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Information-Distilling Quantizers
Alankrita Bhatt, Bobak Nazer, Or Ordentlich and Yury Polyanskiy

Abstract

Let X and Y be dependent random variables. This paper considers the problem of designing a scalar quantizer for
Y to maximize the mutual information between the quantizer’s output and X , and develops fundamental properties
and bounds for this form of quantization, which is connected to the log-loss distortion criterion. The main focus is
the regime of low I(X;Y ), where it is shown that, if X is binary, a constant fraction of the mutual information
can always be preserved using O(log(1/I(X;Y ))) quantization levels, and there exist distributions for which this
many quantization levels are necessary. Furthermore, for larger finite alphabets 2 < |X | <∞, it is established that
an η-fraction of the mutual information can be preserved using roughly (log(|X |/I(X;Y )))η·(|X |−1) quantization
levels.

I. INTRODUCTION

Let X and Y be a pair of random variables with alphabets X and Y , respectively, and a given distribution PXY .
This paper deals with the problem of quantizing Y into M < |Y| values, under the objective of maximizing the
mutual information between the quantizer’s output and X . With a slight abuse of notation1, we will denote the
value of the mutual information attained by the optimal M -ary quantizer by

I(X; [Y ]M ) , sup
Ỹ ∈[Y ]M

I(X; Ỹ ). (1)

where [Y ]M is the set of all (deterministic) M -ary quantizations of Y ,

[Y ]M , {f(Y ) : f : Y → [M ]}

and [M ] , {1, 2, . . . ,M}.
When X and Y are thought of as the input and output of a channel, this problem corresponds to determining

the highest available information rate for M -level quantization. It is therefore not surprising that this problem has
received considerable attention. For example, it is well known [2, Section 2.11] that when X is ±1 equiprobable
and Y = X +Z for Gaussian Z, it holds that I(X; [Y ]2) ≥ 2

π I(X;Y ), which is achieved by taking f(·) to be the
maximum a posteriori (MAP) estimator of X from Y .2

A characterization of (1) is also required for the construction of good polar codes [4], since the large output
cardinality of polarized channels makes it challenging to evaluate their respective capacities (and identify “frozen”
bits). Efficient techniques for channel output quantization that preserve mutual information have been developed
to overcome this obstacle, and played a major role in the process of making polar codes implementable [5]–[7].
One byproduct of these efforts is a sharp characterization of the additive gap. Specifically, it was recently shown
in [7] that, for arbitrary PXY , it holds that I(X;Y ) − I(X; [Y ]M ) = O(M−2/(|X |−1)), whereas [8] demonstrates
that there exist PXY such that I(X;Y )− I(X; [Y ]M ) = Ω(M−2/(|X |−1)). The works [5]–[7], among others, also
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provided polynomial-complexity, sub-optimal algorithms for designing such quantizers. In addition, for binary X ,
an algorithm for determining the optimal quantizer was proposed in [9] (drawing upon a result from [10]) that
runs in time O(|Y|3). A supervised learning algorithm, for the scenario where PXY is not known, and cannot be
estimated with good accuracy, was proposed in [11].

It may at first appear surprising that the quality of quantization found in [5]–[7] depends on the alphabet size
|X | but not on |Y|. The reason for this is that, given Y = y, the relevant information about X is the the posterior
distribution PX|Y=y, which is a point on (|X |−1)-dimensional simplex. Thus, the goal of quantizing Y is essentially
a goal of quantizing the probability simplex. The goal of this paper is to understand the fundamental limits of this
quantization, as a function of alphabet size. The crucial difference with [5]–[7] is that here we focus on the
multiplicative gap, i.e., comparing the ratio of I(X; [Y ]M ) to I(X;Y ). The difference is especially profound in
the case when I(X;Y ) is small. We ignore the algorithmic aspects of finding the optimal M -level quantizer and
instead focus on the fundamental properties of the function I(X; [Y ]M ). To this end, we define and study the
“information distillation” function

IDM (K,β) , inf
PXY :
|X |=K

I(X;Y )≥β

I(X; [Y ]M ). (2)

The infimum above is taken with respect to all joint distributions with discrete input alphabet X of cardinality K
and arbitrary (possibly continuous) output alphabet Y such that the mutual information is at least β. One may
wonder whether K has an essential role in the function IDM (K,β). Proposition 4, stated and proved in Section II,
shows that for any M and β it holds that infK IDM (K,β) = 0. Thus, one must indeed restrict the cardinality of
X in (2) in order to get a meaningful quantity.

Special attention will be given to the binary input alphabet case, where X ∼ Bernoulli(p) for some p. In this
setting, it may seem at a first glance that the optimal binary quantizer should always retain a significant fraction
of I(X;Y ), and that the MAP quantizer should be sufficient to this end. For large I(X;Y ), this is indeed the
case, as we show in Proposition 6. As mentioned above, this is also the case if Y = X + Z with Z Gaussian
for all values I(X;Y ), since the MAP quantizer always retains at least 2/π ≈ 63.66% of the mutual information.
However, perhaps surprisingly, we show that there is no constant c > 0 such that I(X; [Y ]2) > c · I(X;Y ) for all
PXY with |X | = 2.

A. Main Results

Our main result is a complete characterization, up to constants, of the binary information distillation function.
Theorem 1: For any mutual information value 0 < β ≤ 1, the binary information distillation function is lower

and upper bounded as follows:

β · flower

 M − 1

max
{

log
(

1
β

)
, 1
}
 ≤ IDM (2, β)

≤ β · fupper

 M − 1

max
{

log
(

1
β

)
, 1
}
 ,

where

flower(t) ,

{
t

208 t < 104

1− 52
t t ≥ 104

fupper(t) , min{3t, 1}.

The proof is deferred to Section III-D. Note that the negative aspect of this result is in stark contrast to the
intuition from the binary additive white Gaussian noise (AWGN) channel. While for the former, two quantization
levels suffice for retaining a 2/π fraction of I(X;Y ), Theorem 4 shows that there exist sequences of distributions
for which at least Ω(log(1/I(X;Y ))) quantization levels are needed in order to retain a fixed fraction of I(X;Y ).
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Furthermore, as illustrated in Section III, for small I(X;Y ) and M = 2, the MAP quantizer can be arbitrary
bad w.r.t. the optimal quantizer, which is in general not “symmetric.” On the positive side, O(log(1/I(X;Y )))
quantization levels always suffice for retaining a fixed fraction of I(X;Y ).

For the general case where 2 < |X | <∞, we prove the following.
Theorem 2: Define

a0(M, |X |, β) ,
1

|X | − 1
·min

 M − 1

208 log
(

(|X |−1)2

β

) , 1

2

 (3)

a|X |−1(M, |X |, β) ,

1−

52 log
(
e(|X |−1)

β

)
M1/(|X |−1)

2/3


2

(4)

and, for k = 1, . . . , |X | − 2, define

ak(M, |X |, β) ,
k

|X | − 1

1−
52 log

(
(|X |−1)2

β

)
M1/k

 . (5)

Then, for any 2 < |X | <∞ and 0 < β ≤ log |X |, the information distillation function is upper and lower bounded
as follows

β · max
k∈{0,1,...,|X |−1}

ak (M, |X |, β) ≤ IDM (|X |, β)

≤ β · fupper

 M − 1

max
{

log
(

1
β

)
, 1
}
 , (6)

where fupper(t) is as defined in Theorem 1.
The proof of the lower bound is deferred to Section IV, whereas the upper bound follows trivially by noting that
|X | 7→ IDM (|X |, β) is monotone non-increasing and invoking the upper bound on IDM (2, β) from Theorem 1.

The lower bound from Theorem 2 states that for all PXY and k ∈ [|X |−1], it holds that M = O((log(|X |/I(X;Y )))k)
suffices to guarantee that I(X; [Y ]M ) > k

|X |−1I(X;Y ). In particular, choosing k = 1, we obtain that M =

O(log(|X |/I(X;Y ))) suffices to attain I(X; [Y ]M ) > 1
|X |−1I(X;Y ) and, on the other hand, by the upper bound,

there exist PXY for which M = Ω(log(1/I(X;Y ))) is required in order to attain I(X; [Y ]M ) > 1
|X |−1I(X;Y ).

Thus, Theorem 2 gives a tight characterization (up to constants independent of I(X;Y )) of the number of
quantization levels required in order to maintain a fraction of 0 < η < 1

|X |−1 of I(X;Y ). However, we were

not successful in establishing an upper bound that match the lower bound within the range η ∈
(

1
|X |−1 , 1

)
. We

nevertheless conjecture that for η close to 1 our lower bound is tight.

Conjecture 1: For any |X | > 2, there exists some |X |−2
|X |−1 < η(|X |) < 1, β(|X |) > 0 and a constant c(|X |) > 0,

such that for all 0 < β < β(|X |) and M < c(|X |)(log(1/β))|X |−1, it holds that

IDM (|X |, β) < η(|X |) · β. (7)

As discussed above, prior work [5]–[7] has focused on bounding the additive gap. This corresponds to bounding
the so-called “degrading cost” [7], [8], which is defined as

DC(|X |,M) , sup
0<β≤log |X |

β − IDM (|X |, β) (8)

in our notation. In particular, the bound derived in [7] on DC(|X |,M) is equivalent to the following “constant-gap”
result: for every 0 < β ≤ log |X |,

IDM (|X |, β) ≥ β − ν(|X |)M−2/(|X |−1)
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for some function ν.3 For small β, however, results of this form are less informative. Indeed, for small β, this
bound requires M to scale like β−(|X |−1)/2 in order to preserve a constant fraction of the mutual information. On
the other hand, our result shows that scaling M like O((log(1/β))|X |−1) suffices for joint distributions PXY .

Notation: In this paper, logarithms are generally taken w.r.t. base 2, and all information measures are given in
bits. When a logarithm is taken w.r.t. base e, we use the notation ln instead of log. We denote the binary entropy
function by h(t) = −t log(t)− (1− t) log(1− t), and its inverse restricted to the interval [0, 1/2] by h−1(t). The
notation btc denotes the “floor” operation, i.e., the largest integer smaller than or equal to t.

II. PROPERTIES OF I(X; [Y ]M )

Let PXY be a joint distribution on X×Y and consider the function I(X; [Y ]M ), as defined in (1). The restriction to
deterministic functions incurs no loss of generality, see e.g., [9]. Indeed, any random function of y, can be expressed
as f(y, U) where U is some random variable statistically independent of (X,Y ). Thus,

I(X; f(Y,U)) ≤ I(X; f(Y,U), U) = I(X; f(Y,U)|U) (9)

and hence there must exist some u for which I(X; f(Y, u)) ≥ I(X; f(Y ;U)). Furthermore, for any function
f : Y → [M ], we can associate a disjoint partition of the |X |-dimensional cube [0, 1]|X | into M regions I1, . . . , IM ,
such that f(y) = i iff PX|Y=y ∈ Ii for i = 1, . . . ,M . A remarkable result of Burshtein et al. [10, Theorem 1]
shows that the maximum in (1) can without loss of generality be restricted to functions for which there exists an
associated partition where the regions I1, . . . , IM are all convex.

Below, we state simple upper and lower bounds on I(X; [Y ]M ).

Proposition 1 (Simple bounds): For any distribution PXY on X ×Y with a finite output alphabet, and M < |Y|,
M − 1

|Y|
I(X;Y ) ≤ I(X; [Y ]M ) ≤ min{I(X;Y ), log(M)}.

Proof. The upper bound does not require any assumptions on Y and follows from the data processing inequality
(X − Y − f(Y ) forms a Markov chain in this order), and from I(X; f(Y )) ≤ H(f(Y )) ≤ log(M).

For the lower bound, we can identify the elements of Y with {1, . . . , |Y|} such that

PY (1)D(PX|Y=1||PX) ≥ · · · ≥ PY (|Y|)D(PX|Y=|Y|||PX)

and take the quantization function

f(y) =

{
y if y < M,

M otherwise.

Recalling that I(X;Y ) =
∑

y PY (y)D(PX|Y=y||PX) we see that

I(X; f(Y )) ≥ M − 1

|Y|
I(X;Y ).

For K < M , we can construct a (possibly sub-optimal) K-level quantizer by first finding the optimal M -level
quantizer and then quantizing its output to K-levels. This together with the lower bound in Proposition 1, yields
the following.

Corollary 1: For natural numbers K < M we have

I(X; [Y ]K) ≥ K − 1

M
I(X; [Y ]M ).

3It is also demonstrated in [8] that there exist values of β, for which this bound is tight. Specifically, [8] found a distribution PXY with
X ∼ Bernoulli(1/2) and I(X;Y ) ≈ 0.2787 for which I(X; [Y ]M ) < I(X;Y )− cM−2 for some constant c > 0.
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Remark 1: It is tempting to expect that I(X; [Y ]M ) will have “diminishing returns” in M for any PXY , i.e.,
that it will satisfy the inequality I(X; [Y ]M1·M2

) ≤ I(X; [Y ]M1
) + I(X; [Y ]M2

). However, as demonstrated by the
following example, this is not the case. Let X ∼ Uniform({0, 1, 2, 3}) and Y = [X+Z] mod 4, where Z is additive
noise statistically independent of X with Pr(Z = 0) = δ and Pr(Z = 1) = Pr(Z = 2) = Pr(Z = 3) = (1− δ)/3.
Clearly,

I(X; [Y ]4) = I(X;Y ) = 2− h(δ)− (1− δ) log(3), (10)

and it can be verified that

I(X; [Y ]2) =

{
h
(

1
4

)
− 1

4h(δ)− 3
4h
(

1−δ
3

)
δ ≤ 1/4,

1− h
(

1+2δ
3

)
δ > 1/4.

(11)

Thus, for this example we have that 2I(X; [Y ]2) < I(X; [Y ]4) for all δ /∈ {1/4, 1}.
Proposition 2 (Data processing inequality): If X − Y − V form a Markov chain in this order, then

I(X; [V ]M ) ≤ I(X; [Y ]M ).

Proof. For any function f : V 7→ [M ] we can generate a random function f̃ : Y 7→ [M ] which first passes Y
through the channel PV |Y and then applies f on its output. By (9), we can always replace f̃ by some deterministic
function f̄ : Y 7→ [M ] such that

I(X; f̄(Y )) ≥ I(X; f̃(Y )) = I(X; f(V )).

Proposition 3: For a fixed PX , the function PY |X 7→ I(X; [Y ]M ) is convex.

Proof. For any f : Y 7→ [M ], let If (PX × PY |X) , I(X; f(Y )), and note that

I(X; [Y ]M ) = sup
f :Y7→[M ]

If (PX × PY |X).

Since the supremum of convex functions is also convex, it suffices to show that for a fixed PX the function
If (PX × PY |X) is convex in PY |X . To this end, consider two channels P 1

Y |X and P 2
Y |X , and let P 1

f(Y )|X and
P 2
f(Y )|X , respectively, be the induced channels from X to f(Y ). Clearly, for the channel αP 1

Y |X + (1 − α)P 2
Y |X ,

the induced channel is αP 1
f(Y )|X + (1− α)P 2

f(Y )|X . Let Z ∈ [M ] be the output of this channel, when the input is
X . From the convexity of the mutual information w.r.t. the channel we have

If
(
PX ×

(
αP 1

Y |X + (1− α)P 2
Y |X

))
= I(X;Z)

≤ αIf (PX × P 1
Y |X) + (1− α)If (PX × P 2

Y |X),

as desired.
Remark 2: In contrast to mutual information, the functional I(X; [Y ]M ) is in general not concave in PX for a

fixed PY |X . To see this consider the following example: X = Y = {1, 2, 3}, M = 2, and the channel from X to
Y is clean, i.e., Y = X . Let PX1

= (1
2 ,

1
4 ,

1
4) and PX2

= (1
4 ,

1
4 ,

1
2). Clearly, I(X1; [Y ]M ) = I(X2; [Y ]M ) = 1. For

any α ∈ (0, 1), let PX = αPX1
+ (1− α)PX2

. It can be verified that

I(X; [Y ]M ) < 1.

Remark 3 (Complexity of finding the optimal quantizer): For the special case where Y = X , the function
I(X; [Y ]M ) reduces to4

H([Y ]M ) , sup
Ỹ ∈[Y ]M

H(Ỹ ). (12)

4Recent work by Cicalese, Gargano and Vaccaro [12] provides closed-form upper and lower bounds on H([Y ]M ).
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Furthermore, when M = 2 the optimization problem in (12) is equivalent to

max
A⊆X

∑
x∈A

px subject to:
∑
x∈A

px ≤
1

2
, (13)

where px , Pr(X = x), x ∈ X . The problem (13) is known as the subset sum problem and is NP-hard [13]. See
also [12]. Thus, when |X | is not constrained, the problem of finding the optimal quantizer of Y is in general NP-
hard. Nevertheless, for the case where X is binary, a dynamic programming algorithm finds the optimal quantizer
with complexity O(|Y|3), see [9].

Proposition 4: For any β > 0, any natural M , and n large enough, we have that

IDM (2n, β) ≤ log(M)

n log(e)
β, (14)

Consequently, for any β > 0 and natural M we have that infK IDM (K,β) = 0, which motivates the restriction to
finite input alphabets in our main theorems.
Proof. Let Y ∼ Bernoulli(1/2), Z ∼ Bernoulli(δ), Y ⊥⊥ Z, and X = Y ⊕ Z. Let (Xn, Y n) ∼ P⊗nXY . For product
distributions P⊗nXY we have that for any U satisfying the Markov chain U − Y n −Xn, it holds that [14], [15]

I(U ;Xn)

I(U ;Y n)
≤ sup

I(U ;X)

I(U ;Y )
, (15)

where the supremum is taken w.r.t. all Markov chains U−Y −X with fixed PXY and I(U ;Y ) > 0. For the doubly
symmetric binary source PXY of interest, this supremum is (1 − 2δ)2 [15], and consequently, we obtain that for
any f : {0, 1}n 7→ [M ], it holds that

I(f(Y n);Xn) ≤ (1− 2δ)2I(f(Y n);Y n)

≤ (1− 2δ)2H(f(Y n))

≤ (1− 2δ)2 log(M). (16)

For any β > 0, take n large enough such that β � n · 2 log(e), and set

δ =
1

2
−

√
β

n · 2 log(e)
(17)

we obtain that

I(Xn; [Y n]M ) ≤ log(M)

n · 2 log(e)
β. (18)

On the other hand, we have that

I(Xn;Y n) = n(1− h(δ)) = β(1 + o(1)). (19)

Thus, for n large enough (14) indeed holds.

A. Relations to quantization for maximizing divergence

For two distributions P,Q on Y , Q� P , define

ψM (P,Q) , sup
f :Y7→[M ]

D(P f ||Qf ), (20)

where P f and Qf are the distributions on [M ] induced by applying the function f on the random variables
generated by P and Q, respectively. A classical characterization of Gelfand-Yaglom-Perez [16, Section 3.4], shows
that ψM (P,Q) ↗ D(P‖Q) as M → ∞. We are interested here in understanding the speed of this convergence.
To this end, we prove the following result.
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Proposition 5: For any β, ε > 0, there exists two distributions P,Q on N such that D(P‖Q) = β and ψM (P,Q) ≤
Mε for any M ∈ N.
Proof. Consider the following two distributions:

P (m) =


2−m m = 1, . . . , T

2−(T−1) m = T

0 m > T

Q(m) =


P (m) 1 ≤ m ≤ k
g(m) · P (m) k < m ≤ T
1−

∑k
m=1 P (m)

−
∑T

m=k+1 g(m)P (m) m = T + 1

where 0 < g(m) ≤ 1 is some monotonically non-increasing function. We have that

D(P ||Q) =

T∑
m=k+1

2−m log(1/g(m)), (21)

whereas for any f : {0, 1, . . .} 7→ [M ] we have that

D(P f ||Qf ) ≤M · max
A⊂{0,1,...}

P (A) log
P (A)

Q(A)
. (22)

Let Ak , A∩[k]. Without loss of generality, we can assume that A\Ak 6= ∅, as otherwise P (A) log(P (A)/Q(A)) =
0. Thus, we can define ` , min{a : a ∈ A \Ak} and write

P (A) = P (Ak) + P (A \Ak) ≤ P (Ak) + 2 · 2−`

Q(A) = Q(Ak) +Q(A \Ak) ≥ P (Ak) + 2−`g(`) (23)

Let t = 2`P (Ak) + 2, and τ = 2− g(`) such that the bounds above read as P (A) ≤ 2−`t and Q(A) ≥ 2−`(t− τ),
and

P (A) log
P (A)

Q(A)
≤ −2−`t log

(
1− τ

t

)
. (24)

We note that the function ϕ(t) = −t log(1− τ
t ) is convex and monotone decreasing in the range t > τ . This implies

that (24) is maximized by choosing A such that P (Ak) = 0, for which t = 2, and we obtain

D(P f‖Qf ) < M · 2−(`−1) log
2

g(`)
. (25)

Now, take g(m) = 2−
α2m

m for some 0 < α ≤ 1, and note that it is indeed monotone non-increasing in m =
1, 2, . . ., which yields

D(P‖Q) = α

T∑
m=k+1

1

m
(26)

D(P f‖Qf ) ≤ 2M
(

2−` +
α

`

)
≤ 2M

(
2−k +

α

k

)
. (27)

The statement follows by noting that we can always choose k such that the left hand side of (27) is smaller than
ε, and then we can choose T > k and α such that the left hand side of (26) is equal to β.

Proposition 5 shows that for any fixed M , and any value of D(P‖Q), the ratio ψM (P,Q)/D(P‖Q) can be
arbitrarily small.5 Note that choosing a different ϕ-divergence in the definition of ψM (P,Q) instead of the KL-
divergence, could lead to very different results. In particular, under the total variation criterion, the 1-bit quantizer
f(y) = sign(P (y) − Q(y)) achieves dTV(P f , Qf ) = dTV(P,Q) for any pair of distributions P,Q on Y . An
interesting question for future study is for which ϕ-divergences is the ratio ψM (P,Q)/Dϕ(P,Q) always positive.

5However, under some restrictions on the distributions P and Q, it is shown in [17] that a 2-level quantizer suffices to retain a constant
fraction of D(P‖Q).
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III. BOUNDS FOR BINARY X

In this section, we consider the case of |X | = 2, and provide upper and lower bounds on IDM (2, β). We begin
by studying the case where M = |X | = 2, through which we shall demonstrate why the multiplicative decrease in
mutual information is small when I(X;Y ) is high (close to 1). These findings illustrate that the more interesting
regime for IDM (2, β) is the one where β is small. For this regime, we derive lower and upper bound that match
up to constants that do not depend on β.

A. Binary Quantization (M = 2)

The aim of this subsection is to analyze the performance of quantizers whose cardinality is equal to that of
X . In this case, a natural choice for the quantizer is the maximum a posteriori (MAP) estimator of X from Y .
Intuitively, when I(X;Y ) is high (close to H(X)), the MAP estimator should not make many errors and the
mutual information between it and X should be high as well. We make this intuition precise below. However, when
I(X;Y ) is low, it turns out that not only does the MAP estimator fail to retain a significant fraction of I(X;Y ),
but it can be significantly inferior to other binary quantizers.

Assume without loss of generality that X = {1, 2}. The maximum a posteriori (MAP) quantizer is defined by

fMAP(y) =


1 if Pr(X = 1|Y = y) > 1/2

2 if Pr(X = 1|Y = y) < 1/2

1 · U + 2(1− U) if Pr(X = 1|Y = y) = 1/2

, (28)

where U ∼ Bernoulli(1/2) is statistically independent of (X,Y ). Let Pe,MAP(y) , Pr(fMAP(Y ) 6= X|Y = y) and
Pe,MAP , EY Pe,MAP(Y ). By the concavity of the binary entropy function t 7→ h(t), we have that h(t) ≥ 2t for any
0 ≤ t ≤ 1/2, with equality iff t ∈ {0, 1/2}. Consequently,

H(X|Y ) = EY h(Pe,MAP(Y )) ≥ 2Pe,MAP. (29)

Let X ∼ Bernoulli(p) and I(X;Y ) = β. We have that

I(X; fMAP(Y )) (30)

= H(X)−H(X|fMAP(Y ))

= h(p)− Pr(fMAP(Y ) = 1)h
(

Pr(X 6= 1|fMAP(Y ) = 1)
)

− Pr(fMAP(Y ) = 2)h
(

Pr(X 6= 2|fMAP(Y ) = 2)
)

≥ h(p)− h(Pe,MAP)

≥ h(p)− h
(
H(X|Y )

2

)
= h(p)− h

(
h(p)− β

2

)
. (31)

Since β ≤ h(p) ≤ 1, we have obtained that

I(X;fMAP(Y )) ≥ min
β≤t≤1

t− h
(
t− β

2

)
=

{
β + 2

5 − h
(

1
5

)
β < 3

5

1− h
(

1−β
2

)
β ≥ 3

5

. (32)

Since I(X; [Y ]2) ≥ I(X; fMAP(Y )), it follows that the right hand side of (32) is a lower bound on ID2(2, β).
In order to obtain an upper bound on ID2(2, β), assume X ∼ Bernoulli(1/2) and PY |X is the binary erasure

channel (BEC), i.e., Y = {0, 1, ?} and

Pr(Y = y|X = x) =

{
β if y = x

1− β if y =?
, (33)
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such that I(X;Y ) = β. Consider the quantizer

fZ(y) =

{
1 if y ∈ {1, ?}
2 if y = 0

.

Since there exists an optimal deterministic quantizer, and any deterministic 1-bit quantizer for the BEC output is
of the form fZ(y), this must be an optimal 1-bit quantizer. Note that the induced channel from X to fZ(Y ) is a
Z-channel, and it satisfies

I(X; fZ(Y )) =
β

2
h

(
1− β
2− β

)
+ 1− h

(
1− β
2− β

)
. (34)

By the optimality of the quantizer fZ(·) for this particular distribution, it follows that the right hand side of (34)
constitutes an upper bound on ID2(2, β).

We have therefore established the following proposition.
Proposition 6: For all 0 ≤ ε ≤ 2/5 we have

1− h
( ε

2

)
≤ ID2(2, 1− ε) ≤ 1− 1 + ε

2
h

(
ε

1 + ε

)
. (35)

Thus, for large β, the loss for quantizing the output to one bit is small and the fraction of the mutual information
that can be retained approaches 1 as the mutual information increases. In particular, the natural MAP quantizer is
never too bad, and retains a significant fraction of at least 1− h((1− β)/2) of the mutual information β.

In the small β regime, we arrive at qualitatively different behavior. We next show that the MAP quantizer can
be highly sub-optimal when β is small. To that end, consider again the distribution X ∼ Bernoulli(1/2) and PY |X
given by (33). i.e., a BEC. It is easy to verify that in this case both inequalities in (31) are in fact equalities for all
0 ≤ β ≤ 1. It follows that for a BEC with capacity β � 1 and uniform input, we have that

I(X; fMAP(Y )) = 1− h
(

1− β
2

)
=

log e

2
β2 + o(β2). (36)

I(X; fZ(Y )) =
β

2
h

(
1− β
2− β

)
+ 1− h

(
1− β
2− β

)
=
β

2
+ o(β). (37)

Thus, the asymmetric quantizer fZ(y) retains 50% of the mutual information, whereas the fraction of mutual
information retained by the symmetric MAP quantizer vanishes as β goes to zero.

One can argue that fZ(y) is a MAP estimator just as fMAP(y), as the two quantizers attain the same error
probability in guessing the value of X based on Y , and dismiss our findings about the sub-optimality of fMAP(y)
by attributing it to the randomness required by the MAP quantizer, as defined in (28), in the BEC setting. This is not
the case however. To see this consider a channel with binary symmetric input and output alphabet Y = {0, 1}×{g, b},
defined by

Pr(Y = y|X = x) =


β if y = (x, g)

(1− β)
(

1
2 + δ

)
if y = (x, b)

(1− β)
(

1
2 − δ

)
if y = (1− x, b)

,

for some 0 ≤ β ≤ 1 and 0 ≤ δ ≤ 1/2. Note that for δ = 0, this channel becomes a BEC with capacity 1− β. For
any δ > 0, the corresponding MAP quantizer is deterministic, but as δ → 0, the channel approaches a BEC, and its
performance becomes closer and closer to (36). Similarly, the performance of a binary quantizer that assigns the
same value to both “bad” outputs, i.e., f(y) = 2 if y = (0, g) and f(y) = 1 otherwise, approach (37) as δ → 0.
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B. Lower Bound on Quantized Mutual Information

We prove the following lower bound on I(X; [Y ]M ).
Theorem 3: For any PXY with |X | = 2 and I(X;Y ) = β, and any η ∈ (0, 1) we have that

I(X; [Y ]M̄2(η,β)) ≥ ηβ, (38)

where

M̄2(η, β) ,

⌊
c1(η) max

{
log

(
1

β

)
, 1

}⌋
, (39)

and

c1(η) ,
52

1− η
. (40)

Proof. Consider the joint distribution PXY , and for any y ∈ Y define αy , Pr(X = 1|Y = y), ᾱ , E(αY ) =
Pr(X = 1) and

Dy , D(PX|Y=y‖PX) = d (αy ‖ ᾱ) , (41)

where d(p1‖p2) , p1 log(p1/p2) + (1 − p1) log((1 − p1)/(1 − p2)) is the binary KL divergence function. Let
κ , max{log( 1

ᾱ), log( 1
1−ᾱ)}. We further define the function

F̄ (γ) , Pr(DY ≥ γ), (42)

and note that it is non-increasing and satisfies

I(X;Y ) = EDY =

∫ γ∗

0
F̄ (γ)dγ, (43)

where γ∗ = supy∈Y Dy ≤ κ. Let L be some natural number, let 0 = γ0 ≤ γ1 ≤ · · · ≤ γL ≤ γL+1 = γ∗ + δ, for
some arbitrary small δ > 0, and define the following (2L+ 1)-level quantizer

f(y) =


0 d(αy‖ᾱ) ≤ γ1

−` αy < ᾱ, γ` ≤ d(αy‖ᾱ) < γ`+1

` αy > ᾱ, γ` ≤ d(αy‖ᾱ) < γ`+1

. (44)

We have that for ` = 1, . . . , L

d (E[αY |f(Y ) = −`]‖ᾱ) ≥ γ`, d (E[αY |f(Y ) = `]‖ᾱ) ≥ γ`
and by the definition of F̄ (γ) we also have

Pr ({f(Y ) = −`} ∪ {f(Y ) = `}) = F̄ (γ`)− F̄ (γ`+1).

Thus,

I(X; f(Y ))

=

L∑
`=−L

Pr(f(Y ) = `)D(PX|f(Y )=`‖PX)

≥
L∑
`=1

(
F̄ (γ`)− F̄ (γ`+1)

)
γ`

= F̄ (γ1)γ1 +

L∑
`=2

F̄ (γ`)(γ` − γ`−1)− F̄ (γL+1)γL

=

L∑
`=1

F̄ (γ`)(γ` − γ`−1), (45)
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where in the last equality we used γ0 = 0 and F̄ (γL+1) = F̄ (γ∗ + δ) = 0. Our goal is therefore to choose the
numbers {γ`}L`=1 such as to maximize (45). For a general L, this problem is difficult and we therefore resort to a
possibly suboptimal choice according to the rule

γ1 = εI(X;Y ), θ =
(γ1

κ

)− 1

L

, γ` = γ1 · θ`−1, (46)

for ` = 2, . . . , L, L+ 1 and some 0 < ε < 1 to be specified. Note that this choice guarantees that

γ`+1 − γ` ≤ θ (γ` − γ`−1) , ` = 1, . . . , L. (47)

This implies that

I(X;Y ) =

∫ κ

0
F̄ (γ)dγ

=

L∑
`=0

∫ γ`+1

γ`

F̄ (γ)dγ

≤
L∑
`=0

(γ`+1 − γ`)F̄ (γ`)

≤ γ1 + θ

L∑
`=1

(γ` − γ`−1)F̄ (γ`)

≤ γ1 + θI(X; f(Y )). (48)

Therefore,

I(X; f(Y )) ≥ (1− ε)
θ

I(X;Y ). (49)

Substituting in

ε =
1− η

2
, L =

⌈
2 log

(
2κ

(1−η)I(X;Y )

)
(1− η)

⌉
, (50)

it follows that θ ≤ 2
(1−η)

2 . Using this and the fact that 1−x
2x ≥ 1− 2x for 0 ≤ x ≤ 1

2 , from (49)

I(X; f(Y )) ≥
(1− (1−η)

2 )

2
(1−η)

2

I(X;Y ) ≥ ηI(X;Y ).

Thus, as |f(·)| = 2L+ 1, and L ≥ 4, we have shown that I(X[Y ]M ) ≥ ηI(X;Y ) for

M =

⌊
8 log

(
2κ

(1−η)I(X;Y )

)
(1− η)

⌋
. (51)

Now consider the case where I(X;Y ) ≤ 1−η
2 . Note that

8 log
(

2κ
(1−η)I(X;Y )

)
(1− η)

=
8

1− η

(
log(κ) + log

(
2

1− η

)
+ log

(
1

I(X;Y )

))
≤ 8

1− η

(
log(κ) + 2 log

(
1

I(X;Y )

))
(52)
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where (52) follows since I(X;Y ) ≤ 1−η
2 . Next, we show that log(κ) = O

(
log
(

1
I(X;Y )

))
. Without loss of

generality, assume ᾱ ≤ (1 − ᾱ), and so κ = log
(

1
ᾱ

)
. Now note that I(X;Y ) ≤ H(X) = h(ᾱ). Thus, ᾱ ≥

h−1(I(X;Y )). We then have the following bound on h−1(I(X;Y )) [18, Theorem 2.2]

h−1(I(X;Y )) ≥ I(X;Y )

2 log( 6
I(X;Y ))

. (53)

Therefore, 1
ᾱ ≤

1
h−1(I(X;Y )) ≤

2
I(X;Y ) log

(
6

I(X;Y )

)
which in turn implies that log(κ) = log log( 1

ᾱ) ≤ log log
(

2
I(X;Y )

)
+

log log log
(

6
I(X;Y )

)
. Thus, for any I(X;Y ) ≤ 1

2 ,

log(κ) ≤ 2 log

(
1

I(X;Y )

)
. (54)

Using this in (52) we get

8 log
(

2κ
(1−η)I(X;Y )

)
(1− η)

≤ 32

1− η
log

(
1

I(X;Y )

)
(55)

for any I(X;Y ) = β ≤ 1−η
2 . Therefore, I(X; [Y ]M ) ≥ ηβ for M ≥

⌊
32

1−η log
(

1
β

)⌋
whenever β ≤ 1−η

2 .

When β ≥ 1−η
2 , we use the bound

β − I(X; [Y ]M ) ≤ 1268M−2 (56)

which is established in [7, Theorem 1]. This implies that for β ≥ 1−η
2 ,

I(X; [Y ]M ) ≥ β
(

1− 2536M−2

1− η

)
≥ ηβ (57)

whenever M ≥
⌊

52
1−η

⌋
.

Since

max

 52

1− η
,
32 log

(
1
β

)
1− η

 ≤ 52 max
{

log
(

1
β

)
, 1
}

1− η
, (58)

combining the results obtained for each case
(
β ≤ 1−η

2 and β ≥ 1−η
2

)
establishes

I(X; [Y ]M ) ≥ ηβ for M ≥

52 max
{

log
(

1
β

)
, 1
}

1− η

 ,
as desired.

C. Upper Bound on Quantized Mutual Information

Theorem 4: For any 0 < β ≤ 1, there exist a distribution PXY with I(X;Y ) ≥ β, for which

I(X; [Y ]M ) ≤ 2M
β

ln
(
e log(e)

2β

) , (59)

for every natural M .
Proof. We provide a distribution PXY with I(X;Y ) ≥ β for which no M -level quantizer achieves mutual
information exceeding the right hand side of (59). Let X ∼ Bernoulli(1/2) and Y = (X ⊕ ZT , T ) be the output
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of a binary-input memoryless output-symmetric (BMS) whose input is X , where T is a mixed random variable in
[0, 1/2) whose probability density function is given by

fT (t) =

{
rδ(t) + 4r

(1−2t)3 0− < t ≤ 1−
√
r

2

0 otherwise
(60)

for some 0 < r ≤ 1, ZT is a binary random variable with Pr(ZT = 1|T = t) = t, and (ZT , T ) is statistically
independent of X . It can be easily verified that

Pr(αY = t|T = t) = Pr(αY = 1− t|T = t) = 1/2 . (61)

By [10, Theorem 1], the optimal quantizer partitions the interval [0, 1] into M subintervals Ii = [γi−1, γi) for
i = 1, . . . ,M − 1 and IM = [γM−1, γM ], where 0 = γ0 < γ1 < · · · < γM = 1, and outputs f(y) = i iff αy ∈ Ii.
We therefore have

I(X; f(Y )) =

M∑
i=1

Pr(αY ∈ Ii)d
(

E[αY |αY ∈ Ii]
∥∥∥∥ 1

2

)
≤M max

0≤a<b≤1
Pr(a ≤ αY ≤ b)d

(
E[αY |a ≤ αY ≤ b]

∥∥∥∥ 1

2

)
.

By the symmetry of the random variable αY around 1/2, we can restrict the optimization to a < 1/2 and a < b ≤ 1.
Let b = min{b, 1− b} and b̄ = max{b, 1− b} and define the two intervals T0 = [a, b), T1 = [b, b̄]. By the convexity
of KL divergence we have that

d

(
E[αY |a ≤ αY ≤ b]

∥∥∥∥ 1

2

)
= d

(
1∑
i=0

Pr(αY ∈ Ti|a ≤ αY ≤ b)E[αY |αY ∈ Ti]
∥∥∥∥ 1

2

)

≤
1∑
i=0

Pr(αY ∈ Ti|a ≤ αY ≤ b)d
(

E[αY |αY ∈ Ti]
∥∥∥∥ 1

2

)
= Pr(αY ∈ T0|a ≤ αY ≤ b)d

(
E[αY |a ≤ αY ≤ b]

∥∥∥∥ 1

2

)
,

where in the last equation we have used the fact that E[αY |αY ∈ T1] = 1/2, due to the symmetry of the random
variable αY . We have therefore obtained

I(X; f(Y ))

≤M max
0≤a≤b≤1

2

Pr(a ≤ αY ≤ b)d
(

E[αY |a ≤ αY ≤ b]
∥∥∥∥ 1

2

)
(i)
=
M

2
max

0≤a≤b≤1
2

Pr(a ≤ T ≤ b)d
(

E[T |a ≤ T ≤ b]
∥∥∥∥ 1

2

)
.

(ii)
=

M

2
max

0≤b≤1
2

Pr(0 ≤ T ≤ b)d
(

E[T |0 ≤ T ≤ b]
∥∥∥∥ 1

2

)
(62)

where (i) follows since for any interval A ⊂ [0, 1/2) we have that Pr(αY ∈ A) = 1
2 Pr(T ∈ A) and E[αY |αY ∈

A] = E[T |T ∈ A] by (61) and (ii) follows since for any choice of 0 < b ≤ 1/2, both terms are individually
maximized by a = 0. It can be verified that for any 0 ≤ ρ ≤ 1−

√
r

2∫ ρ

0
tfT (t)dt =

2rρ2

(1− 2ρ)2
; Pr(0 ≤ T ≤ ρ) =

r

(1− 2ρ)2
,
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and therefore E[T |0 ≤ T ≤ b] = 2b2, and we have that for any M -level quantizer

I(X; f(Y )) ≤ M

2
· max

0≤b≤1−
√
r

2

r · 1− h(2b2)

(1− 2b)2

≤M · log(e)r, (63)

where the last inequality follows by noting that the function 1−h(2b2)
(1−2b)2 is monotone increasing in 0 < b < 1/2, and

taking the limit as b→ 1/2. It remains to relate r and I(X;Y ). Recalling that h(1
2 − p) ≤ 1− 2 log(e)p2, we have

I(X;Y ) = 1− Eh(T )

≥ 2 log(e)E

(
1

2
− T

)2

= 2 log(e)
r

4
ln
(e
r

)
=
e log(e)

2

r

e
ln
(e
r

)
.

It can be verified that the function g(t) , −t ln(t) is monotone increasing in 0 < t < 1/e and its inverse restricted
to this interval satisfies

1

e
· t

− ln(t)
< g−1(t) ≤ t

− ln(t)
. (64)

It therefore follows that

r ≤ eg−1

(
2I(X;Y )

e log(e)

)
≤ 2I(X;Y )

log(e)

1

ln
(
e log(e)

2I(X;Y )

) (65)

which gives

I(X; f(Y )) ≤ 2M
I(X;Y )

ln
(
e log(e)

2I(X;Y )

) , (66)

for any M -level function f .

D. Proof of Theorem 1

We begin by proving the lower bound. Using Theorem 3 and solving for η, we obtain that

I(X; [Y ]M ) ≥

1−
52 max

{
log
(

1
β

)
, 1
}

M

 · β. (67)

As a consequence of Theorem 3, we also have that

I

(
X; [Y ]⌊

104 max
{

log
(

1

β

)
,1
}⌋) ≥ 1

2
β. (68)

Now, applying Corollary 1, we obtain that for any M < 104 max
{

log
(

1
β

)
, 1
}

it holds that

I(X; [Y ]M ) ≥ M − 1

104 max
{

log
(

1
β

)
, 1
} 1

2
β. (69)

Combining (67) and (69) establishes that IDM (2, β) ≥ flower

(
M−1

max
{

log
(

1

β

)
,1
}).
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To establish the upper bound, we use Theorem 4. Note first that for any M > 1 and β > 1/2 we have that

fupper

(
M−1

max
{

log
(

1

β

)
,1
}) = 1. Thus, it suffices to prove that IDM (2, β) ≤ fupper

(
M−1

max
{

log
(

1

β

)
,1
}) for β < 1/2. In

this case Theorem 4 shows that

IDM (2, β) ≤ 2M
β

ln
(
e log(e)

2β

)
=

2

ln 2

Mβ

log
(

1
β

)(
1 + log(e log(e)/2)

log
(

1

β

) )
≤ 2

ln 2 (1 + log(e log(e)/2))
· M

log
(

1
β

) · β
<

3

2
· M

log
(

1
β

) · β. (70)

Combining this with the trivial bound IDM (2, β) ≤ β, we obtain

IDM (2, β) ≤ min

3

2
· M

log
(

1
β

) , 1
 · β

≤ min

3

2
· M

max
{

log
(

1
β

)
, 1
} , 1

 · β. (71)

Noting that for M = 1 we trivially have IDM (2, β) = 0 and that 3M/2 ≤ 3(M − 1) for M > 1, we obtain the
desired result.

IV. BOUNDS FOR |X | > 2

In the previous section we have shown that if X is binary, then O(log(1/I(X;Y ))) quantization levels always
suffice in order to retain any constant fraction 0 < η < 1 of I(X;Y ). In this section, we leverage this result in
order to show that in general O(log(1/I(X;Y ))k) quantization levels suffice in order to retain a constant fraction
0 < η < k

|X |−1 , for k ∈ [|X | − 1].

For a random variable X ∈ {1, . . . , |X |}, we can define the |X | − 1 binary random variables Ai , 1{X=i},
i = 1, . . . , |X | − 1. Clearly, X fully determines {A1, . . . , A|X |−1} and vice versa. In particular, the encoding
of X by {A1, · · · , A|X |−1} can be thought of as the “one-hot” encoding of X , with the last bit, whose value
is deterministically dictated by the preceding |X | − 1 bits, omitted. Representing X in this manner, nevertheless,
allows us to reduce the problem of quantizing Y in order to retain information on X , into |X |−1 separate problems
of quantizing Y in order to retain information on Ai. Since the random variables {A1, . . . , A|X |−1} are binary, the
results from Theorem 3 can be applied.

The main result of this section is Theorem 5, that lower bounds the worst-case multiplicative loss due to
quantization. Before stating this result, and giving its proof, we demonstrate the technique of reducing to the binary
case via “one-hot” encoding for the setup considered in [7], [8]. Recall that for all M ≥ 2|X | and |Y| > 2|X |, [7,
Theorem 1] bounds the worst-case additive gap due to quantization as

sup
PXY

I(X;Y )− I(X; [Y ]M ) ≤ ν(|X |) ·M−
2

|X|−1 , (72)

where the function ν(|X |) is explicitly defined in [7] and the supremum is with respect to all PXY with input alphabet
of cardinality |X |, and output alphabet of cardinality |Y|. We further note that ν(|X |) satisfies ν(2) ≤ 1268 and
ν(|X |) ≈ 16πe|X |3 for large |X |.
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Below, we use a “one-hot” encoding technique combined with (72) for |X | = 2 only to obtain a slight refinement
of the constant in the additive gap for |X | > 2 (for large enough values of M ).

Proposition 7: For |X | ≥ 2 and any M such that M
1

|X|−1 ≥ 4 is an integer, we have

DC(|X |,M) ≤ 1268(|X | − 1) ·M−
2

|X|−1 . (73)

Proof. Without loss of generality we may assume |Y| > 4, as otherwise the assumption M
1

|X|−1 ≥ 4 implies that
M ≥ |Y|, in which case I(X; [Y ]M ) = I(X;Y ).

The case |X | = 2 is therefore obtained from (72), which reads

I(X;Y )− I(X; [Y ]M ) ≤ ν(2) ·M−2 (74)

for all PXY with binary X .
Now let |X | > 2, and without loss of generality assume X = {1, 2, . . . , |X |}. Define Ai , 1{X=i}, for i =

1, 2, . . . , |X | − 1. Then,

I(X;Y ) = I(A1, . . . , A|X |−1;Y )

=

|X |−1∑
i=1

I(Ai;Y |Ai−1
1 = 0) Pr(Ai−1

1 = 0) (75)

where Ai−1
1 = 0 denotes the event A1 = · · · = Ai−1 = 0.

Let f(y) be an M -level quantizer of the form f(y) = (f1(y), . . . , f|X |−1(y)). Then,

I(X; f(Y )) =

|X |−1∑
i=1

I(Ai; f(Y )|Ai−1
1 = 0) Pr(Ai−1

1 = 0)

≥
|X |−1∑
i=1

I(Ai; fi(Y )|Ai−1
1 = 0) Pr(Ai−1

1 = 0). (76)

Thus, combining (75) and (76), gives

I(X;Y )− I(X; f(Y )) ≤
|X |−1∑
i=1

(I(Ai;Y |Ai−1
1 = 0)−

I(Ai; fi(Y )|Ai−1
1 = 0)) Pr(Ai−1

1 = 0). (77)

From (74), it holds that by choosing |fi(y)| = M
1

|X|−1 ≥ 4, for all 1 ≤ i ≤ |X | − 1, we can find quantizers
f1(y), . . . , f|X |−1(y) for which

I(Ai;Y |Ai−1
1 = 0)− I(Ai; fi(Y )|Ai−1

1 = 0) ≤ ν(2) ·M
−2

|X|−1 . (78)

Consequently, with this choice, we obtain

I(X;Y )− I(X; f(Y )) ≤ ν(2) ·M
−2

|X|−1

|X |−1∑
i=1

Pr(Ai−1
1 = 0)

≤ (|X | − 1)ν(2) ·M
−2

|X|−1 , (79)

as desired.
Next, we focus on the regime of I(X;Y )� 1 and prove an upper bound on the number of quantization levels

M , required to attain a fraction 0 < η < 1 of I(X;Y ). Roughly, we show that it suffices to take M that scales
like (log(1/I(X;Y )))η·(|X |−1). More precisely, for any k ∈ [|X | − 1], if η < k

|X |−1 , then O
(
(log(1/I(X;Y )))k

)
levels suffice.
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Theorem 5: For any PXY with I(X;Y ) = β, and any η ∈ (0, 1), we have that

I(X; [Y ]M̄|X|(η,β)) ≥ ηβ, (80)

where

M̄|X |(η, β) ,

⌊[
c1 (
√
η) log

(
|X | − 1

(1−√η)β

)]|X |−1
⌋
, (81)

with c1(η) as defined in (40). Furthermore, if η < k
|X |−1 for some natural k ≤ |X | − 2, we have that

I(X; [Y ]M̃|X|(η,β,k)) ≥ ηβ, (82)

where

M̃|X |(η, β, k) ,

⌊[
c1

(
η

k/(|X | − 1)

)
log

(
(|X | − 1)2

β

)]k⌋
. (83)

Proof. As above, define Ai , 1{X=i}, such that

I(X;Y ) = I(A1, . . . , A|X |−1;Y ) =

|X |−1∑
i=1

Ii · pi (84)

where

Ii , I(Ai;Y |Ai−1
1 = 0), i = 1, . . . , |X | − 1, (85)

pi , Pr(Ai−1
1 = 0), i = 1, . . . , |X | − 1, (86)

and Ai−1
1 = 0 denotes the event A1 = · · · = Ai−1 = 0. Furthermore, set

vi ,
Ii · pi
β

, i = 1, . . . , |X | − 1, (87)

and let the permutation π : [|X |− 1] 7→ [|X |− 1] be such that vπ(1) ≥ · · · ≥ vπ(|X |−1). For 0 ≤ k ≤ |X |− 1, define
the function

F (k) ,
k∑
i=1

vπ(i), (88)

with the convention that F (0) = 0, and note that

1) F (t) ≥ t
|X |−1 for any natural t ≤ |X | − 1, and in particular, F (|X | − 1) = 1;

2) F (|X | − 1) − F (t − 1) =
∑|X |−1

i=t vπ(i) ≤ (|X | − t)vπ(t) and therefore, for any natural t ≤ |X | − 1 we have
that vπ(t) ≥

1−F (t−1)
|X |−t ;

Let η ∈ (0, 1) and let η̄ be some number satisfying 0 < η < η̄ < 1. Let

kη̄ = min{k : F (k) ≥ η̄}. (89)

By the definition of kη̄, we have that F (kη̄ − 1) < η̄. Thus, by the second property, we have that

vπ(kη̄) ≥
1− η̄
|X | − kη̄

≥ 1− η̄
|X | − 1

. (90)

Let η′ = η
η̄ < 1. Consider the conditional joint distribution PAiY |Ai−1

1 =0. Since Ai is a binary random variable, by
Theorem 3 we can design a quantizer fi : Y 7→ [Mi] with Mi ≤

⌊
c1(η′) log max

{(
1
Ii

)
, 1
}⌋

quantization levels,
such that I(Ai; fi(Y )|Ai−1

1 = 0) ≥ η′ · Ii. Let f(y) = (fπ(1)(y), . . . , fπ(kη̄)(y)) : Y 7→ [Mπ(1)]× · · · × [Mπ(kη̄)] be
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the Cartesian product of the quantizers fπ(1)(y), . . . , fπ(kη̄)(y) attaining this tradeoff between η′ and the number of
quantization levels. We have that

I(X; f(Y )) = I(A1, . . . , A|X |−1; f(Y ))

=

|X |−1∑
i=1

I(Ai; f(Y )|Ai−1
1 = 0) Pr(Ai−1

1 = 0)

≥
kη̄∑
i=1

I(Aπ(i); f(Y )|Aπ(i)−1
1 = 0) Pr(A

π(i)−1
1 = 0)

≥
kη̄∑
i=1

I(Aπ(i); fπ(i)(Y )|Aπ(i)−1
1 = 0)pπ(i)

≥
kη̄∑
i=1

η′Iπ(i)pπ(i)

= η′β

kη̄∑
i=1

vπ(i)

=
η

η̄
βF (kη̄)

≥ ηβ. (91)

Since Iπ(i) = βvπ(i)/pπ(i) ≥ βvπ(i) >
β(1−η̄)
|X |−1 , ∀i ≤ kη̄, by (90), we have that ∀i ≤ kη̄

Mπ(i) ≤
⌊
c1(η′) max

{
log

(
|X | − 1

(1− η̄)β

)
, 1

}⌋
=

⌊
c1(η′) log

(
|X | − 1

(1− η̄)β

)⌋
, (92)

where the last inequality follows since |X |−1
β ≥ |X |−1

log |X | ≥ 2 for all |X | > 2. Consequently, we obtained

|f(y)| ≤

⌊[
c1

(
η

η̄

)
log

(
|X | − 1

(1− η̄)β

)]kη̄⌋
. (93)

To establish the first part of the statement, take η̄ =
√
η and recall that kη̄ ≤ |X | − 1 by definition.

For the second part, note that if η < k
|X |−1 , for some k < |X | − 1 we may take η̄ = k

|X |−1 , and that kη̄ ≤ k, as
F (t) ≥ t

|X |−1 . Substituting into (93), and noting that 1− η̄ ≥ 1
|X |−1 , establishes the second part of the statement.

Theorem 2 now follows as a rather simple corollary.
Proof of Theorem 2. We first show that for 1 ≤ k ≤ |X | − 2, it holds that I(X; [Y ]M ) ≥ ak(M, |X |, β) · β. To
that end, for any 0 < η′ < 1, and 1 ≤ k ≤ |X | − 2 define

M(|X |, β, η′, k) =

⌊[
52

1− η′
log

(
(|X | − 1)2

β

)]k⌋
. (94)

By the second part of Theorem 5, we have that

I(X; [Y ]M(|X |,β,η′,k)) ≥
k

|X | − 1
η′β. (95)

Solving for η′ shows that

I(X; [Y ]M ) ≥ k

|X | − 1

1−
52 log

(
(|X |−1)2

β

)
M

1

k

β, (96)
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and maximizing with respect to k yields the bound

I(X; [Y ]M ) ≥ max
1≤k≤|X |−2

ak(M, |X |, β) · β. (97)

Moreover, (95) applied with η′ = 1/2 and k = 1 shows that

I

(
X; [Y ]⌊

104 log
(

(|X|−1)2

β

)⌋) ≥ 1

2(|X | − 1)
β. (98)

Now, applying Corollary 1, we obtain that for any M < 104 log
(

(|X |−1)2

β

)
it holds that

I(X; [Y ]M ) ≥ M − 1

104 log
(

(|X |−1)2

β

) 1

2(|X | − 1)
β. (99)

which is equivalent to

I(X; [Y ]M ) ≥ a0(M, |X |, β) · β. (100)

Finally, we use the first part of Theorem 5 to show that I(X; [Y ]M ) ≥ a|X |−1(M, |X |, β)·β. Recalling the definition
of M̄|X |(η, β) in (81), we have that for any 0 < η < 1

M̄|X |(η, β) =

⌊[
c1 (
√
η) log

(
|X | − 1

(1−√η)β

)]|X |−1
⌋

≤

⌊[
c1(
√
η)

(
log

(
|X | − 1

β

)
+

log(e)

(1−√η)1/2

)]|X |−1
⌋

≤

⌊[
52

(1−√η)3/2

(
log

(
e(|X | − 1)

β

))]|X |−1
⌋

,M ′|X |(η, β). (101)

Thus, by the first part of Theorem 5, we have that

I(X; [Y ]M ′|X|(η,β)) ≥ ηβ. (102)

Solving for η yields

I(X; [Y ]M ) ≥ a|X |−1(M, |X |, β) · β. (103)

The theorem now follows by combining (97), (100), and (103).

V. CONNECTIONS TO QUANTIZATION UNDER LOG-LOSS AND THE INFORMATION BOTTLENECK PROBLEM

In general, an M -level quantizer q for a random variable Y consists of a disjoint partition of its alphabet
Y =

⋃M
i=1 Si, and a set of corresponding reproduction values ai ∈ A, such that qy =

∑M
i=1 ai1{y∈Si}, see, e.g., [19].

The performance of the quantizer is measured with respect to some predefined distortion function d : Y ×A 7→ R,
which quantifies the “important features” of Y that the quantizer should aim to retain. The expected distortion
Ed(Y, qY ) is then typically taken as the quantizer’s main figure of merit.

In our considerations, we observe and quantize the random variable Y , but the distortion measure is evaluated
with respect to X , where X and Y are jointly distributed according to PXY . This setup is sometimes referred to
as remote source coding (or quantization). If the distortion measure of interest between X and the reconstruction
qy is d̃ : X ×A 7→ R, one can define the induced distortion measure

d(y, qy) = E
[
d̃(X, qy)|Y = y

]
, (104)

such that E[d̃(X, qY )] = E[d(Y, qY )]. Consequently, the remote quantization problem is reduced to a direct quanti-
zation problem, with an induced distortion measure [20].
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Under various tasks of inferring information about X from Y , it is natural to take the reconstruction alphabet
A to be the set of all distributions on X , i.e., the |X | − 1 dimensional simplex P |X |−1 [21]–[23] . Ideally, we
would like the reconstructed distribution qy to be as close as possible to the conditional distribution PX|Y=y, for
all y ∈ Y . Various loss functions can be used to measure the distance between two distributions, depending on the
ultimate performance criterion for the inference of X . One such loss function, that has enjoyed a special status in
the information theory and machine learning literature [23]–[26] is the logarithmic-loss:

d(x, P ) = log

(
1

P (x)

)
, ∀(x, P ) ∈ X × P |X |−1. (105)

For the remote quantization setup, the induced distortion measure is

d(y, P ) , E

[
log

1

P (X)

∣∣∣∣Y = y

]
, ∀(y, P ) ∈ Y × P |X |−1. (106)

Thus, the design of a quantizer for Y under d(y, P ) reduces to determining a disjoint partition Y =
⋃M
i=1 Si of

the alphabet Y , and assigning a representative distribution ai ∈ P |X |−1 for each quantization cell Si, such that
qy = ai iff y ∈ Si. Note that once the sets Si, i = 1, . . . ,M are determined, the reconstructions that minimize
D = Ed(Y, qY ) are given by ai = PX|Y ∈Si . To see this, let f : Y → [M ] be such that f(y) = i if i ∈ Si, set
T = f(Y ), and write

D = EXY

[
log

(
1

qY (X)

)]
= EXT

[
log

(
1

aT (X)

)]
= ET

[
E

[
log

(
1

PX|T (X|T )

PX|T (X|T )

aT (X)

) ∣∣∣∣T]]
= H(X|T ) +D

(
PX|T

∥∥aT ∣∣PT )
≥ H(X|T )

= H(X|f(Y )), (107)

with equality if and only if at = PX|T=t = PX|Y ∈St for all t ∈ [M ].
It follows that, for a given distribution PXY , the design of the optimal quantizer under the distortion measure (106)

reduces to finding f : Y → [M ] which minimizes H(X|f(Y )). Clearly, determining the minimum value of
H(X|f(Y )) is equivalent to our maximization problem (1).

A quantity closely related to I(X; [Y ]M ) is the information bottleneck tradeoff [27], defined as

IBR(PXY ) , max
PT |Y : I(Y ;T )≤R

I(X;T ), (108)

which has been extensively studied in the machine learning literature, see e.g. [28]–[30]. There, Y is thought of
as an high-dimensional observation containing information about X , that must be first “compressed” to a simpler
representation before inference can be efficiently performed. The random variable T = f(Y ) represents a clustering
operation, where for the task of inferring X , all members in the cluster are treated as indistinguishable. A major
difference, however, between the information bottleneck formulation and that of (1) is that the latter restricts |f(·)|
to M , whereas the former allows for random quantizers and restricts the compression rate I(T ;Y ). The discussion
above indicates that the problem (1) is a standard quantization/lossy compression problem (or more precisely, a
remote source coding problem). As such, its fundamental limit admits a single-letter solution6 and we have that [24],
[31]

lim
n→∞

1

n
I(Xn; [Y n]Mn) = IBlogM (PXY ). (109)

6One subtle point to be noted is that the relevant distortion measure for I(Xn; [Y ]nMn) is not separable. Nevertheless, it is not difficult
to show that restricting the reconstruction distribution to the form qyn(x

n) =
∏n

i=1 q
i
yn(xi) entails no loss asymptotically.
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where PXnY n = P⊗nXY and [Y n]Mn refers to the set of all Mn-quantizations of Y n. That is, in the asymptotic
limit, our problem (1) corresponds to an information bottleneck problem. However, the scalar setting n = 1 is
of major importance as inference is seldom performed in blocks consisting of multiple independent samples from
PXY . Overall, our results in the previous sections indicate that when I(X;Y ) is small we may need at least
Θ(log(1/I(X;Y )) clusters to guarantee that we retain a significant fraction of the original information.

A. On the Gap Between Scalar Quantization and Information Bottleneck

In this subsection, we show that in the limit I(X;Y ) → 0, the restriction to using a scalar quantizer results in
a significantly worse performance than the one predicted by the information bottleneck, which implicitly assumes
quantization is performed in asymptotically large blocks. In particular, we prove the following theorem.

Theorem 6: For any PXY with |X | = 2 and I(X;Y ) = β, and any η ∈ (0, 1) there exists a quantizer f(Y ) such
that I(X; f(Y )) ≥ ηβ and

H(f(Y )) ≤ log log log

(
1

β

)
− 2 log(1− η) + 11. (110)

Contrasting this with Theorem 4, and its simplification in (70), which show that there exist distributions PXY with
|X | = 2, for which no scalar quantizer with less than log log(1/β) + log(η) + 1 bits can attain I(X; f(Y )) > ηβ,
we see that the restriction to quantization in blocklength n = 1 entails a significant cost w.r.t. quantization in long
blocks. In particular, if for a distribution PXY there exists a quantizer f(Y ) with entropy H(f(Y )) = R for which
I(X; f(Y )) = Γ, then certainly IBR(PXY ) ≥ Γ. To see this just take T = f(Y ) in (108).7 It therefore follows
from Theorem 4 and Theorem 6 that the information bottleneck tradeoff may be over-optimistic in predicting the
performance of optimal scalar quantization.
Proof. In the proof of the lower bound of Theorem 4, we have proposed the M -level quantizer (44) with the
parameters specified by (46). For M = b 52

1−η log
(

1
β

)
c, and β ≤ 1−η

2 , we have shown that this quantizer attains
I(X; f(Y )) ≥ ηβ. We will now show that for the same quantizer H(f(Y )) = O (log log(M)).

Let

P` , Pr ({f(Y ) = −`} ∪ {f(Y ) = `}) , ` = 0, . . . , L

and note that

H(f(Y )) ≤ 1 +H({P`}). (111)

Our goal is therefore to derive universal upper bounds on H({P`}) that hold for all joint distributions PXY with
|X | = 2.

First, recall from the proof of Theorem 3 that

I(X;Y ) = EDY ≥
L∑
`=0

γ`P` = γ1

L∑
`=1

θ`−1P`,

where we have used (46) in the last equality. We therefore have
L∑
`=0

θ`P` = P0 +

L∑
`=1

θ`P`

≤ 1 +
θI(X;Y )

γ1

= 1 +
θ

(1− η)/2

≤ 4θ

1− η
(112)

7See [32] for an elaborate discussion on the information bottleneck tradeoff when T is restricted to be a deterministic quantizer of Y .
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where in (112) we have used γ1 = εI(X;Y ), due to (46), and ε = (1− η)/2, due to (50).
For a vector a = {a0, a1, . . . , aL} ∈ RL+1

+ and a scalar min`{a`} ≤ b ≤ max`{a`}, define the function

f(a, b) ,max

L∑
`=0

P` log

(
1

P`

)

subject to
L∑
`=0

a`P` ≤ b,
L∑
`=0

P` = 1. (113)

The problem (113) is a concave maximization problem under linear constraints, and its solution is [33, p.228]

f(a, b) = min
λ≥0

λb+ log

(
L∑
`=0

2−λa`

)
. (114)

Combining (112) and (114) with a` = θ` and b = 4θ
1−η , gives

H({P`}) ≤ min
λ≥0

λ
4θ

1− η
+ log

(
L∑
`=0

2−λθ
`

)
. (115)

Setting λ = 1
L , gives

H({P`}) ≤
4

1− η
· θ
L

+ log

(
L∑
`=0

2−
θ`

L

)

≤ 4

1− η
· θ
L

+ log

b2
logL

log θ
c∑

`=0

2−
θ`

L +

L∑
`=b2 logL

log θ
c+1

2−
θ`

L


≤ 4

1− η
· θ
L

+ log

(
2

logL

log θ
+ 1 + L2−L

)
.

Recalling that 1 < θ < 2(1−η)/2, and noting that 1 + L2−L < 2 log(L) for L > 1, we obtain

H({P`}) ≤
1

L

2(1−η)/2

(1− η)/4
+ log

(
4

logL

log θ

)
.

For the first term, we can use the definition of L in (50) to obtain

1

L

2(1−η)/2

(1− η)/4
≤ (1− η)/2

log
(

2κ
(1−η)I(X;Y )

) · 2(1−η)/2

(1− η)/4

≤ 2 · 2(1−η)/2

≤ 3, (116)

where we have used the fact that κ ≥ 1, and consequently log
(

2κ
(1−η)I(X;Y )

)
≥ 1. For the second term, we have

that

log(θ)
(i)

≥ 1

L
log

(
κ

εβ

)
(ii)

≥ (1− η)/4

log
(

κ
β·(1−η)/2

) log

(
κ

β · (1− η)/2

)

=
1− η

4
. (117)
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where (i) follows from (46) and (ii) follows from (50), where we have used

L =

⌈
2

1− η
log

(
κ

β · (1− η)/2

)⌉
≤ 4

1− η
log

(
κ

β · (1− η)/2

)
.

We have therefore obtained that

H({P`}) ≤ 7 + log logL− log(1− η).

Now, recalling that L < M < 52 log(1/β)
1−η , we have that

H({P`}) ≤ 10− log log(1− η)− log(1− η) + log log log

(
1

β

)
≤ 10− 2 log(1− η) + log log log

(
1

β

)
. (118)

Now, applying (111) with (118) establishes the result.
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