Y,H)|X] (7)

where we denoted information density

i(x; y, h)
4
= log

dPY,H|X=x

dPY,H
(y, h)

and PX,Y,H = PXPY,H|X . Justification of (7) as the ac-
tual (operational) dispersion, appearing in the expansion of
logM∗(n, ε) is by no means trivial. The present note focuses
on the achievability part and on solving minimization (7). The
converse will be presented elsewhere.

Because the set of capacity achieving input distributions
(c.a.i.d.) is large, minimization of (7) is not trivial. It will
be shown below that Hurwitz-Radon families of matrices
(introduced into communication in the form of orthogonal
designs by Tarokh et al in [8]), and in particular Alamouti’s
scheme [9], minimize dispersion. This shows a somewhat
unexpected connection with schemes that are optimal from
modulation-theoretic point of view.

Before proceeding to our results, we mention recent liter-
ature on the dispersion of wireless channels. Single antenna
channel dispersion is computed in [7] for a coherent channel
subject to stationary fading process. In [10] finite-blocklength
effects are explored for the non-coherent block fading setup.
Quasi-static fading channels in the general MIMO setting
have been thoroughly investigated in [11], showing that the
expansion (1) changes dramatically (in particular the channel
dispersion term becomes zero); see also [12] for evaluation
of the bounds. Coherent quasi-static channel has been studied
in the limit of infinitely many antennas in [13] appealing to
concentration properties of random matrices. Dispersion for
lattices (infinite constellations) in fading channels has been
investigated in a sequence of works, see [14] and references.
Note also that there are some very fine differences between
stationary and block-fading channel models, cf. [15, Section
4].

II. MAIN RESULTS

This section is organized as follows: first, we characterize
the set of capacity achieving input distributions for this chan-
nel, next we state the achievability theorem, then we compute
Var[i(X;Y,H]|X] and give its minimizers over the set of
capacity achieving input distributions.

A. Capacity achieving input distributions
It is instructive to first consider a special case of nt =

T = 2. As argued by Telatar [6], the following input achieves
capacity

X =

√
P

2

[
ξ1 ξ3
ξ2 ξ4

]
, (8)

where here and below ξj are i.i.d. standard normal random
variables. Reflecting upon ingenious scheme of Alamouti [9]
we observe that the following input is also capacity achieving:

X =

√
P

2

[
ξ1 −ξ2
ξ2 ξ1

]
(9)

A computation shows that Alamouti achieves the smaller
value of Var[i(X;Y,H)|X] and hence Telatar’s i.i.d. Gaussian
input (8) cannot be optimal from the dispersion point of view.
But is there an input achieving yet a smaller variance than
Alamouti?

As a first step towards the answer we characterize the set
of all c.a.i.d’s.

Proposition 1. PX is a capacity achieving input distribution
iff X is jointly Gaussian and either of the following holds

1) Let Ri denote the i-th row of X , then:

E[RT
i Ri] =

P

nt
IT , i = 1, . . . , nt (10)

E[RT
i Rj ] = −E[RT

j Ri], i 6= j (11)

2) Let Ci be the i-th column of X , then:

E[CiC
T
i ] =

P

nt
IT , i = 1, . . . , T (12)

E[CiC
T
j ] = −E[CjC

T
i ], i 6= j (13)

Example: In the nt = T = 2 case, the set of caids is given by{√
P

2

[
ξ1 −ρξ2 +

√
1− ρ2ξ3

ξ2 ρξ1 +
√
1− ρ2ξ4

]
: −1 ≤ ρ ≤ 1

}
(14)

Where ξ1, ξ2, ξ3, ξ4 ∼ N (0, 1) i.i.d.

Remark 1. These conditions imply that if X is caid, then
XT and any submatrix of X are caids too (for different nt
and T ). Elementwise, conditions require that all elements in
a row are pairwise independent, all elements in a column are
pairwise independent, each 2×2 minor has equal and opposite
correlation across diagonal entries, and each of the entries have
the same distribution Xij ∼ N (0, P

nt
).

Proof Sketch: For this channel, PX is a caid iff it
induces the unique optimal output distribution P ∗Y |H . Using
characteristic functions, we can show that in order to PX to
induce P ∗Y |H for almost all h0, our X must satisfy

h0X ∼ N
(
0,
P

nt
‖h0‖2IT

)
(15)

The conditions stated above now follow from X

E[(h0X)T (h0X)] =
P

nt

(
nt∑
i=1

h2i

)
(16)

B. Achievability bound
Here we give the coding theorem characterizing non-

asymptotic achievable rates for this channel.
When X is a full rate orthogonal design (discussed below),

we have a trivial proof of achievability: use the corresponding
linear decoder to transform the channel into an equivalent
SISO block fading channel, then apply the results from [7].

Theorem 2. For the coherent MISO fading channel described,
for any nt × T caid X ,

logM∗(nT, ε, P ) ≥ nTC(P )−
√
nTV (P )Q−1(ε) + o(

√
n)

(17)
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Where C(P ) is the capacity (6) and V (P ) =
1
T Var[i(X;Y,H)|X] is the conditional variance of the
information density.

Proof Sketch: Apply the κβ bound from [1], choosing
QY to be the (unique) capacity achieving output distribution,
and choosing the set F to be, for arbitrary δ > 0,

F = support
{√

nTP
Xn

‖Xn‖F

}
∩ {xn : Var(i(xn;Y n, Hn)) ≤ V (P ) + δ} (18)

Where X is any caid. The proof proceeds similarly to [7].
The natural question is now: what is the expression for

1
T Var[i(X;Y,H)|X], and which caids X give its smallest
value? These questions are answered next.

C. Information density and conditional variance
Note that all caid’s PX induce the same capacity achieving

output distribution (c.a.o.d.) equal to N (0, IT (1 + P‖H‖2
nt

))
(given H). Thus, the information density is the same for all
caids PX and is equal to

i(x;y, h) =
T

2
log

(
1 +

P‖h‖2

nt

)
+

1

2

‖hx‖2 + 2hxZT − P
nt
‖h‖2‖Z‖2

1 + P‖h‖2
nt

, (19)

where Z = hx− y is a 1× T real vector.
Using the information density, we can now compute the

conditional variance for this channel.

Proposition 3. For the MISO nt×T block fading CSIR chan-
nel and capacity achieving input X the conditional variance
is given by

1

T
Var[i(X;Y,H)|X] = V1(P )−

χ2

n2tT
Var(‖X‖2F ) (20)

where V1(P ) is independent of the capacity achieving input
distribution X , and

V1(P ) , TVar

(
CAWGN

(
P

nt
‖H‖2

))
+ E

[
VAWGN

(
P

nt
‖H‖2

)]
+ 2χ1

(
P

nt

)2

(21)

χ1 , E

[(
λ

(
P

nt
‖H‖2

)
‖H‖2

)2
]

(22)

χ2 , E2

[
λ

(
P

nt
‖H‖2

)
‖H‖2

]
(23)

VAWGN (P ) ,
1

2

(
1−

(
1

1 + P

)2
)

(24)

λ(P ) ,
1

2(1 + P )
=
dCAWGN (P )

dP
(25)

The last three quantities are the AWGN capacity, dispersion,
and optimal Lagrange multiplier λ(P ) in the optimization

sup
PX :E[‖X‖2]≤P

I(X;Y ) (26)

Proof Sketch: Decompose variance using the identity

EXVar[i(X;Y,H)|X] = EXEHVar[i(X;Y,H)|X,H]

+ EXVarHE[i(X;Y,H)|X,H] (27)

The first term is simple to evaluate, and gives

TEH

[
VAWGN

(
P

nt
‖H‖2

)]
(28)

The second term is more involved. The key identity is that the
inner E[i(X;Y,H)|H,X] is equal to

TCAWGN

(
P

nt
‖H‖2

)
+ λ

(
P

nt
‖H‖2

)(
‖HX‖2 − TP

nt
‖H‖2

)
(29)

Use this in the second term in (27) to get the remaining terms
in (20).

Next we isolate the dependence of this quantity on the
input distribution X , and analyze which input distributions
are minimizers.

D. Capacity-dispersion optimal input distributions

In this section, we are interested in the minimizers to the
conditional variance given in Proposition3.

Definition 1. For the MISO channel with nt transmit antennas
and coherence time T we define

v∗(nt, T ) , max
PX :I(X;Y,H)=C

nt∑
i=1

nt∑
j=1

T∑
k=1

T∑
l=1

ρ2ikjl (30)

where

ρikjl =
Cov(Xik, Xjl)√
Var(Xik)Var(Xjl)

(31)

Proposition 4. The minimal dispersion of an nt × T block-
fading MISO channel is given by

Vmin
4
= inf

X-caid

1

T
Var[i(X;Y,H)|X] = V1(P )−

2χ2P
2

n4tT
v∗(nt, T )

where V1 and χ2 are from (20).

Proof: The only term that depends on X in (20) is
Var[‖X‖2F ]. Since X is necessarily jointly Gaussian (Propo-
sition 1), we have an easily verifiable identity:

Var(‖X‖2F ) =
nt∑
i=1

nt∑
j=1

T∑
k=1

T∑
l=1

Cov(X2
ik, X

2
jl)

= 2

(
P

nt

)2 nt∑
i=1

nt∑
j=1

T∑
k=1

T∑
l=1

ρ2ikjl (32)

Therefore optimizing dispersion is equivalent to maximizing
the amount of correlation amongst the entries of X . In a sense,
this asks for the capacity achieving input distribution having
the least amount of randomness.

We proceed to characterizing quantity v∗(nt, T ). For con-
venience, we state a simple bound:
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Lemma 5. Let R = (R1, . . . , Rn) ∼ N (0, P In) and A ∼
N(0, P ) be arbitrarily correlated with R, then

n∑
i=1

ρ2ARi
≤ 1 (33)

Where ρARi
= Cov(A,Ri)/Var(A) = E[ARi]/P . We have

equality iff A = ρAR1R1 + · · ·+ ρARnRn.

Proof: Geometrically, projection of a unit vector A onto
an orthonormal basis Span{R1, . . . , Rn} has length at most 1,
with equality iff A ∈ Span{R1, . . . , Rn}.

Next we need to recall some facts about orthogonal designs.
A real n× n orthogonal design of size k is defined to be an
n × n matrix A with entries given by linear polynomials in
x1, . . . , xk and coefficients in R satisfying

ATA =

(
k∑

i=1

x2i

)
In (34)

Orthogonal designs may be represented as the sum A =∑k
i=1 xiVi where {V1, . . . , Vk} is a collection of n × n real

matrices satisfying Hurwitz-Radon conditions:

V T
i Vi = In , V T

i Vj + V T
j Vi = 0 i 6= j (35)

The maximal size of an n×n real orthogonal design is called
a Hurwitz-Radon number ρ(n). From the classical work [16],
[17] it is known:

ρ(2ab) = 8
⌊a
4

⌋
+ 2amod 4, a, b ∈ Z, b–odd .

In particular, ρ(n) ≤ n and ρ(n) = n only for n = 1, 2, 4, 8.

Theorem 6. For any pair of positive integers nt, T we have

v∗(T, nt) = v∗(nt, T ) ≤ ntT min(nt, T ) . (36)

Furthermore, the bound (36) is tight if and only if nt ≤ ρ(T )
or T ≤ ρ(nt).

Proof: v∗(nt, T ) = v∗(T, nt) follows from the symmetry
to transposition of caid-conditions on X (see Proposition 1)
and symmetry to transposition of (30). From now on, without
loss of generality we assume nt ≤ T .

For the upper bound, we apply Lemma 5 to the rows (or
columns) of X , giving

nt∑
i=1

nt∑
j=1

T∑
k=1

T∑
l=1

ρ2ijkl ≤
nt∑
i=1

nt∑
j=1

T∑
k=1

1 = ntT min(nt, T )

(37)

Note that (37) implies that if X achieves the bound (36), then
removing the last row of X achieves (36) as an (nt − 1)× T
design. In other words, if (36) is tight for nt × T then it is
tight for all n′t ≤ nt.

With this observation in mind, take nt = ρ(T ) and a
maximal Hurwitz-Radon family {Vi, i = 1, . . . , nt} of T × T
matrices. Let ξ ∼ N (0, IT ) be i.i.d. normal row-vector.
Consider

X =
[
V T
1 ξ

T · · ·V T
nt
ξT
]T

(38)

The definition of orthogonal design (35) implies that rows of
X satisfy conditions (10)-(11). Thus X is capacity achieving.

On the other hand, it is easy to show in the representation (38)
we have ∑

i,j,k,l

ρ2ijkl = tr((

nt∑
i=1

ViV
T
i )2) (39)

Since Vi are orthogonal we have ViV T
i = IT and hence the

trace above equals n2tT , matching (36).
Conversely, suppose X is capacity achieving and at-

tains (36). Again, we may represent X via (38) using ξ ∼
N (0, Id) where d ≥ T . By conditions (10)-(11) we have that
d×T matrices {Vi} must satisfy equations (35). If d = T then
they constitute an orthogonal design and by Hurwitz-Radon we
must have nt ≤ ρ(T ). If d > T then there must exist Xi,j

which is not a linear combination of {X1,s, s = 1, . . . , T}
(i.e. not in the span), thus X cannot attain the bound (37),
contradicting the assumption.

E. Discussion

Elementary results on orthogonal designs show that condi-
tions for tightness of (36) are satisfied if and only if a full
rate real orthogonal design of dimensions nt × T or T × nt
exists, cf. [8] or [18, Proposition 4]. Consequently, each full-
rate orthogonal design yields a caid X that achieves minimal
dispersion. Some examples (ξj are i.i.d. N (0, 1))

X =

√
P

4


ξ1 ξ2 ξ3 ξ4
−ξ2 ξ1 −ξ4 ξ3
−ξ3 ξ4 ξ1 −ξ2
−ξ4 −ξ3 ξ2 ξ1

 (40)

X =

√
P

4


ξ1 ξ2 ξ3
−ξ2 ξ1 −ξ4
−ξ3 ξ4 ξ1
−ξ4 −ξ3 ξ2

 (41)

Note that for the designs with entries ±ξj , with ξj being
independent Gaussians, computation of the sum (30) is sim-
plified: ∑

ijkl

ρ2ikjl =

d∑
t=1

(`t)
2 , (42)

where `t is the number of times ±ξt appears in the description
of X . By this observation and the remark after Proposition 1
we can obtain lower bounds on v∗(nt, T ) for nt > ρ(T ) via
the following truncation construction:

1) Take T ′ > T such that ρ(T ′) ≥ nt and let X ′ be
a corresponding ρ(T ′) × T ′ full-rate orthogonal design
(with entries ±ξ1, . . .± ξT ′ ).

2) Choose an nt×T submatrix of X ′ maximizing the sum
of squares of the number of occurrences of each of ξj ,
cf. (42).

As an example of this method, by truncating a 4 × 4
design (41) we obtain the following 2×3 and 3×3 submatrices:

X =

√
P

3

 ξ1 ξ2 ξ3
−ξ2 ξ1 ξ4
−ξ3 −ξ4 ξ1

 X =

√
P

2

[
ξ1 ξ2 ξ3
−ξ2 ξ1 ξ4

]
(43)
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TABLE I
VALUES FOR v∗(nt, T )

nt \ T 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 8 10 16 18 24 26 32
3 21 36 [39,45) [46,54) [57,63) 72
4 64 [68,80) [80,96) [100,112) 128
5 [89,125) [118,150) [155,175) 200
6 [168,216) [222,252) 288
7 [301,343) 392
8 512

Note: Table is symmetric about diagonal; intervals [a, b) mark entries for
which dispersion-optimal input is unknown.

By independent methods we were able to show that de-
signs (43) are dispersion-optimal and attain v∗(3, 3) = 21 and
v∗(2, 3) = 10. Note that in these cases the bound (36) is not
tight, illustrating the “only if” part of Theorem 6.

Orthogonal designs were introduced into communication
theory by Tarokh et al [8] as a natural generalization of
Alamouti’s scheme [9]. In cases when full-rate designs do not
exist, there have been various suggestions as to what could
be the best solution, e.g. [18]. Thus for non full-rate designs
the property of minimizing dispersion (such as (43)) could be
used for selecting the best design for cases nt > ρ(T ).

Our current knowledge about v∗ is summarized in Table I.
The lower bounds for cases not handled by Theorem 6 were
computed by truncating the 8x8 orthogonal design [8, (5)].
Based on the evidence from 2 × T and 3 × 3 we conjecture
this construction to be optimal.

Finally, returning to the original question of the minimal
delay required to achieve capacity, see (2), we calculate the
value of Vmin

C2 in Table II.
From the proof of Theorem 6 it is clear that Telatar’s

i.i.d. Gaussian (as in (8)) is never dispersion optimal, unless
nt = 1 or T = 1. Indeed, for Telatar’s input ρikjl = 0
unless (i, k) = (j, l). Thus embedding even a single Alamouti
block (9) into an otherwise i.i.d. nt × T matrix X strictly
improves the sum (30).

We note that the value of V
C2 entering (2) can be quite

sensitive to the suboptimal choice of the design. For example,
for nt = T = 8 and SNR = 20 dB estimate (2) shows that
one needs
• around 600 channel inputs (that is 600/8 blocks) for the

optimal 8× 8 orthogonal design, or
• around 850 channel inputs for Telatar’s i.i.d. Gaussian

design
in order to achieve 90% of capacity. This translates into a
40% longer delay (or battery spent in running the decoder)
with unoptimized transmitter.

Thus, curiously even in cases where pure multiplexing (that
is maximizing transmission rate) is needed – as is often the
case in modern cellular networks – transmit diversity enters
the picture by enhancing the finite blocklength fundamental
limits. We remind, however, that our discussion pertains only
to cases when the transmitter (base-station) is equipped with
more antennas than the receiver (user equipment).

TABLE II
VALUES OF Vmin

C2 (WHEN KNOWN) AT SNR = 20 dB

nt \ T 1 2 3 4 5 6 7 8
1 0.38 0.60 0.82 1.05 1.27 1.49 1.72 1.94
2 0.35 0.39 0.52 0.60 0.73 0.82 0.94 1.03
3 0.38 0.42 0.45 0.49 0.79
4 0.42 0.43 0.44 0.45 0.69
5 0.46 0.48 0.64
6 0.50 0.51 0.62
7 0.54 0.55 0.61
8 0.59 0.59 0.59 0.60 0.60 0.60 0.61 0.61
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