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Abstract—This paper investigates the maximal channel coding
rate achievable at a given blocklength n and error probability e,
when the codewords are subject to a long-term (i.e., averaged-
over-all-codeword) power constraint. The second-order term in
the large-n expansion of the maximal channel coding rate is
characterized both for AWGN channels and for quasi-static
fading channels with perfect channel state information at the
transmitter and the receiver. It is shown that in both cases the

second-order term is proportional to /(logn)/n.

I. INTRODUCTION

With long-term power constraint, one refers to the setup
where the average power of the transmitted codewords, aver-
aged over all possible codewords, is limited. This is in contrast
to the conventional short-term power constraint, where the
power of each transmitted codeword is limited. A long-term
power constraint is useful in situations where the power
limitation comes from energy efficiency considerations. For
example, it captures the relatively long battery life of mobile
terminals (at least compared to the duration of a codeword) in
the uplink of cellular communication systems [1]. The notion
of long-term power constraint is widely used in the wireless
communication literature (see, e.g., [2]-[4]) as it allows for a
dynamic allocation of power and rate.

In this paper, we study the maximal channel coding rate
R*(n, €) achievable at a given blocklength n and average error
probability €, when the codewords are subject to a long-term
power constraint. Two channel models are considered: the
AWGN channel, and the quasi-static fading channel, i.e., a
channel where the fading gain is random but remains constant
during the transmission of each codeword. For the quasi-
static case, we also assume that both the transmitter and the
receiver have perfect channel state information (CSI). Under
this assumption, a codeword is allowed to depend both on
the message and on the channel realization, and—under a
long-term power constraint—the average power is obtained by
taking the expectation of the norm squared of the codewords
with respect to both messages and channel realizations.

Previous Results: For AWGN channels subject to the
short-term, i.e., per-codeword, power constraint! p, it was
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INote that in [5], the short-term power constraint is referred to as maximal
power constraint and the long-term power constraint is referred to as average
power constraint.

shown in [5] that

Foven(ns) = o)~ Y2010 + o 21) o

Here, Q~1(-) denotes the inverse of the Gaussian @Q-function,

C(p) = log(1 + p) )
denotes the channel capacity,” and
A Plp+2)
= — 3
Vi(p) e 3)

denotes the channel dispersion [5, Def. 1]. The behavior
of the maximal channel coding rate changes drastically if
the codewords are subject to a long-term power constraint
(denoted again by p to facilitate comparisons). Specifically, [6,
Th. 77]°

R o (n.€) = C(ﬂ) +o(n?). @
The expansion (4) implies that the strong converse [7, p. 208]
does not hold for AWGN channels subject to a long-term
power constraint.

For quasi-static fading channels subject to the short-term
power constraint p, it was shown in [8] that under mild
conditions on the probability distribution of the fading gain G,

Riy(n,€) = C(pFiny(€) + O (log ") : 5)

n
Here, Fipy : [0,1] — R™T is defined as

Fi(t) = sup{g : P[G < g] < t}. (6)
For the case of long-term power constraint, it follows from [9,
Props. 1 and 4] that*

R:sﬁlt(n? 6) = C(p/ge) + 0(1) (7)
where
G < Finy(e)] — €
Finv(e)

g =E é]l{G > Fiv(e)}| + Pl ®)

%In this paper, log(-) stands for the natural logarithm.

3The O(n*1/3) term can be replaced by O(n*1/2+5) for every 6 > 0
in the achievability proof of (4).

4This holds at the points where C(p/gc), or equivalently, Fi,y(e), is
continuous in €.



with 1{-} standing for the indicator function. As shown
in [9], (7) can be achieved by concatenating a fixed Gaussian
codebook with a power controller that works as follows:
it performs channel inversion when the fading gain G is
above Fi,y(€); it turns off transmission when the fading gain
is below Fi,,(€). This power-control scheme is sometimes
referred to as truncated channel inversion [3] [10, Sec. 4.2.4].

Contribution: We characterize the second-order coding
rate of both AWGN channels and quasi-static fading channels
subject to a long-term power constraint. For AWGN channels,
we show that the asymptotic expansion (4) can be refined as

R;Wgn,lt (n7 E)
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For quasi-static fading channels, we show that

et =¢(2) - G0 o

The asymptotic expansions (9) and (10) are obtained by
deriving converse and achievability bounds that match up to
the second-order term. Our converse bound on ;.. 1(n, €)
is based on the meta-converse theorem [5, Th. 26] with an
auxiliary channel that depends on the transmitted codewords
only through their power. In deriving the bound, we also
exploit that the solution of the following minimization problem

o ( ml) 7)]
V(W)
where + is a positive number and the infimum is over all prob-
ability distributions Py, on RT satisfying [ wdPw (w) < p,
is a two-mass-point distribution, provided that ~ is chosen
appropriately and n is sufficiently large. The minimization
in (11) arises when optimizing the e-quantile of the infor-
mation density over all power allocations. Our achievability
bound on R} 1(n, €) is obtained by refining the proof of [6,
Th. 77]. The basic idea is to add all-zero codewords to a
Gaussian codebook designed for a short-term power constraint.
The proof of (10) builds upon the proof of (9). In particular,
the achievability part of (10) is based on the truncated channel
inversion scheme (with an appropriate threshold), which trans-
forms the quasi-static fading channel into an AWGN channel.
This implies that truncated channel inversion achieves the first

two terms in the large-n expansion of R} (n,¢).

inf E
W~ P

(1)

II. THE AWGN CHANNEL

In this section, we consider the AWGN channel

Y =2+ Z. (12)

Here, * € C" is the transmitted codeword and Z de-
notes the additive noise vector, which has independent and
identically distributed (i.i.d.) circularly symmetric complex
Gaussian entries CN(0,1). An (n, M, €)1, code for the AWGN
channel (12) consists of:

1) anencoder f: {1,..., M} — C™ that maps the message

J € {1,...,M} to a codeword = € {ci1,...,cm}
satisfying the power constraint
| M
17 2 llesll® < mp. (13)
j=1

2) A decoder g: C™ — {1,..., M} satisfying the average
error probability constraint

Plg(Y) # J] < e. (14)

Here, .J is assumed to be equiprobable on {1,..., M},
and Y denotes the channel output induced by the
transmitted codeword according to (12).
We shall refer to the constraint (13) on the codewords as long-
term power constraint [9], as opposed to the more stringent
short-term power constraint

leill* <mp, j=1,...,M. (15)

The maximal channel coding rate is defined as

e M 5 (0, M, e code}. (16)

szgn,lt (n7 6) = sup{

As reviewed in Section I, the e-capacity of the AWGN channel
is [6, Th. 77]

lim R:;ng’l,lt(”’ 6) = C(l P

n—oo — €

), O<e<l. (17

Note that if we replace (13) with (15) or the average error
probability constraint (14) with the maximal error probability
constraint

max Plg(Y) # J|J=j] <e

1<5<M (18)

the strong converse applies and (17) ceases to be valid.
Theorem 1 below characterizes the second-order term in the
asymptotic expansion of R . 1 (n,€) for fixed 0 < e < 1,
and large n.
Theorem 1: For the AWGN channel (12) subject to the
long-term power constraint p, the maximal channel coding rate

R n,e) is
. _ P\ P [logn
awgn,lt(TL:E)_C(l_E) V<1_E) n
1

where C(-) and V(-) are defined in (2) and (3), respectively.
Proof: Due to space limitations, we only provide a sketch
of the proof. For full details, see [11].
Converse: Consider an arbitrary (n, M, €)y, code. Let Px
denote the probability distribution on the channel input X
induced by the code. To upper-bound R} . . (n,€), we use

the meta-converse theorem [5, Th. 26] with the following
auxiliary channel Qy | x:

QY\X:m = CN(07 (1 + ||:B||2/1’L) l") :

zwgn,lt(

(20)



The choice of letting the auxiliary channel in (20) depend
on the transmit codeword through its power, is inspired by a
similar approach used in [6, Sec. 4.5] to characterize R*(n, ¢)
for the case of parallel AWGN channels, and in [8] for the
case of quasi-static MIMO fading channels under a short-term
power constraint. With this choice, we have [5, Th. 26]

Br-e(Pxy,PxQyx) <1—¢ (21)

where 3(.(-, -) is defined in [5, Eq. (100)] and ¢ is the average
probability of error incurred by using the selected (n, M, €)1
code over the auxiliary channel Qy | x.

Next, we lower-bound the left-hand side (LHS) of (21).

Under Pxvy, the random variable log M,ipfg;'w) has the same

distribution as

2
WZ—”) (22)

where W £ | X|?/n and Zi, ..., Z, are iid. CN(0,1) dis-
tributed and independent of W. Using [5, Eq. (102)] and (22),
we obtain the desired lower bound

Bi-e(Pxy,PxQy | x) > e "7 (P[S,(W) <ny] —¢€) (23)

which holds for every v > 0. The right-hand side (RHS)
of (21) can be upper-bounded as follows [11]

log(1 —¢€) < —log M + O(logn).
Substituting (23) and (24) into (21) we obtain
log M < ny —log(P[Sn(W) < nv] — €) + O(logn). (25)

(24)

Note that the RHS of (25) depends on the code only through
the probability distribution that the code induces on W =
| X ||?/n. We denote this probability distribution by Py .

Let € be the set of probability distributions Py on RT that
satisfy

/deW(w) <p. (26)

Maximizing the RHS of (25) over all Py €  and then
dividing both terms by n, we conclude that for every v > 0

RZWgn,lt (’Il, 6)

1 ) logn
<Ay - < — .
<v- - log (Pé‘fléQP[Sn(W) < ny] 6) + (9( - ) (27)

To evaluate P[S,,(W) < n~], we note that—given W —the
random variable S,, (W) is the sum of n i.i.d. random variables
with mean C (W) and variance V(IW). An application of the
Berry-Esseen theorem [5, Th. 44] yields [11]

6-9%/4
PS, (W) <nv] > Egn,(W)] — NG (28)
where
Gny(w) £ Q (ﬂ%) . (29)

To eliminate the dependency of the RHS of (28) on Py, we
next minimize the first term on the RHS of (28) over all Py,

in €2, i.e., we solve the optimization problem given in (11). The

following lemma, proven in [11], gives the solution of (11).
Lemma 2: Let v > 0 and assume that n > 27(e2? —1)y =2,

Let wg € [ — 1,00) be the unique number that satisfies

Adn,y (wo) -1
Wo

=, (wo) (30)
where g, . (-) stands for the first derivative of g, - (-). Then, the
infimum in (11) is a minimum and the probability distribution
Py, that minimizes Ep,, [¢,, ()] has the following structure:
1) if wg > p, then Py, has two mass points, one located
at 0 and the other located at wq. Furthermore, Py;,(0) =
1-— p/wo and P;V(wo) = p/wo.

2) If p > wop, then Py, has only one mass point located
at p.

We now use Lemma 2 to further lower-bound the RHS
of (28), and, hence, further upper-bound the RHS of (27).
Let wy be as in Lemma 2. Assume that v in (23) is chosen
from the interval (C'(p/(1—¢€))—4,C(p/(1—€))+3) for some
0<d < C(p/(1—¢)). For such a v, we have wg > ¥ —1 > p
provided that ¢ is chosen sufficiently small. Using Lemma 2,
we conclude that for sufficiently large n

: —1_r
i Bl (V)] =1 2

Substituting (31) into (28) and then (28) into (27), we obtain

P
— . 1
+ wo qn,'y(UJO) (3 )

1 p p
R <y--1 1—— 4+ —q
a9 <9 = 2log(1= 2t L ()
6-93/4 logn
— — @) .(32
i > i < " ) 2
We choose now ~ as the solution of

) ) 6-93/4 1
1—— 4+ —q — —e=—. 33
wWo + woq 77(w0) \/ﬁ ¢ \/ﬁ ( )

Solving (30) and (33) for wy and v we obtain [11]

=) N el ) o

Observe now that  belongs indeed to the interval (C'(p/(1—
€)) — §,C(p/(1 — €)) + 6) for sufficiently large n. The
proof of the converse part of Theorem 1 is concluded by
substituting (33) and (34) into (32).

Achievability: The proof is a refinement of the method
used to establish [6, Th. 77]. Let (n, M., €,)st, where €, =
2/+/nlogn, be a code for the AWGN channel (12), whose
codewords {ci,...,cpr, } satisfy the short-term power con-
straint

1 1—e¢,
ﬁIICzIIQSpnépl_e, I=1,....M,. (35
Set
1—e€,
M = M, —— (36)

and assume that n is large enough so that M > M,,. We
construct a code with M codewords for the case of long-term
power constraint by adding (M — M,,) all-zero codewords to



the codewords of the (n, M, €,)s code. The resulting code
satisfies the long-term power constraint. Indeed,
M — M, M,

0. 2= M
M P TP

At the same time, the average probability of error is upper-
bounded by

(37

(38)

Therefore, by definition,

log M
n

R*

awgn,lt

log M, 1
(n,€) = - Og+c9() (39)
n n
where the last step follows from (36).
To conclude the proof, it suffices to show that

logn 1
2o
(40)
The proof of (40), which is omitted for space limitations and
can be found in [11], uses the k3 bound [5, Th. 25] and
a Cramer-Esseen-type central limit theorem [12, Th. VLI].

Note that a weaker version of (40), with o(1/y/n) replaced
by o(4/log(n)/n), follows directly from [6, Th. 96]. [ |

1ogMn>C< p )_
- 1—¢

n 1—c¢

III. THE QUASI-STATIC FADING CHANNEL

We move now to the quasi-static fading case. The channel
input-output relation is given by

Y=Hx+2Z 41)

where H denotes the complex fading coefficient, which is
random but remains constant for all n channel uses. We
assume that the realizations of H are known to both the
transmitter and the receiver. We denote the channel gain by
G = |HJ]*. An (n, M, e); code for the quasi-static fading
channnel (41) consists of:

1) an encoder f: {1,...,M} x C — C" that maps the
message J € {1,..., M} and the channel coefficient H
to a codeword = f(J, H) that satisfies the long-term
power constraint

E[Il/(J, DIP] < np.

Here, J is equiprobable on {1,..., M}, and the expec-
tation in (42) is with respect to the joint probability
distribution of J and H.

2) A decoder g: C" x C — {1,...,
average error probability constraint

Plg(Y, H) # J] <€

(42)

M} satisfying the

(43)

where Y is the channel output induced by the transmit-
ted codeword « = f(J, H) according to (41).

The maximal channel coding rate is defined as

log M

Res1t(n, €) = sup{ : d(n, M, e)i code} . (44)

As discussed in Section I, the e-capacity of the quasi-static
fading channel (41) is [9]

Jim RE1i(n,€) = C(p/ge)- (45)
If we replace (42) with the short-term power constraint
IfG P <np, Wi=1,...,M, VheC  (46)

then CSI at the transmitter is ineffectual and (45) ceases to be
valid [13]. Differently from the AWGN case, (45) holds also
if (43) is replaced by the maximal error probability constraint

1gljf;>§wIP’[g(Y,H) #J|J=j]<e (47)

Theorem 3 below characterizes the second-order term in the
asymptotic expansion of R, 1 (n,¢€) for fixed 0 < € <1 and
large n.

Theorem 3: Assume that the input of the quasi-static fading
channel (41) is subject to a long-term power constraint p.
Assume that CSI is available at both the transmitter and the
receiver. Let 0 < e < 1 be the average probability of error
and assume that

1) Fin () defined in (6) is continuous at e;

2) E[G] < oo, where G = |H|? is the channel gain.

Then
R . (n,e |V
q:a,lt( ) ge ge

where C(-) and V(-
and g, is given in (8)

Remark 1: The asymptotic expansion (48) holds also if the
average error probability constraint (43) is replaced by the
maximal error probability constraint (47).

Proof: For simplicity of presentation, we assume that G
is a continuous random variable, i.e., the probability density
function of G exists. Under this assumption, g. takes the
following simpler form

log n

) (48)

are defined in (2) and (3), respectively,

§e=E| Z1{G > Fyn(0)} (49)
The proof can be easily extended to the case where G is not
continuous by proceeding as in the proof of [9, Prop. 4].

Due to space limitations, we only provide the proof of the
achievability part of Theorem 3. The proof of the converse
part follows closely that of the converse part of Theorem 1
and can be found in [11].

Let
62 gpge o6 (50)
€n = —— e,
vnlogn 1—e€,
For sufficiently large n, we have €], > 0. Let
_ 1
gn =E EI{G > Finv(eil,)} oy

Furthermore, let p, = p/g,. We define the following power-
allocation function for each g € R™:

sl /
= 51{9 > Finv(€n)} (52)

w(g)



As we shall see, this power allocation function corresponds to
truncated channel inversion: the fading channel is inverted if
the gain is above Fipy (€,,). Otherwise, transmission is silenced.
Let M, denote the maximal number of length-n codewords
that can be decoded with maximal probability of error not
exceeding €, over an AWGN channel subject to the short-
term power constraint p,. Let the corresponding code be
(n, M, €,)st and its codewords be {ci,...,cp, }-

Consider now a code for the quasi-static fading channel (41)
whose encoder f has the following structure:

fGh) = Vw(hP)e;, jel{l,..., M.}, heC.

Such a code satisfies the long-term power constraint:

ik Z 1£G. H Z lesl? (54

(55)
(56)

(53)

1
WP | = T ELw(HP)

< GnpPn
= p.

Furthermore, the average error probability of the code is upper-
bounded by

1€ +e,(1—¢,) =e (57)

Indeed, channel inversion according to (52) is performed
whenever the fading gain G is larger than Fi,,(e],), which
occurs with probability 1 — €/,. Channel inversion transforms
the quasi-static fading channel into an AWGN channel. Hence,
the conditional error probability given that channel inversion is
performed is upper-bounded by ¢,,. When channel inversion is
not performed, an error occurs with probability 1. This shows
that the code is an (n, M, €)); code. Hence,

. log M, (n, e
Rl (n,e) > % (58)
From (40) in Section II, we know that
logM logn 1
> Cl(py) — Vipn — ). (59
> o) G+ o) 9

Furthermore, it follows from (50) after algebraic manipulations
that [11]

n = ge + O(1/y/nlogn). (60)
Since p,, = p/Gn, (60) implies that
n:p/§e+(9(1/\/nlogn). (61)

The achievability part of (48) follows by substituting (61)
into (59) and by a Taylor series expansion of C(-) and V()
around p/ge. [ |

IV. REMARKS

Convergence to capacity: For AWGN channels subject
to a short-term power constraint, it follows from (1) that the
finite-blocklength rate penalty compared to channel capacity is
approximately proportional to 1/y/n. By contrast, Theorem 1
shows that for AWGN channels subject to a long-term power

constraint, this rate penalty is approximately proportional to
\/log(n)/n. However, this does not necessarily mean that
R en1e(n,€) converges to capacity slower in the case of
long-term power constraint than in the case of short power
constraint. In fact, the term Q~'(¢) multiplying 1/y/n in (1)
is comparable to +/logn for practical values of ¢ and n. For
example, for € = 1073, n = 1000, and p = 0 dB, we have

V) g-1(6) = 0.085 > ,/v( P )\/log” — 0.072.
n 1—c¢ n

(62)
To better characterize the speed of convergence to capacity, our
result needs to be complemented with nonasymptotic bounds
on R} (n, €) similar to the ones reported in [5, Sec. ITI-J].

awgn,lt

Fading vs. noise: For quasi-static fading channels, it is
well known that the typical error event in the large blocklength
regime is that the channel is in outage (deep fade event). In
the finite blocklength regime, however, errors may occur not
only if the channel is in outage, but also if the code is not
able to average out the effect of the additive noise. How do
these two phenomena contribute to the error probability, as a
function of the blocklength n? For the code used in Section III,
the contribution to the error probability due to the additive
noise goes to zero as n — oo no slower than 1//nlogn; the
remaining contribution is due to channel outage.
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