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Abstract—Three essentially different approaches to the con-
structive part of the channel coding theorem have been proposed
by Shannon, Feinstein and Gallager, respectively, leading to upper
bounds on the minimal error probability achievable with a given
rate and blocklength. Here, new upper bounds are given on both
average and maximal error probability, which are tighter than
existing bounds for many ranges of blocklength and channel
parameters of interest. Along with converse bounds, the new
achievability bounds allow to approximate tightly the maximum
rate achievable for a given blocklength and error probability for
blocklengths as short as n = 200 for both the BSC and the BEC.

I. INTRODUCTION

The proof of the channel coding theorem involves three
stages:
• Converse: an upper bound on the size of any code with

given arbitrary blocklength and error probability.
• Achievability: a lower bound on the size of a code that can

be guaranteed to exist with given arbitrary blocklength
and error probability.

• Asymptotics: the bounds on the log size of the code
normalized by blocklength asymptotically coincide as a
result of the law of large numbers or the ergodic theorem
(for channels with memory).

As propounded in [1], it is pedagogically sound to separate
clearly the third stage from the derivation of the upper and
lower bounds. The bounds need not impose assumptions on the
channel such as memorylessness, stationarity, and ergodicity
and they can be extremely useful in assessing the highest rate
that can be achieved when operating with a given blocklength
and error probability.

Three fundamentally different achievability approaches have
been proposed:
• Shannon [2]: Random coding with suboptimal decoding.
• Feinstein [3]: Greedy coding with suboptimal decoding.

For blocklength n and maximal error probability ε, a code
is shown to exist with M codewords such that

M ≥ sup
ρ>0

{
ρ ε− ρ inf

PXn
P
[
PY n|Xn(Y n|Xn)

PY n(Y n)
≤ ρ
]}

(1)

A formalization of the approach in [2] leads to the
same bound under the weaker average error probability
criterion.
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• Gallager [4]: Random coding with maximum likelihood
decoding. A code is guaranteed to exist with blocklength
n, average error probability ε, and M codewords such
that [4], [5, Section 5.6, Example 1]

ε ≤ inf
ρ>0

Mρ inf
PXn

∑
bn∈Bn

( ∑
an∈An

PXn(an)P
1/(1+ρ)
Y n|Xn (bn|an)

)1+ρ

(2)

In this paper we find a new upper bound on the average
error probability of a code with rate R and blocklength n,
which in a weakened succinct version becomes

ε ≤ inf
PXn

E exp

{
−
(

1

n
i(Xn, Y n)−R

)+
}
, (3)

where the information density is defined as

i(x, y) = log
PY |X(y|x)

PY (y)
. (4)

We also show that (3) is also satisfied by the maximal
error probability for several classes of channels. In addition,
for general classes of channels we obtain a different upper
bound on maximal error probability by following Feinstein’s
approach of greedy coding and suboptimal decoding, but
imposing additional constraints on the freedom with which the
sequential build up of the codebook proceeds. As we illustrate
with the binary symmetric channel and the binary erasure
channel, the new bounds are tighter than the previous ones
for large ranges of blocklength, rate and channels parameters.

The tightness of the bounds is illustrated by the binary
symmetric channel with crossover probability equal to 0.11
(capacity = 0.5): the maximum rate that can be achieved with
codes with blocklength n = 500, and maximal error proba-
bility not exceeding 10−3 is shown to be between 0.36 and
0.39. For the binary erasure channel with erasure probability
equal to 0.5 (capacity = 0.5): the maximum rate that can be
achieved with codes with blocklength n = 200, and maximal
error probability not exceeding 10−3 is shown to be between
0.38 and 0.4.

The bounds validate the use of Strassen’s normal ap-
proximation to the maximal achievable rate [6] of discrete
memoryless channels without cost constraints.



II. AVERAGE PROBABILITY OF ERROR

Let us introduce measurable spaces of inputs A and outputs
B and a conditional probability measure PY |X : A 7→ B. We
denote a codebook with M codewords by {c1, . . . , cM} ⊂ A.
A (possibly randomized) decoder is a random transformation
PZ|Y : B 7→ {0, 1, . . .M} (where ‘0’ indicates that the
decoder chooses “error”). The average error probability is

1− 1

M

M∑
m=1

PZ|X(m|cm).

In the application of our results, we will take A and B as
n-fold cartesian products of alphabets A and B, and a channel
is a sequence of conditional probabilities {PY n|Xn : An →
Bn} [7]. Thus, to focus ideas the random variables X and Y
throughout Sections II-IV can be viewed as vectors of fixed
dimension equal to the blocklength.

Theorem 1: For any distribution PX on A, there exists a
code with M codewords and average probability of error not
exceeding

P
[
i(X,Y ) ≤ log

M−1

2

]
+

M−1

2
P
[
i(X, Ȳ ) > log

M−1

2

]
(5)

= E exp

{
−
(
i(X,Y )− log

M−1

2

)+
}

(6)

where PXY Ȳ (a, b, c) = PX(a)PY |X(b|a)PY (c).

The proof1 of Theorem 1 uses Shannon’s random coding
along with Feinstein’s decoder. Note that unlike the existing
bounds (1), (2), the bound in Theorem 1 requires no optimiza-
tion or selection of auxiliary constants.

It can be shown that the code size compatible with a given
average error probability given by Theorem 1 is larger than
Feinstein’s (1), obtained for a given maximal error probability.
It can be easily seen from (6) that Theorem 1 can be used to
prove the achievability part of the most general known channel
capacity formula [7].

Note that (5) is M+1

2
times the Bayesian minimal error

probability of a binary hypothesis test of dependence:

H1 : PXY with probability 2

M+1

H0 : PXPY with probability M−1

M+1

III. MAXIMAL PROBABILITY OF ERROR

A. Bounds fixing input distribution

The details of the proof of Theorem 1 reveal that we could
have generated the random codebook with only pairwise in-
dependent codewords. Thus, for some channels (e.g., discrete
channels with additive noise) we can generate the codebook
by imposing a distribution on the generating matrix of a linear
code. Then Theorem 1 implies the existence of a linear code
with average probability of error upper-bounded by (5). But
the maximal and average probability of error coincide for a

1Space limitations prevent us from including proofs of the results, which
can be found in [8].

linear code and hence for additive-noise discrete channels the
bound in Theorem 1 is also in the sense of maximal probability
of error. The following bound on maximal error probability
holds in general.

Theorem 2: For any input distribution PX , and measurable
γ : A → [0,∞] there exists a code with M codewords such
that the j-th codeword’s probability of error satisfies

εj ≤ P[i(X,Y ) ≤ log γ(X)]+

(j − 1) sup
x

P[i(x, Y ) > log γ(x)] . (7)

where the first probability is with respect to PXY and the
second is with respect to PY . In particular, the maximal
probability of error satisfies

ε ≤ P[i(X,Y ) ≤ log γ(X)]+

(M − 1) sup
x

P[i(x, Y ) > log γ(x)] , (8)

Some symmetric channels and choices of PX (most notably
the binary erasure channel (BEC) and the binary symmetric
channel (BSC) under equiprobable PX satisfy the sufficient
condition in the next result

Theorem 3: Fix an arbitrary input distribution PX . If the
cdf P[i(x, Y ) ≤ α] does not depend on x for any α when Y
is distributed according to PY , then there exists an (M, ε) code
with maximal probability of error satisfying (for any x ∈ A)

ε ≤ E exp
{
− (i(X,Y )− log(M−1))

+
}

(9)

B. Bounds fixing output distribution

All the previous achievability bounds fixed some input
distribution PX and then proved that a certain codebook exists.
However, in some cases (most notably, the additive white
Gaussian noise (AWGN) channel which is outside the no-
cost-constraint scope of this paper) it is desirable to consider
auxiliary distributions on the output alphabet that are not
necessarily induced by an input distribution.

Binary hypothesis tests between the conditional distribution
PY |X=x and an auxiliary unconditional distribution QY on
B play an important role in this subsection. A randomized
test between those two distributions is defined by a random
transformation PZ|Y : B 7→ {0, 1} where 0 indicates that
the test chooses QY . The best performance achievable among
those randomized tests is given by

βα(x,QY ) = min
PZ|Y :
PZ|X(1|x) ≥ α

∑
y∈B

QY (y)PZ|Y (1|y) , (10)

where the minimum is guaranteed to be achieved by the
Neyman-Pearson lemma. Note that the conditional distribution
that achieves the minimum depends on x.

For an arbitrary F ⊂ A, we define a related measure of
performance for the composite hypothesis test between QY



and the collection {PY |X=x}x∈F:

κτ (F, QY ) = inf
PZ|Y :
infx∈F PZ|X(1|x) ≥ τ

∑
y∈B

QY (y)PZ|Y (1|y) .

(11)
As long as QY is the output distribution induced by an input

distribution QX , the quantity (11) satisfies the bound

τQX(F) ≤ κτ (F, QY ) ≤ τ . (12)

Theorem 4: For any 0 < ε < 1, there exists a code with
maximal error probability not exceeding ε, and M codewords
chosen from F ⊂ A, satisfying

M ≥ sup
0<τ<ε

sup
QY

κτ (F, QY )

supx∈F β1−ε+τ (x,QY )
. (13)

Using (12) in Theorem 4 we obtain a weakened but useful
bound:

M ≥ sup
0<τ<ε

sup
QX

τQX(F)

supx∈F β1−ε+τ (x,QY )
. (14)

where the supremum is over all input distributions, and QY
denotes the distribution induced by QX on the output.

IV. CONVERSE BOUND

The approach for the converse comes from classical sphere-
packing for the binary symmetric channel (BSC) with the
exception that instead of measuring decoding sets by their
cardinality, they are measured with an arbitrary probability
distribution QY [6], [9], [10].

Theorem 5: The size of a code with maximal error proba-
bility ε and with codewords belonging to F is upper bounded
by

M ≤ inf
QY

sup
x∈F

1

β1−ε(x,QY )
, (15)

where the infimum is over all distributions QY on B.

V. NORMAL APPROXIMATION FOR DISCRETE
MEMORYLESS CHANNELS

We now consider the particularization of the abstract setup
we have used so far to the case A = An and B = Bn.

Theorem 6: (Strassen [6]) Let M∗(n, ε) be the largest size
of a code with blocklength n and maximal error probability
upper bounded by ε.

Then, for any discrete memoryless channel with capacity C
and 0 < ε ≤ 1/2, we have

logM∗(n, ε) = nC −
√
nV Q−1(ε) +O(log n) , (16)

where Q(x) = 1√
2π

∫∞
x
e−t

2/2 dt and2

V = min
X :
C = I(X;Y )

Var

[
log

PY |X(Y |X)

PY (Y )

]
. (17)

2Unlike Sections II-IV, in (17), X and Y refer to an individual input and
output, respectively.

Theorem 6 formalizes the notion that logM∗(n, ε) behaves
asymptotically as the ε-quantile of the information density
of the capacity achieving distribution [7]; for memoryless
channels that information density is a sum of independent
random variables whose small-deviation behavior is governed
by the central limit theorem.

To prove Theorem 6, Strassen [6] used Theorem 5 for the
converse and Feinstein’s lemma for achievability. However,
Feinstein’s bound is too loose to yield the optimal

√
n term

for channels with cost constraints, most notably for the addi-
tive white Gaussian noise channel. Instead, for that purpose,
Theorem 4 succeeds [8].

VI. TYPICAL APPLICATIONS: BSC AND BEC

A. Binary Symmetric Channel (BSC)

This section illustrates the application of developed theory
to the BSC with crossover probability δ < 1/2. The input and
output alphabets are binary, A = B = {0, 1}n, and the channel
is defined as

PY n|Xn(yn|xn) = δ|y
n−xn|(1− δ)n−|y

n−xn| , (18)

where |zn| denotes the Hamming weight of the binary vector
zn.

Taking PXn equiprobable on {0, 1}n, the bound of Theo-
rem 1 is equal to M+1

2
times the minimal probability of error

of an optimal binary hypothesis test between n fair coin flips
(with prior probability M−1

M+1
) and n bias-δ coin flips (with prior

probability 2

M+1
). In the form (6) the upper bound on average

error probability becomes

f(M)
4
= E

[
2−(na−bZ−log M−1

2 )
+]

, (19)

where

a = 1 + log2(1− δ), b = log2

1− δ
δ

,

and Z ∼ B(n, δ) is a binomial random variable with pa-
rameters n and δ. We want to have an achievability result in
the form of a lower-bound on M∗(n, ε). Going from average
probability of error to maximal in (19) can be done using
the random linear code trick, which is applicable as long as
M = 2k. Thus the algorithm for finding a lower-bound on
M∗(n, ε) is to find the maximum M = 2k such that the right-
hand side of (19), f(M), is still below prescribed ε:

M∗(n, ε) ≥ max
{

2k : f(2k) ≤ ε
}
. (20)

For comparison, Feinstein’s lemma, with equiprobable PX ,
yields the following bound:

M∗(n, ε) ≥ sup
t>0

2nt (ε− P [Z ≥ n(a− t)/b]) , (21)

where Z ∼ B(n, δ).
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Fig. 1. Rate-blocklength tradeoff for the BSC with crossover probability δ = 0.11 and maximal block error rate ε = 10−3.
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Fig. 2. Rate-blocklength tradeoff for the BEC with erasure probability δ = 0.5 and maximal block error rate ε = 10−3.

Gallager’s random coding bound (2) also with equiprobable
PX , assures that3

log2M
∗(n, ε) ≥ nE−1

r

(
1

n
log2

1

ε

)
, (22)

where [5, Theorem 5.6.2, Corollary 2 and Example 1 in
Section 5.6.]

Er(1− h(s)) =

{
d(s||δ) , s ∈ (δ, s∗] ,
h(s)− 2 log s1 , s > s∗ ,

3This bound holds for average probability of error. Fig. 1 shows the
corresponding bound on maximal error probability where we drop half of
the codewords with worse error probability. This results in an additional term
of -1 appended to the right side of (22), while 1

ε
becomes 2

ε
therein.

and s∗ =
√
δ√

δ+
√

1−δ , s1 =
√
δ +
√

1− δ.
We now turn our attention to the computation of the

converse bound of Theorem 5 choosing QY n equiprobable on
{0, 1}n. To streamline notation, we denote βnα = βα(xn, QY n)
since it does not depend on xn, and QY n is fixed.

Taking the log-likelihood ratio of (18) and QY n(yn) = 2−n

we observe that the Hamming weight |Y n| is a sufficient
statistic for discriminating between PY n|Xn=0 and QY n . Thus,
the optimal randomized test is

PZ0|Y n(1|yn) =


0, |yn| > Kn

α ,

Lnα, |yn| = Kn
α ,

1, |yn| < Kn
α .



where Kn
α ∈ Z+ and Lnα ∈ [0, 1) are uniquely determined by

the condition∑
yn∈A

PY n|Xn(yn|0)PZ0|Y n(1|yn) = α .

Then we find that

βnα = Lnα

(
n

Kn
α

)
2−n +

Kn
α−1∑
k=0

(
n

k

)
2−n . (23)

Thus, by Theorem 5

M∗(n, ε) ≤ 1

βn1−ε
. (24)

Note that (24) is exactly the classical sphere-packing bound.
The numerical evaluation of (20) and (24) is shown in

Fig. 1, where we also show bounds by Feinstein (21) and
Gallager (22). As we anticipated analytically, the new bound
is always tighter than Feinstein’s bound. For δ = 0.11 and
ε = 0.001, we can see in Fig. 1 (a) that for blocklengths
greater than n∗ ≈ 150, Theorem 4 gives better results than
Gallager’s bound. In fact, for large n the gap to the converse
upper bound of the new lower bound is less than half that of
Gallager’s bound. This tendency remains for other choices of δ
and ε. Although, for smaller ε and/or δ, Gallager’s bound (orig-
inally devised to analyze the regime of exponentially small ε)
performs better (i.e., the value of n∗ is greater). A similar
relationship between the two bounds holds, qualitatively, in
the case of the additive white Gaussian noise channel, see [8].

Fig. 1 (b) compares the upper bound (24), the maximum of
the lower bounds (20) and (22), and the normal approximation
(16), which becomes

logM∗(n, ε) ≈ n− nh(δ)−
√
nV Q−1(ε) (25)

where

V = δ(1− δ) log2
2

δ

1− δ
. (26)

Fig. 1 (b) shows that the normal approximation is excellent
even for rather short blocklengths. Note that for typical low-
latency applications such as voice-over-IP packets of 50-80
bytes, the best achievable rate is 75-80% capacity. In fact, the
asymptotic approximation

logM∗(n, ε) ≈ n− nh(δ)

is rather optimistic for the blocklengths shown in Fig. 1.

B. Binary erasure channel (BEC)

With equiprobable PXn the upper bound on error probabil-
ity in (9) becomes

ε ≤ E
[
2−(Z−log(M−1))+

]
, (27)

where Z is binomial with parameters n and 1 − δ, Z ∼
B(n, 1−δ). We see in Fig. 2 (a) that (27) is quite a bit tighter
than the Gallager and Feinstein bounds when particularized
for the BEC. It is also easy to show that the bound in (27)

not only leads to the achievability of capacity, but also yields
Gallager’s random coding exponent for the BEC.

The upper bound on code size given by Theorem 5 (with
capacity achieving output distribution) is improved by the
following converse result which gives an upper bound on the
rate required to achieve a given average error probability (and
thus, a given maximal error probability).

Theorem 7: For a binary erasure channel with erasure prob-
ability δ, the average error probability of a k-to-n code satisfies

ε ≥
n∑

`=n−k+1

(
n

`

)
δ`(1− δ)n−`

(
1− 2n−`−k

)
(28)

Fig. 2 (b) compares the normal approximation for the BEC

logM∗(n, ε) ≈ n− nδ −
√
nδ(1− δ)Q−1(ε) . (29)

with the upper and lower bounds, showing that (29) gives an
excellent approximation even for very short blocklengths.

VII. CONCLUSION

The maximal rate achievable for a desired error probability
and fixed blocklength is a fundamental limit of great im-
portance in practice. The new achievability bounds together
with classical information theoretic bounds yield tight ap-
proximations to such a fundamental limit even for very short
blocklengths. We have contrasted our new bounds to the
existing ones in the contexts of the BSC and BEC. These
results validate the use of a simple normal approximation (16)
to the best achievable rate in the finite blocklength regime.
The extension of the bounds in this paper to channels with
cost constraints such as the additive white Gaussian noise
channel is reported in [8]. In contrast to existing bounds, our
Theorem 4 succeeds in leading to a normal approximation for
those cases.
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