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Abstract—Motivated by recent circuit designs for Flash
ADCs with imperfect comparators, we investigate the problem
of scalar quantization with noisy partition points, where the
partition point locations are perturbed from the designated
values by noise during the placement process. For this problem
setting, we derive a high resolution approximation for mean
square error, and analyze the optimal partition point density
accordingly. Our results indicate that it is necessary to take
the effect of noise into account in the design process. In
particular, we derive the optimal partition point density when
the input distribution is Gaussian or uniform, and show when
noise variance exceeds a certain threshold, a peculiar phase
transition occurs and the optimal point density degenerates
into a delta function at the origin. These theoretical results
allow to optimize the design of flash ADCs and gain 1 bit in
resolution over existing designs.

I. INTRODUCTION

In this paper we investigate the problem of scalar quan-
tization with noisy partition points, where partition points
are perturbed from the designated values by noise during the
placement process. This problem is motivated by Analog-
to-Digital Converter (ADC) design with imperfect compara-
tors, where the comparator reference voltages are subject to
stochastic manufacture variations, which becomes increas-
ing salient as modern CMOS design approaches the physical
limits of scaling. A series of work in circuit systems [1]–
[3] have employed redundancy and/or reconfigurability to
tackle this issue, in the context of Flash ADC design. On
the other hand,

While there exists some theoretical investigation of im-
perfect scalar quantizer and ADC (e.g., see [4] and the
references therein), they treat the ADC design as given and
aim to improve the quantization (estimation) performance
via post processing. When the fabrication variation is low,
these types of techniques are useful in improving system
performance. However, when the fabrication variation is
high enough, it is simply impossible for the traditional
designs to meet the performance specifications, and in this
case, new ADC designs are called for, and our investigation
aims to provide perspectives on these new designs, by taking
the statistical property of fabrication variation into account.

Analogous to the development in classical scalar quan-
tization theory, we adopt high resolution analysis for this
new setting, and analyze the optimal partition point density.
Finally, we discuss the implications of our results for Flash
ADC design, in terms of both technology scaling and
specific partition point density design.

This work was supported, in part, by AFOSR under Grant No. FA9550-
11-1-0183, and by NSF under Grant No. CCF-1017772.

II. NOTATION

We use lower-case letters (e.g. x) to denote a particular
value of the corresponding random variable denoted in
upper-case letters (e.g. X). We denote the support of a
probability density function (p.d.f.) fX by Supp(fX) ,
{x ∈ R : fX(x) > 0} . We use xji , j > i to denote a
sequence of values xi, xi+1, . . . , xj , and xn as a shorthand
for xn1 . We use the bold font to represent a vector, i.e.,
x , [x1, x2, . . . , xn]. We denote the indicator function by
1 {A}, where

1 {A} =

{
1 clause A is true,
0 otherwise.

We let R denote the real line, and 〈f, g〉 denote the inner
product of two functions on R, i.e., for f : R → R and
g : R→ R, 〈f, g〉 ,

∫
f(x)g(x)d x.

Given a sequence cn, we denote the number of points in
cn that falls in an interval [a, b] by N (a, b; cn), i.e.,

N (a, b; cn) ,
n∑
i=1

1 {a ≤ ci ≤ b} . (1)

We say an ' bn if an = bn(1 + εn) for some εn → 0 as
n→∞.

III. BACKGROUND

In this section we describe the problem of Flash ADC
design with imperfect comparators, whose abstraction leads
to the problem formulation in Section IV.

Flash ADC is a popular high-speed ADC architecture,
with a comparator bank being its key building block.
As shown in Section III, an imperfect comparator bank
consists of n imperfect comparators, where the block di-
agram of each comparator is shown in Section III. As
the diagram indicates, an imperfect comparator has non-
idealities on both its input voltage and reference voltage,
and the input-output relationship of the comparator satisfies
Yout = 1 {Vin + Zin ≥ Vref + Zref} . Let Z = Zin − Zref ,
then the output satisfies Yout = 1 {Vin + Z ≥ Vref} , where
Z ∼ N

(
0, σ2

)
is the effective fabrication noise and σ2 is the

effective fabrication variance, as both Zin and Zref can be
modeled as independent zero-mean Gaussian random vari-
ables [5], [6]. We emphasize that the fabrication variations
are static in the sense that they are determined at the time
of fabrication and does not change during the quantization
process.

The above model leads to the ADC block diagram in
Fig. 2, where the fabricated reference voltages and design
reference voltages are related by Ṽi = vi + Zi, i =
1, 2, . . . , n and the noisy comparator outputs satisfy Yi =

1
{
X ≥ Ṽi

}
, i = 1, 2, . . . , n, where Zi

i.i.d.∼ N
(
0, σ2

)
. In
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Fig. 2: System block diagram of a scalar quantizer with imperfect comparators. X is the input signal, vn are the designed
reference voltages and the Ṽ n are the fabricated reference voltages, which is a noisy version of vn. A comparison of
X and Ṽ n leads to the comparator outputs Y n. The fabricated reference voltages are provided to the decoder via a
calibration process. The encoder g(·, ·) takes both Y n and Ṽ n to reproduce X̂ , an estimate of X .
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Fig. 1: Building blocks in a Flash ADC

this paper we study the case that the reconstructor g(·) has
accurate knowledge about the fabricated reference voltages
Ṽ n, as calibration can be done with high accuracy with the
help of extra calibration logic, as shown in [2].

IV. PROBLEM FORMULATION

In this section we abstract the problem of designing
flash ADC with imperfect comparators, as described in
Section III, as the problem of scalar quantization with noisy
partition points. Before proposing the mathematical model
and corresponding performance metrics in Section IV-B,
we first review the classical scalar quantization problem
in Section IV-A as our development can be seen as a
generalization.

A. Classical scalar quantization problem

In the classical scalar quantization problem, an m-point
scalar quantizer Qm is a mapping Qm : R → C, where
C = {c1, . . . , cm−1, cm} ⊂ R is the set of reproduction
values. A quantizer Qm (x; vn, C) is uniquely determined
by its reproduction values C and its partition points vn,
where an input x is mapped to a value cj ∈ C based on the
quantization cell (vi−1, vi] that x falls into. Given an input
X with p.d.f. fX , the MSE of the quantizer is

D (vn, C) , EX [d (X; vn, C)]

,
n+1∑
i=1

∫ vi

vi−1

fX(x)(x− ci)2 dx,

where d (·; ·, ·) is the square error function d (x; vn, C) ,
(x−Qm (x; vn, C))2

. Scalar quantization theory indicates
that the optimal C in the MSE sense satisfies the centroid
condition [7], i.e., ci = E [X|X ∈ (vi−1, vi]] . Therefore,
when discussing the MSE performance, we restrict our at-
tention to the centroid reconstruction, and a scalar quantizer
is uniquely determined by its partition points vn and we
denote the corresponding MSE by D (vn).

B. Scalar quantization with noisy partition points

In this section we introduce the problem of scalar quan-
tization when the partition points are subject to random
variations. More specifically, each partition point ṽi in

an m-point scalar quantization is drawn independently
from a distribution FṼi

, and we denote the quantizer as
Qm (·; ṽn, C).

In this setting, a quantizer is randomly generated and
all performance metrics become random variables. We take
expectation over the random partition points Ṽ n when
calculating the MSE, which leads to

MSE , EṼ n

[
D
(
Ṽ n
)]
. (2)

Remark 1. In (2) we average over both different realiza-
tions of quantizers and multiple uses of the same quantizer.

For the problem of scalar quantization with noisy par-
tition points, we investigate how the set of distributions{
FṼi

}
impacts the MSE defined in (2). To investigate this,

we develop a high resolution analysis that is analogous to
the high resolution analysis of the classical scalar quantiza-
tion problem in Section V.

More specifically, for the ADC with imperfect compara-
tors model in Section III, if we design the reference voltages
to be vn, then Ṽi

indep.∼ N
(
vi, σ

2
)
, 1 ≤ i ≤ n. Given σ2,

we utilize the theory in Section V-A to investigate how the
choice of vn impacts performance metrics, and present the
detailed investigation in Section V-B.

Remark 2. The problem of quantization with random
uniformly distributed partition points for the uniform input
distribution has been investigated in [8], under a different
motivation, and turns out to be a useful building block in
our analysis.

V. HIGH RESOLUTION ANALYSIS

For the classical quantization problem in Section IV-A,
high resolution analysis leads to mathematical tractable
performance results and yields useful approximate results
for quantizer design. In this section we develop the anal-
ogous version of high resolution analysis for the problem
in Section IV. We postpone most proofs and derivations to
Section VII.

One key idea in high resolution approximation is that
for a sequence of values that are dense enough, we can
approximate it by a point density function.

Definition 1 (Point density function). A sequence of values
vn is said to have point density function λ(x) if for a small
enough interval dx,

λ(x) dx = lim
n→∞

N (x, x+ dx; vn)

n
, x ∈ R. (3)

A. High resolution approximation of MSE

In this section we develop an analogous result to the
high-resolution approximation of MSE for non-uniform



quantization, as Bennett [9] did for classical quantization
theory.
High resolution approximation: given input X with p.d.f.
fX and n independent random variables Wn, each with
p.d.f. fWi , if the set of densities {fWi , 1 ≤ i ≤ n} are all
smooth and there exists fW̄ (·) satisfies

fW̄ (x) = lim
δ→0

lim
n→∞

1

nδ
EWn [N(x, x+ δ;Wn)] , (4)

then in the high resolution regime,

EWn [D (X,Wn)] ' 1

2n2

∫
fX(x)f−2

W̄
(x) dx, (5)

provided that the limit in (4) exists and the integral in (5)
is finite (in particular, Supp(fW̄ ) ⊃ Supp(fX)).

The related derivations are presented in Section VII-A.

Remark 3. When Wi
i.i.d.∼ fW , fW̄ = fW in (4).

Remark 4. For partition points vn that have point den-
sity function fW̄ (·), Bennett [9] shows the high-resolution
approximation of MSE satisfies

MSE ' 1

12n2

∫
fX(x)f−2

W̄
(x) dx, (6)

which is exactly 1/6 of (5). Therefore, in the high resolution
regime, the random variation in placing partition points
always lead to a 6-fold increase in MSE!

B. Application to Flash ADC design

We specialize (4) to the problem in Section IV and obtain
(7).

Let φ(·) be the density for Gaussian distribution
N
(
0, σ2

)
, where σ > 0, and let the point density function

of vn be τ(x), then

EṼ n

[
D
(
X, Ṽ n

)]
' 1

2n2

∫
fX(x)λ−2(x) dx (7)

where λ is the convolution of two densities τ and φ:

λ(x) = (τ ∗ φ)(x).

This result follows immediately from (5) and Lemma 1.

Lemma 1.
1

n
E
[
N
(
x, x+ dx; Ṽ n

)]
= (τ ∗ φ)(x)dx.

Remark 5. Due to the smoothness and support conditions,
the smaller σ, the larger n we need to achieve the high
resolution approximation, as shown by the Monte-Carlo
simulation results in Fig. 3.

And it is not hard to see that for a fixed n, taking σ → 0
leads to high rate approximation in (6) rather than (5).

C. Optimal partition point density analysis

As shown in Section V-A, the integral

R(τ) =

∫
fX(x)(τ ∗ φ)−2(x) dx (8)

is the key quantity in MSE calculation, and in this section
we characterize τ that minimizes R(τ) in a variety of
scenarios of interest.

Theorem 2. τ minimizes R(τ) if and only if

sup
x∈A

[
fX

(τ ∗ φ)3
∗ φ
]

(x) ≤
〈
fX ,

1

(τ ∗ φ)2

〉
. (9)
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Fig. 3: The ratio of EWn [D(X,Wn)] obtained from Monte-
Carlo simulation and numerical calculation of the integral
in (5) when fX is uniform or Gaussian.

In particular, if there exists τ such that

τ ∗ φ ∝ f1/3
X , (10)

then τ∗ minimizes R(τ) and

R(τ∗) =

(∫
f

1/3
X (x)d x

)3

. (11)

Based on Theorem 2, we can derive the optimal τ when
the input distribution is Gaussian or uniformly distributed.

Theorem 3 (Gaussian input distribution). When X ∼
N
(
0, σ2

X

)
,

τ∗ ∼
{

N
(
0, 3σ2

X − σ2
)

when 3σ2
X > σ2

δ(x) when 3σ2
X ≤ σ2

,

and

R(τ∗) =

{
6
√

3πσ2
X when 3σ2

X > σ2

2πσ3/
√
σ2 − 2σ2

X when 3σ2
X ≤ σ2

.

Theorem 4 (Uniform input distribution). When X ∼
Unif ([−1, 1]) and σ ≥ σ0 ≈ 0.7228, τ∗(x) = δ(x) and

R(τ∗) = 2πσ2

∫ 1

0

exp

(
− x2

2σ2

)
dx.

Remark 6. For both Gaussian and uniform input dis-
tributions, when σ large enough, τ∗(x) = δ(x). In this
case, simply aiming to place all partition points at x = 0
and letting the noisy placement process spread them out
naturally is optimal, which is somewhat surprising.

When the input is uniform and σ < σ0, we obtain τ∗

numerically. In particular, we approximate τ∗ by a discrete
distribution τ̂ , i.e., τ̂(x;p,a) =

∑k
i=0 pi(δ (x− ai) +

δ (x+ ai)), where ai ≥ 0 and the symmetry of τ̂∗ follows
from the symmetry of fX . Without loss of generality, we
assume a0 = 0.

We develop the following iterative optimization proce-
dure to find the best p and a, with some examples of the
τ̂ in Fig. 4.

Remark 7. Since the optimization problem is non-convex,
Algorithm 1 only guarantees that it converges to local opti-
mum. We use multiple randomly perturbed initial solutions
to increase the probability of reaching global optimum.

VI. FLASH ADC DESIGN IMPLICATIONS

We discuss two implications of our results on Flash ADC
design with imperfect comparators.



Algorithm 1 Iterative optimization for τ̂ .

p
(1)
i = 1/(2k + 1) for 0 ≤ i ≤ k
a

(1)
i = i/(k − 1) for 1 ≤ i ≤ k
E0 = 0, E1 = R

(
τ̂
(
·;p(1),a(1)

))
, t = 1

while |Et − Et−1| ≥ ε do
p(t+1) = arg minp τ̂

(
x;p,a(t)

)
a(t+1) = arg mina τ̂

(
x;p(t+1),a

)
Et+1 = R

(
τ̂
(
·;p(t+1),a(t+1)

))
t = t+ 1

end while
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Fig. 4: Algorithm 1 output for uniform input distribution
over [−1, 1] with k = 7 for all σ values. The stems indicate
τ̂(x) and the dashed curves indicate (τ̂ ∗ φ)(x).

A. Technology scaling

Section IV-A shows that in classical quantization, MSE
D scales with the number of quantization points n as 1/n2.

However, in imperfect comparator fabrication, σ in-
creases as the component size shrinks, with the relation-
ship [5], [6] σ2 ∝ 1/Area. Taking only the component
area into account, i.e., ignoring the wiring overhead etc..,
n ∝ 1/Area ∝ σ2. Therefore, for Gaussian input distribu-
tion, when σ2 ≥ 3σ2

X , D ∝ σ2/n2 = Θ (1/n) . For uniform
input distribution, when σ ≥ σ0, D ∝ σ2/n2 = Θ (1/n) .
In conclusion, building more imperfect comparators is ben-
eficial for reducing MSE. While in classical setting MSE
∝ 1/n2, with noisy fabrication, MSE ∝ 1/n when σ is
large enough.

B. Comparison with stochastic ADC

In circuit system research, [3] presents a design that
explores the idea of high resolution quantization. Assuming
uniform input over [−σ, σ], their design corresponds to n in
the range of 1000 to 2000, and τ(x) = δ (x− 1.078σ) /2+
δ (x+ 1.078σ) /2, with the rationale of making the re-
sulting density λ = τ ∗ φ as uniform as possible in the
signal range [−σ, σ]. However, as we showed in Theorem 4,
the optimal MSE solution is τ∗(x) = δ(x). As Fig. 5
shows, assuming σ = 1, while λstochastic is approximately
flat in the input range [−1, 1], many partition points are
wasted as they are out of the input range. Calculation shows
MSEstochastic/MSE∗ ≈ 2.15, which corresponds to slightly
more than 1 effective number of bit (ENOB) difference.
This is significant for the design in [3] with ENOB in the
range of 5 to 6 bits.
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Fig. 5: Comparison of the optimal λ∗ with the stochas-
tic ADC density λstochastic. The two dash-dotted lines
show the noisy partition point densities correspond-
ing to δ (x− 1.078) /2 and δ (x+ 1.078) /2, which are
{φ(x± 1.078)/2} and sum to λstochastic.

VII. DERIVATIONS FOR HIGH RESOLUTION ANALYSIS

A. High resolution analysis of MSE

In this section we first show a result for the MSE for a
quantizer with random uniformly distributed partition points
Lemma 5, and its extension in Lemma 6, then proceed to
show the high resolution approximation result in (5) by
showing the increase in MSE (comparing to (6)) is due
to the random interval sizes resulting from the random
partitioning, rather than the random number of partition
points in an interval.

Lemma 5 (Theorem 1 in [8]). Given X ∼ Unif ([0,∆])

and Wi
i.i.d.∼ Unif ([0,∆]), 1 ≤ i ≤ n, then

EX,Wn [d (X,Wn)] =
∆2

2(n+ 2)(n+ 3)

Proof: See the proof in [8].

Lemma 6. Given X ∼ Unif ([0,∆]), and for 1 ≤ i ≤ n,

Wi ∼ Unif ([0,∆]) w.p. pi
Wi /∈ [0,∆] w.p. 1− pi,

and let kn =
∑n
i=1 pi, then if for some ε > 0,

limn→∞ kn/
(
n1/2+ε

)
= c > 0, then

lim
n→∞

k2
n EX,Wn [d(X,Wn)] =

∆2

2
.

Proof sketch: Define Ui , 1 {Wi ∼ Unif ([0,∆])},
then Ui ∼ Bern (pi). Let K ,

∑n
i=1 Ui, Lemma 5 indicates

that

EX,Wn [d (X,Wn)|K = k] =
∆2

2(k + 2)(k + 3)
.

Noting K is the sum of n independent Bernoulli random
variables, by Hoeffding’s inequality,

P [|K − E [K]| > t] ≤ 2 exp

(
−2t2

n

)
.

Let tn = n1/2+ε/2, then P [|K − E [K]| > tn] ≤
2 exp (−2nε) . Then let K , {k : kn − tn ≤ k ≤ kn + tn},
we can obtain limn→∞ k2

n EX,Wn [d (X,Wn)] ≤ ∆2/2.
by calculating EX,Wn [d (X,Wn)|K = k] for the case
k ∈ K and k /∈ K. Similarly, we can show
limn→∞ k2

n EX,Wn [d (X,Wn)] ≥ ∆2/2 and complete the
proof.



Derivations for (5): We partition Supp(fX) by m
points x1, x2, . . . , xm and let x0 and xm+1 be the two ends
points of Supp(fX), which could be −∞ and +∞ when
Supp(fX) is unbounded. We assume m is large enough
such that 1) each interval Rj , (xj−1, xj ], 1 ≤ j ≤ m+ 1
is small enough so that the densities (fX , φ, fWi

) can
be seen as constant over Rj ; 2) the expected number
of partition points that fall into each region Rj satisfies
EWn [N (xj−1, xj ;W

n)] = Ω
(
n1/2

)
. Then

EWn [D (Wn)] =

m+1∑
j=1

E [d (X,Wn)|X ∈ Rj ]P [X ∈ Rj ] .

For each interval Rj , 1 ≤ j ≤ m + 1, based on the first
assumption above, P [Wi ∈ Rj ] = fWi

(xj) |Rj | , and the
conditional density given that Wi ∈ Rj is uniform over Rj .
Therefore, let pij = fWi (xj) |Rj |, then

Wi ∼ Unif ([xj−1, xj ]) w.p. pij

Wi /∈ [xj−1, xj ] w.p. 1− pij ,
and by the second assumption and Lemma 6,
EX,Wn [d (X,Wn)|X ∈ Rj ] ' |Rj |2/

(
2n2

j

)
, where

nj ,
∑n
i=1 pij . By (4), nj = nfW̄ (xj) |Rj | . Therefore,

EX,Wn [d (X,Wn)]

=

m+1∑
j=1

EX,Wn [d (X,Wn)|X ∈ Rj ]P [X ∈ Rj ]

'
m+1∑
j=1

|Rj |3

2 (nfW̄ (xj))
2 fX (xj) |Rj | '

1

2n2

∫
fX(x)

f2
W̄

(x)
dx.

B. Application to Flash ADC design
We derive the density function for the problem in Sec-

tion IV in Lemma 1, leading to (7).
Proof for Lemma 1:

1

n
E
[
N
(
x, x+ dx; Ṽ n

)]
=

∫
φ(z)

1

n

n∑
i=1

P [Vi ∈ [x− z, x− z + dx]] d z

=

∫
φ(z)

1

n
N (x− z, x− z + dx;V n) d z

=

∫
φ(z)τ(x− z)dxd z = (τ ∗ φ)(x)dx.

C. Optimal partition point density analysis
In this section we first prove the optimal conditions in

Theorem 2. Following that we specialize Theorem 2 to
τ∗(·) = δ(·) in Lemma 7, and derive the corresponding
conditions for Gaussian and uniform input distributions
respectively in Lemmas 8 and 9.

Proof for Theorem 2: When the existence condition
in (10) is satisfied, then (11) follows from the Panter and
Dite formula [10].

In general, given the optimal τ∗, for any distribution h
such that

∫
h = 1, R((1− ε)τ∗ + εh) ≥ R(τ∗). Therefore,

lim
ε→0

R((1− ε)τ∗ + εh)−R(τ∗)

ε
≥ 0,

which leads to
〈
fX , 1/(τ

∗ ∗ φ)2
〉

≥〈
h ∗ φ, fX/(τ∗ ∗ φ)3

〉
=
〈
h, fX/(τ

∗ ∗ φ)3 ∗ φ
〉
. Since the

above holds for any h that satisfies Section VII-C, we have

sup
x

(
fX

(τ∗ ∗ φ)3
∗ φ
)

(x) ≤
〈
fX ,

1

(τ∗ ∗ φ)2

〉
. (12)

Lemma 7 (Condition for τ∗(x) = δ(x)). Define

g(x) ,

(
fX
φ3
∗ φ
)

(x), (13)

then if for any x ∈ A, g′(x) ≤ 0, τ∗(x) = δ(x).

Proof: Substitute τ∗(x) = δ(x) in (12), we have

sup
x

(
(fX/φ

3) ∗ φ
)

(x) ≤
〈
fX , 1/φ

2
〉
. (14)

Since fX is symmetric and smooth on A, g(x) is an even
function on A and is smooth, therefore, g′(0) = 0. Since
supx g(x) ≥ g(0) =

〈
fX , 1/φ

2
〉
, we know if for any x ∈

A, g′(x) ≤ 0 then x = 0 maximizes g(x), thus (14) is
satisfied and hence δ(x) is indeed the optimal solution.

Below we show that for both Gaussian and uniform input
distributions, τ∗(x) = δ(x) when σ is large enough.

Lemma 8. When X ∼ N
(
0, σ2

X

)
, τ∗(x) = δ(x) if and

only if σ2 ≥ 3σ2
X .

Proof: When σ2 ≥ 3σ2
X , straightforward algebra shows

g′(x) ∝ xσ2
X

σ2 − 2σ2
X

− x =
x(3σ2

X − σ2)

σ2 − 2σ2
X

≤ 0.

When σ2 < 3σ2
X , τ∗(x) 6= δ(x) by (11) in Theorem 2.

Lemma 9. When X ∼ Unif ([−1, 1]) τ∗(x) = δ(x) if and
only if σ ≥ σ0 ≈ 0.7228.

Proof: For Unif ([−1, 1]), algebra shows

g′(x) ∝
∫ 1

−1

(t− x) exp

(
t+ x/2

σ2

)2

d t.

Numerically solution indicates if σ ≥ σ0 ≈ 0.7228, g′(x) ≤
0 for any x, and if σ < σ0, g′′(0) > 0, and (9) is violated
when τ(x) = δ(x).
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