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Abstract—In information theory, structural system constraints
are frequently described in the form of a directed acyclic
graphical model (DAG). This paper addresses the question of
classifying DAGs up to an isomorphism. By considering Gaussian
densities, the question reduces to verifying equality of certain
algebraic varieties. A question of computing equations for these
varieties has been previously raised in the literature. Here it is
shown that the most natural method adds spurious components
with singular principal minors, proving a conjecture of Sullivant.
This characterization is used to establish an algebraic criterion
for isomorphism, and to provide a randomized algorithm for
checking that criterion. Results are applied to produce a list of
the isomorphism classes of tree models on 4 and 5 nodes.

I. INTRODUCTION

Before formal treatment, we give a high level overview of
this paper. Consider two directed graphical models (or directed
acyclic graphs, DAGs) on random variables (A,B,C):

A→ B → C B ← A→ C (1)
(See [1] for background on graphical models.) In this paper,
we will say that these two models are isomorphic (as graphical
models). Roughly, this means that after relabeling (A ↔ B),
the two resulting models describe the same collection of joint
distributions PA,B,C . Note that the so defined isomorphism
notion is weaker than the (directed) graph isomorphism: the
graphs in (1) are not isomorphic.

On the other hand, there does not exist any relabeling
making (1) equivalent to

B → C ← A (2)
In fact, a simple exercise in d-separation criterion shows
that (1) and (2) list all possible isomorphism classes of directed
tree models on three variables. The goal of this paper is to
provide (computational) answer to: What are the isomorphism
classes of directed graphical models on n nodes?

Note that when variables (A,B,C) are jointly Gaussian
and zero-mean, then conditions such as (1) can be stated as
algebraic constraints on the covariance matrix:

E[AB]E[BC] = E[AC]E[B2]. (3)
This suggests that checking isomorphism of models can be
carried out via algebraic methods. Indeed, one needs to recall
(see [2]) that graphical models equivalence can be tested by
restricting to Gaussian random variables.
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In this paper, we associate with every DAG two subsets of
covariance matrices:
• all non-singular covariance matrices satisfying DAG con-

straints (denoted loc(G) ∩ Σ++ below)
• all covariance matrices satisfying DAG constraints (de-

noted loc(G) below)
We give an analytic result: while loc(G) is not necessarily
(Euclidean) closed, closures of both sets coincide.

Next, we switch to the algebraic part. Due to the analytic
fact above, much simpler equations for non-singular matrices
can be used to completely characterize the Zariski closure of
loc(G) (denoted XG below). Aesthetically pleasing is the fact
that XG is always an irreducible complex variety (affine and
rational). Furthermore, two graphical models G and G′ define
the same set of conditional independence constraints if and
only if XG = XG′ .

For large graphs it is important to reduce the number of
equations needed to describe XG. The natural set of equations
(denoted IG below) turns out to be too small: its solution set
V (IG) contains XG and a number of spurious components.
We show how to get rid of these spurious components, proving
that

XG = V ((IG : θm0 )) ,

where θ0 is an explicit polynomial (and establishing Conjec-
ture 3.3 of Sullivant [3]). This provides a convenient method
for computing XG. After these preparations, we give our
main result: isomorphism question G

?∼ G′ is equivalent
to comparing intersections of XG and XG′ with a certain
invariant variety. We give a randomized algorithm for this and
apply it to provide a list of isomorphism classes on 4 and 5
nodes.

The question of DAG isomorphism does not seem to have
appeared elsewhere, though the closely related question of
DAG equality (also known as Markov equivalence [4]) is well-
studied. As mentioned in [5], the natural space to work with
when doing model selection or averaging over DAGs is that of
their equivalence classes. This has motivated the need to rep-
resent DAGs, and among the representatives that are relevant
in this regard are the essential graphs [4] and the characteristic
imsets [6]. Both these methods have a combinatorial flavor and
this work provides an algebraic alternative. The word algebraic
here means commutative-algebraic, unlike in [6].

It is also important to mention that the idea of associating an
algebraic variety to a conditional independence (CI) model has
been previously explored in a number of publications, among
which we will discuss [7]–[16]. Some of our preparatory



propositions can be found in the literature in slightly weaker
forms and we attempt to give references. The main novelty
is that we essentially leverage the directed-graph structure
of the model (as opposed to general CI model) to infer
stronger algebraic claims. In particular, our treatment is base
independent – although for readability we present results for
the varieties over C.

A. Preliminaries

Directed acyclic graphical models are constraints imposed
on a set of probability distributions:

Definition 1: A directed acyclic graphical model (DAG)
E/k is the data:
• A set of indices [n] := {1, · · · , n} that are nodes of a

directed acyclic graph. We frequently assume the nodes
to be topologically sorted, i.e., i < j whenever there is a
path in the graph from i to j.

• A list ME of imposed (a.k.a local Markov) relations
i ⊥⊥ nd(i)|pa(i) (4)

where pa(i) denotes the set of parents of i ∈ [n] and
nd(i) is the set of non-descendants of i in the directed
graph.

• A subset Mtopo
E of topologically sorted local Markov

relations:
i ⊥⊥ nd(i) ∩ {j : j < i}|pa(i) (5)

• A set of E-compatible joint probability distributions
Loc(E) := {PX | I ⊥⊥ J |K ∈ME ⇒ XI ⊥⊥ XJ |XK},

where X is a kn-valued random variable1.
• A set of implied relations

CE := ∩PX∈Loc(E){I ⊥⊥ J |K s.t XI ⊥⊥ XJ |XK}.
Given a collection of such models, it is often of interest to

find representatives for their isomorphism classes (see also
[7], [8])– these are models that have the same compatible
distributions modulo labelings of variables:

Definition 2: Let Q be a permutation invariant family of
distributions. Two DAGs E , E ′ are called Q-equal if

Loc(E) ∩Q = Loc(E ′) ∩Q.
When Q is the set of all distributions, we call such models
equal. Likewise, two DAGs E , E ′ are called Q-isomorphic if
pX1···Xn ∈ Loc(E) ∩Q ⇐⇒ pXπ(1)···Xπ(n)

∈ Loc(E ′) ∩Q
for some permutation π of indices. When Q is the set of all
distributions, we call such models isomorphic.

We shall mainly focus on characterizing isomorphism
classes of DAGs. A related question is that of understanding
the structure of conditional independence constraints – see for
the case of discrete random variables [8]–[10], positive discrete
random variables [11], non-singular Gaussians [7], and general
Gaussians [12].

Let H = H1×· · ·×Hn be a product measure space endowed
with the σ-algebra H = H1⊗· · ·⊗Hn. We assume that Hi is

1We mostly work with k = R or C. Since R and C are measurably
isomorphic, it does not matter which one we pick. We write E/k if we need
to emphasize the base field k.

measurably isomorphic to R and that Hi is a Borel σ-algebra
for all i. The next property, factorization, relies on a digraph
structure and pertains only to DAGs:

Definition 3: A probability measure P defined on (H,H)
is said to factorize w.r.t a DAG if it can be written as

P (A) =

∫
A

n∏
i

Ki|pa(i)(dxi|xpa(i)) ∀A ∈ H,

where Ki|pa(i)’s are conditional probability kernels (which ex-
ist by [17, Theorem 2.7]) and Ki|pa(i)(dxi|xpa(i)) = µi(dxi)
if i has no parents in G.

Given a DAG G, we denote by Fac(G) the set of distribu-
tions that factorize w.r.t G. We show in Section II.A that

Fac(G) = Loc(G).

This means that two DAGs are equal (isomorphic) in the above
sense if and only if they factorize the same set of distributions
(modulo the labeling of the variables).

B. Notation

• N is the set of real valued Gaussians
• N+ is the non-singular subset of N .
• Σ = [σij ] is the affine space C(n+1

2 ) of Hermitian n× n
matrices.

• Σ+ is the positive semi-definite (PSD) subset of Σ.
• Σ++ is the positive definite (PD) subset of Σ.
• Σ. is the subset of matrices in Σ with non-zero principal

minors2.
• Σ̂ is the subset of Σ consisting of matrices with ones

along the diagonal. We also set Σ̂+ M
= Σ̂ ∩ Σ+,

Σ̂++ M
= Σ̂ ∩ Σ++, and Σ̂. M

= Σ̂ ∩ Σ..
• loc(G) is the set of covariance matrices in Loc(G)∩N .
• fG is the rational parametrization defined in II.B.
• Given S ⊂ Σ, [S] and [S]Z are its standard and Zariski

closures3, respectively.
• Given S ⊂ Σ, I(S) is the ideal of polynomials that vanish

on [S]Z .
• Given an ideal I , the associated algebraic set is given by

V (I) = {x ∈ Cn|f(x) = 0 ∀f ∈ I}.

• XG
M
= [loc(G)]Z , pG

M
= I(XG), X̂G

M
= [loc(G) ∩ Σ̂]Z .

C. Overview of main results

Our main purpose is to show that the computational tools
in algebra are relevant for addressing the following problem:

Problem 1: Given two DAGs, determine if they are isomor-
phic.

Our starting point is to show that isomorphism and N+-
isomorphism are equivalent for DAGs (see Section II.C). It is
well known that checking N+-equality reduces to checking
equality of algebraic subsets inside the positive definite cone
(see for instance [3], [13]–[15]). This follows from the next
proposition:

2Note that Σ. is Zariski open, while Σ+,Σ++ are described by inequali-
ties.

3The closure is always taken inside the affine complex space.



Proposition 1 (Lemma 2.8 in [18]): Let X ∼ N(µ, σ) be
an m-dimensional Gaussian vector and A,B,C ⊂ [m] be
pairwise disjoint index sets. Then XA ⊥⊥ XB |XC if and only
if the submatrix σAC,BC has rank equal to the rank of σCC .
Moreover, XA ⊥⊥ XB |XC if and only if Xa ⊥⊥ Xb|XC for
all a ∈ A and b ∈ B.

Remark 1: Note that the rank constraint is equivalent to
vanishing of the minor |σAC′,BC′ | for a maximal C ′ ⊂ C
such that XC′ is non-singular 4.

Proposition 1 enables us to think algebraically and/or
geometrically when deciding Gaussian equality. Indeed, it
states that loc(G) ∩ Σ++ can be identified with the positive
definite subset of the real solutions to the polynomial equations
generated by the implied relations in G. Working with such
subsets, however, is not convenient from a computational point
of view. This motivates the next problem:

Problem 2: Give an algebraic description of loc(G).
Let JG be the ideal generated by the minors |σiK,jK | of the

implied relations i ⊥⊥ j|K ∈ CG inside C[Σ]. Similarly, the
minors of imposed relations of G generate an ideal IG ⊂ JG in
C[Σ]. Note that this ideal coincides with that generated by the
toposorted imposed relations. The corresponding ideals gener-
ated inside C[Σ̂] are denoted by ÎG, ĴG. With the established
notation, for example, Proposition 1 implies

V (IG) ∩ Σ++ ∩ R(n+1
2 ) = loc(G) ∩ Σ++. (6)

We address the above problem by identifying XG with an
irreducible component of V (IG). It is a curious fact that the
points in V (IG)∩Σ̂++ correspond to covariances of circularly
symmetric Gaussians that satisfy the CI constraints of G/C.
Thus if we work with complex Gaussians, we may avoid
intersecting with the reals in (6).

In Section II, we first prove some geometric results, which
can be summarized in the following diagram

ImfG ∩ Σ+ = loc(G) ⊂ [loc(G) ∩ Σ++] ⊂ XG

( ) =

loc(G) ∩ Σ++ V (IG) [V (IG) ∩ Σ.]Z
The same inclusions hold if we replace (IG,Σ) with (ÎG, Σ̂),
Σ. with Σ++, or IG with JG.

It is known that [loc(G) ∩Σ++]Z is a complex irreducible
rational algebraic variety, cf. [3]. Here we further show
that it coincides with XG and characterize pG = I(XG)
in two different ways: as the saturated ideal of IG at
θ0 =

∏
A⊂[n](|ΣAA|) (Conjecture 3.3 in [3]), and as the

unique minimal prime of IG contained in the maximal ideal
mI at the identity. We thus have the following relations inside
C[Σ]:

IG ⊂ JG ⊂ S−1JG ∩ C[Σ] = S−1IG ∩ C[Σ]

= I(loc(G) ∩ Σ++) = pG ⊂ mI ,

where S = {θn0 |n > 0}. One can replace (loc(G),Σ)
with (loc(G) ∩ Σ̂, Σ̂) in the above. We note that the above

4A vector random variable is said to be non-singular if its distribution
admits a density w.r.t. product Lebesgue measure.

relations hold verbatim over Z[Σ] and other base rings. Our
main statement, shown in II-D, is that two DAGs G,G′ are
isomorphic if and only if

S−1IG ∩ C[Σ]Π = S−1IG′ ∩ C[Σ]Π.

We use the above results to provide a randomized algorithm
for testing DAG isomorphism in II-E. We then use the algo-
rithm to list the isomorphism classes of directed tree models
for n = 4 and 5 nodes. We also include the list for n = 6 in
the extended version of the paper. There, we further discuss
some special properties of directed tree models. In particular,
we show that ÎT is a prime ideal for a tree model T and hence
ÎT = I(loc(T )∩ Σ̂). This is analogous to primality of JT , the
ideal of implied relations, shown in [3] (see Corollary 2.4 and
Theorem 5.8).

The number of isomorphism classes of directed tree models
found by our procedure is 1, 1, 2, 5, 14, 42, 142, ... for n ≥ 1.
Curiously, the first 6 numbers are Catalan but the 7th is not.

II. MAIN RESULTS

A. Factorization and local Markov properties

In this section we show that isomorphic DAGs factorize the
same set of probability distributions modulo the labeling of
the variables. A theorem of Lauritzon (see [1, Theorem 3.27])
says that a non-singular measure satisfies the local Markov
property if and only if its density factorizes. Let (H,H) be as
in Definition 3. One can further state:

Proposition 2: Let G be a DAG and P a probability
measure defined on (H,H). The following are equivalent:

1) P factorizes w.r.t to G.
2) P satisfies all imposed constraints (4) w.r.t G.
3) P satisfies topologically sorted constraints (5) w.r.t. G.

In particular, Fac(G) = Loc(G).
Proof: see [19].

B. Weak limits of factorable Gaussians

This section provides a characterization of the singular
distributions in loc(G) as the weak limit of sequences in
loc(G)∩Σ++. Note that since (H,H) is a topological space,
weak convergence PXn

w→ PX is well-defined .
To characterize loc(G) ∩ ∂N+, we shall find it useful to

work with the parametrization

Xi =
∑
j<i

αijXj + ωiZi, (7)

where Zi’s are independent standard Gaussians. Suppose that
αij = 0 for all (i, j) /∈ E, where E denotes the set of
(directed) edges of G. Then this parametrization gives a
polynomial map fG : R|E|+n 7→ R(n+1

2 ), sending {αij , ωi}
to cov(X). Indeed, starting from (7), one can write

σik =
∑
j<i

αijσjk + ωiγik

where γik = Cov(Zi, Xk), σik = Cov(Xi, Xk). Note that
γik = 0 for k < i. With this notation, we can write

γki =
∑
j>i

αijγkj + ωiδik =
∑
j>i

γkjα
∗
ji + ωiδik.



Set Γ := [γij ], A := [αij ],Ω := [ωii],Σ := [σij ]. We can
write the above equations in matrix form:

Σ = AΣ + ΩΓ, Γ = ΓA∗ + Ω.

Hence,
Σ = (I −A)−1Ω2(I −A∗)−1.

The image of fG is Zariski dense in [loc(G) ∩ Σ++]Z :
Proposition 3 (Proposition 2.5 in [3]): Let G be a DAG

and E be its set of edges. Then [loc(G)∩Σ++]Z is a rational
affine irreducible variety of dimension n+ |E|.

The next Proposition shows that

XG = [loc(G) ∩ Σ++]Z .

Proposition 4: Let G be a DAG. Then
(a) loc(G) ∩ Σ++ is dense in loc(G).
(b) loc(G) ∩ Σ̂++ is dense in loc(G) ∩ Σ̂.

Proof: see [19].
This proposition shows that XG contains all G-factorable

Gaussians. There are, however, (singular) covariances on XG

that are not G-compatible. In other words, unlike indepen-
dence, conditional independence is not preserved under weak
limits as shown in the following example.

Example 1 (loc(G) is not closed): Let Xn ∼ N(0, 1),
Wn ∼ N(0, 1) be independent Gaussians. Set Zn = Xn and
Yn = 1

nXn+
√
n2−1
n Wn. Then Xn ⊥⊥ Zn|Yn,Wn for all n and

PXn,Yn,Zn,Wn

w→ PX,Y,X,W with X ∼ N(0, 1),W ∼ N(0, 1)
and Y = W . However,

X 6⊥⊥ X|W.
Thus the closure of loc(G)∩Σ̂++ strictly contains loc(G) ∩ Σ̂.

Remark 2: In general, the weak convergence of the joint
PX(n)

w→ PX does not imply that of the conditional kernels
P
X

(n)
i |X

(n)
j

w→ PXi|Xj . If the latter conditions are also satis-
fied, then conditional independence is preserved at the (weak)
limit5.

C. DAG varieties and ideals

Here we provide some algebraic and geometric descriptions
for loc(G):

Theorem 1: Let G be a DAG and let
θ0 =

∏
A⊂[n](|ΣAA|).

(a) There is a Zariski closed subset YG so that

V (IG) = XG ∪ YG
where YG ⊆ V (θ0) = {θ0 = 0}.

(b) Let pG = I(loc(G)) so that XG = V (pG). Then pG is a
prime ideal obtained by saturating IG

pG = S−1IG ∩ C[Σ] (8)

at the multiplicatively closed set S = {θn0 , n = 1, . . .}.
(c) XG is smooth inside Σ..

Remark 3:
(a) In Theorem 1b, we can replace IG with JG. Analogous

statements hold over C[Σ̂] as shown in [19].

5This follows directly from the lower semi-continuity of divergence.

(b) It follows that V (IG) and V (JG) do not miss a single G-
compatible Gaussian, but can add some bad components
to the boundary ∂Σ++. Theorem 1b states this in algebraic
terms and provides a proof of Conjecture 3.3 in [3].
Theorem 8 in [16] gives an analogous result for the
implied ideals of discrete random variables.

(c) In Theorem 1b, one can replace θ0 with the product of
principal minors |σKK | where K appears as a conditional
set in some imposed relation i ⊥⊥ j|K.

(d) There are many equivalent ways to recover pG from IG
besides (8). Indeed, (e.g. [20, Chapter 4]) we have

pG = (IG : θm0 )

for all m sufficiently large. Another characterization is
from primary decomposition of IG:

IG = pG ∩ q1 · · · qr ,
where pG is the unique component that is contained in
maximal ideal mx corresponding to covariance matrix x
with non-singular principal minors (e.g. identity).
Proof: see [19] for details.

The next example shows how Theorem 1 can be used to
construct pG from IG:

Example 2: Consider the DAG
4

G : 1 2

3

The ideal of imposed relations is generated by relations
1 ⊥⊥ 3|2 and 4 ⊥⊥ 1|(2, 3):

IG = 〈|σ12,23|, |σ123,423|〉.
It has primary components
IG,1 = 〈σ12σ23 − σ13σ22, σ12σ24 − σ14σ22, σ13σ24 − σ14σ23〉
and
IG,2 = 〈σ12σ33 − σ13σ23, σ12σ33 − σ13σ23, σ22σ33 − σ2

23〉.
It can be seen that only IG,1 intersects Σ.. We thus have
pG = IG,1. Furthermore, IG,1 is the unique ideal contained in
the maximal ideal at the identity of Σ, and is also equal to the
saturation of IG at f = σ22(σ22σ33 − σ2

23).

D. Algebraic representation
Here, we put together the results of the previous sections to

give an algebraic criteria for testing isomorphism of graphical
models. We start by a result on equality of DAGs:

Proposition 5: Let G,G′ be DAGs. Then G is equal to
G′ if and only if XG = XG′ , or equivalently, if and only if
X̂G = X̂G′ .

Proof: see [19].
In what follows, Π = {πs}s∈Sn is the permutation group

with induced action on C[Σ]: πs(f(σij)) = f(σs(i)s(j)))
where s ∈ Sn is a permutation of indices. The invariant
subring {f ∈ C[Σ] | f ◦ πs = f ∀s} is denoted by C[Σ]Π.
We can now state our main result:

Theorem 2: Let G,G′ be DAGs and S be as in Theorem 1.
Then G and G′ are isomorphic if and only if

S−1IG ∩ C[Σ]Π = S−1IG′ ∩ C[Σ]Π. (9)

Proof: see [19].



Algorithm 1 ISODAGm

1: function ISODAGm(G, G′)
2: Sort G and G′ topologically
3: Initialize ISO← true, r ← 1
4: while ISO and r ≤ m do
5: Sample zrG, z

r
G′ respectively from ϕ̂∗PG,ϕ̂∗PG′ as follows:

(i) Sample edge variables σ̂r
edge of G from PG

(ii) for i := 2 to n do
Solve the (linear) toposorted imposed relations

|σ̂r
iK,jK | = 0, K := pa(i)

for each non-edge variable σ̂r
ij , j < i

(iii) end for
(iv) zrG ← (σ̂r

edge, σ̂
r
non−edge)

(v) Repeat for G′

8: if Π(zrG) ∩ V (ÎG′) = ∅ or Π(zrG′) ∩ V (ÎG) = ∅ then
9: ISO← false

10: end if
11: r ← r + 1
12: end while
13: return ISO

E. Randomized algorithm

We use the preceding results to give a randomized algorithm
for testing DAG isomorphism. In [19], we associate with
every DAG G a rational map (see proof of Theorem 1)
ϕ : Σedge → Σ where ϕ is regular on a distringuished open
D(gh) and its image is dense in XG. Here, g and h are certain
polynomials in C[Σedge]. Denote by ϕ̂ : Σ̂edge → X̂G the map
ϕ|Σ̂. Let Y := F|E|q and define

U := {y ∈ Y : ĝ(y) 6= 0, ĥ(y) 6= 0},
where ĝ = g|Σ̂, ĥ = h|Σ̂. Now construct a random matrix with
uniform distribution PG on the finite set U . Let ϕ̂∗PG be the
push-forward of PG under ϕ̂ and Zi

G’s be independent random
variables with common distribution ϕ̂∗PG.

Given DAGs G, G’, the algorithm ISODAGm described
above constructs m realizations ziG, z

i
G′ from Zi

G, Z
i
G′ . It

then declares G and G′ to be isomorphic if and only if for
each i ≤ m, there is some permutation π such that both
π(ziG) ∈ V (ÎG′) and ziG′ ∈ V (π(ÎG)) hold. We have:

Theorem 3: Let G be a DAG on n nodes and E be its set
edges. Let Zi

G be as in above and set d := deg(ĝ) + deg(ĥ).
If G ∼ G′, then

P[ISODAGm(G,G′) = yes] = 1.

If G 6∼ G′, then

P[ISODAGm(G,G′) = yes] ≤ (n!
n+ 2d− 1

q − d
)m.

Proof: see [19].
We use this theorem to list (with high probability) the

isomorphism classes of trees on 4 and 5 nodes. See Figure 1.
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[15] F. Matúš, “Conditional independence structures examined via minors,”
Ann. Math. Artif. Intell., vol. 21, no. 1, 1997.

[16] L. Garcia, M. Stillman, and B. Sturmfels, “Algebraic geometry of
Bayesian networks,” J. of Symb. Comput., vol. 39, no. 3, pp. 331–355,
2005.
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