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Abstract

Let X and Y be dependent random variables. This paper considers the problem of designing a scalar quantizer for
Y to maximize the mutual information between the quantizer’s output and X, and develops fundamental properties
and bounds for this form of quantization, which is connected to the log-loss distortion criterion. The main focus is
the regime of low I(X;Y"), where it is shown that, if X is binary, a constant fraction of the mutual information
can always be preserved using O(log(1/I(X;Y"))) quantization levels, and there exist distributions for which this
many quantization levels are necessary. Furthermore, for larger finite alphabets 2 < |X| < oo, it is established that
an 7)-fraction of the mutual information can be preserved using roughly (log(|X|/I(X;Y")))"*!=1) quantization
levels.

I. INTRODUCTION

Let X and Y be a pair of random variables with alphabets X and ), respectively, and a given distribution Pxy .
This paper deals with the problem of quantizing Y into M < |)| values, under the objective of maximizing the
mutual information between the quantizer’s output and X. With a slight abuse of notation!, we will denote the
value of the mutual information attained by the optimal M-ary quantizer by

I[(X;[Y]a) & sup I(X;Y), (1)
YeY]m

where [Y],s is the set of all (deterministic) M -ary quantizations of Y,
Vi ={f(Y) « f:Y = [M]}
and [M] 2 {1,2,..., M}.
When X and Y are thought of as the input and output of a channel, this problem corresponds to determining
the highest available information rate for M-level quantization. It is therefore not surprising that this problem has
received considerable attention. For example, it is well known [2, Section 2.11] that when X is +1 equiprobable

and Y = X + Z for Gaussian Z, it holds that I(X;[Y]s) > 2I(X;Y), which is achieved by taking f(-) to be the
maximum a posteriori (MAP) estimator of X from Y .2

A characterization of (1) is also required for the construction of good polar codes [4], since the large output
cardinality of polarized channels makes it challenging to evaluate their respective capacities (and identify “frozen”
bits). Efficient techniques for channel output quantization that preserve mutual information have been developed
to overcome this obstacle, and played a major role in the process of making polar codes implementable [5]-[7].
One byproduct of these efforts is a sharp characterization of the additive gap. Specifically, it was recently shown
in [7] that, for arbitrary Py, it holds that I(X;Y) — I(X;[Y]a) = O(M~2/(XI1=1)) whereas [8] demonstrates
that there exist Pxy such that I(X;Y) — I(X;[Y]y) = QM ~2/(XI=1)), The works [5]-[7], among others, also
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!This notation is meant to suggest the distance from a point to a set.
In [3], it was demonstrated that if an asymmetric signaling scheme is used, instead of binary phase-shift keying (BPSK), the additive
white Gaussian noise channel capacity can be attained at low signal-to-noise ratio (SNR) with an asymmetric 2-level quantizer.



provided polynomial-complexity, sub-optimal algorithms for designing such quantizers. In addition, for binary X,
an algorithm for determining the optimal quantizer was proposed in [9] (drawing upon a result from [10]) that
runs in time O(|Y]3). A supervised learning algorithm, for the scenario where Pxy is not known, and cannot be
estimated with good accuracy, was proposed in [11].

It may at first appear surprising that the quality of quantization found in [5]-[7] depends on the alphabet size
| X'| but not on |Y|. The reason for this is that, given Y = y, the relevant information about X is the the posterior
distribution Py —,, which is a point on (|| —1)-dimensional simplex. Thus, the goal of quantizing Y" is essentially
a goal of quantizing the probability simplex. The goal of this paper is to understand the fundamental limits of this
quantization, as a function of alphabet size. The crucial difference with [5]-[7] is that here we focus on the
multiplicative gap, i.e., comparing the ratio of I(X;[Y]s) to I(X;Y). The difference is especially profound in
the case when I(X;Y') is small. We ignore the algorithmic aspects of finding the optimal M -level quantizer and
instead focus on the fundamental properties of the function I(X;[Y]ss). To this end, we define and study the
“information distillation” function

Dy (K, B) = inf  I(X;[V]u). ()
Y=k
I(X5Y) =B

The infimum above is taken with respect to all joint distributions with discrete input alphabet X" of cardinality K
and arbitrary (possibly continuous) output alphabet ) such that the mutual information is at least 5. One may
wonder whether K has an essential role in the function ID (K, ). Proposition 4, stated and proved in Section II,
shows that for any M and /5 it holds that infx ID (K, 8) = 0. Thus, one must indeed restrict the cardinality of
X in (2) in order to get a meaningful quantity.

Special attention will be given to the binary input alphabet case, where X ~ Bernoulli(p) for some p. In this
setting, it may seem at a first glance that the optimal binary quantizer should always retain a significant fraction
of I(X;Y), and that the MAP quantizer should be sufficient to this end. For large I(X;Y’), this is indeed the
case, as we show in Proposition 6. As mentioned above, this is also the case if Y = X + Z with Z Gaussian
for all values I(X;Y), since the MAP quantizer always retains at least 2/7 =~ 63.66% of the mutual information.
However, perhaps surprisingly, we show that there is no constant ¢ > 0 such that I(X;[Y]2) > ¢- I(X;Y") for all
Pxy with ’X‘ = 2.

A. Main Results

Our main result is a complete characterization, up to constants, of the binary information distillation function.

Theorem 1: For any mutual information value 0 < § < 1, the binary information distillation function is lower
and upper bounded as follows:

M-1
/B : flower < IDM(2, ,8)
max {log (%) ,1}
M—-1
< B : fupper )
max {log (%) ) 1}
where
s t <104
A A .
Jrower () = {iOi 5?2 ¢ > 104 Jupper(t) = min{3t, 1}.

The proof is deferred to Section III-D. Note that the negative aspect of this result is in stark contrast to the
intuition from the binary additive white Gaussian noise (AWGN) channel. While for the former, two quantization
levels suffice for retaining a 2/7 fraction of I(X;Y"), Theorem 4 shows that there exist sequences of distributions
for which at least 2(log(1/I(X;Y"))) quantization levels are needed in order to retain a fixed fraction of I(X;Y).



Furthermore, as illustrated in Section III, for small I(X;Y) and M = 2, the MAP quantizer can be arbitrary
bad w.r.t. the optimal quantizer, which is in general not “symmetric.” On the positive side, O(log(1/I(X;Y)))
quantization levels always suffice for retaining a fixed fraction of I(X;Y).

For the general case where 2 < |X| < oo, we prove the following.
Theorem 2: Define

M—-1

ao(M, | X], 8) 2 - min

1
' o (3)
X|l-1 (xl=-1)2\" 2
[ -1 208 log (1X512)
2/3
. 52 log (76(‘)(5'_1))
G\X|—1(Ma |X[,8) = |1- ML/(X-1) )
and, for k =1,...,|X| — 2, define
X|-1)2
T R S 5210g<(\ ) ) 5
A e MLk

Then, for any 2 < |X| < oo and 0 < 8 < log |X|, the information distillation function is upper and lower bounded
as follows

’ M,|X <ID X
o %y 2k (M 121, B) < D (121, B)

M—1
< B fupper max{log (%) ’1} ;

(6)

where fupper(t) is as defined in Theorem 1.
The proof of the lower bound is deferred to Section IV, whereas the upper bound follows trivially by noting that
|X| — IDp (| X, 5) is monotone non-increasing and invoking the upper bound on ID,(2, 3) from Theorem 1.

The lower bound from Theorem 2 states that for all Pxy and k € [|X'|—1], it holds that M = O((log(|X|/I(X;Y)))¥)
suffices to guarantee that I(X;[Y]a) > | X’f T 1(X; Y) In particular, choosing £ = 1, we obtain that M =
O(log(|X|/I1(X;Y))) suffices to attain I(X;[Y]rr) > \Xl 7I(X;Y) and, on the other hand, by the upper bound,
there exist Pxy for which M = Q(log(1/I1(X;Y"))) is required in order to attain I(X;[Y]as) > |X|_1I(X Y).
Thus, Theorem 2 gives a tight characterization (up to constants independent of I(X;Y)) of the number of
quantization levels required in order to maintain a fraction of 0 < 7 < m%l of I(X;Y). However, we were

not successful in establishing an upper bound that match the lower bound within the range n € (‘X‘%l, 1). We
nevertheless conjecture that for 7 close to 1 our lower bound is tight.

Conjecture 1: For any |X'| > 2, there exists some }Xl f <n(X|) <1, 5(]X|) > 0 and a constant ¢(|X]) > 0

such that for all 0 < 8 < B(|X]) and M < ¢(|X])(log(1/8))1*I=1, it holds that
D ([X], B) < n(|X]) - B (7

As discussed above, prior work [5]-[7] has focused on bounding the additive gap. This corresponds to bounding
the so-called “degrading cost” [7], [8], which is defined as

C(|X|,M)= sup B—IDy(X] ) ®)
0<p<log |X|

in our notation. In particular, the bound derived in [7] on DC(|X|, M) is equivalent to the following “constant-gap”
result: for every 0 < 8 < log |X],

D (X, B) > B — v(| X)) M~/ (X1~



for some function ».> For small 3, however, results of this form are less informative. Indeed, for small 3, this
bound requires M to scale like 5~U¥I=1/2 in order to preserve a constant fraction of the mutual information. On
the other hand, our result shows that scaling M like O((log(1//))!*1=1) suffices for joint distributions Pyy .

Notation: In this paper, logarithms are generally taken w.r.t. base 2, and all information measures are given in
bits. When a logarithm is taken w.r.t. base e, we use the notation In instead of log. We denote the binary entropy
function by h(t) = —tlog(t) — (1 — t)log(1 — t), and its inverse restricted to the interval [0,1/2] by h=1(¢). The
notation |¢| denotes the “floor” operation, i.e., the largest integer smaller than or equal to t.

II. PROPERTIES OF I(X;[Y]n)

Let Pxy be a joint distribution on X’ x ) and consider the function I(X; [Y]as), as defined in (1). The restriction to
deterministic functions incurs no loss of generality, see e.g., [9]. Indeed, any random function of y, can be expressed
as f(y,U) where U is some random variable statistically independent of (X,Y"). Thus,

I(X; f(Y,U)) < I(X5 f(Y,U),U) = I(X; f(Y,U)|U) ©)

and hence there must exist some u for which I(X; f(Y,u)) > I(X; f(Y;U)). Furthermore, for any function
f : Y — [M], we can associate a disjoint partition of the | X |-dimensional cube [0, 1]!*! into M regions Ty, ..., Ty,
such that f(y) = 4 iff Pxjy_, € Z; for i = 1,..., M. A remarkable result of Burshtein et al. [10, Theorem 1]
shows that the maximum in (1) can without loss of generality be restricted to functions for which there exists an
associated partition where the regions Z;,...,Zys are all convex.

Below, we state simple upper and lower bounds on I(X;[Y]x).
Proposition 1 (Simple bounds): For any distribution Pxy on X x ) with a finite output alphabet, and M < ||,
M-1

S L) S TGV ]ar) < mind 1(X5Y), log(M)}-

Proof. The upper bound does not require any assumptions on ) and follows from the data processing inequality
(X =Y — f(Y) forms a Markov chain in this order), and from I(X; f(Y)) < H(f(Y)) < log(M).

For the lower bound, we can identify the elements of ) with {1,...,|)|} such that
Py (1)D(Pxjy=illPx) = -+ 2 Py (IY)) D(Pxjy =y [Px)
and take the quantization function

f(y)_{y if y < M,

M  otherwise.
Recalling that I(X;Y) = >, Py (y)D(Px|y=y||Px) we see that
M -1
Y

I(X; f(Y)) 2 I(X;Y).

For K < M, we can construct a (possibly sub-optimal) K-level quantizer by first finding the optimal M -level
quantizer and then quantizing its output to K-levels. This together with the lower bound in Proposition 1, yields
the following.

Corollary I: For natural numbers K < M we have
K-—1

I(X:[Y)i) = =

I(X;[Y]m).

31t is also demonstrated in [8] that there exist values of 8, for which this bound is tight. Specifically, [8] found a distribution Pxy with
X ~ Bernoulli(1/2) and I(X;Y) ~ 0.2787 for which I(X;[Y]a) < I(X;Y) — ¢cM~2 for some constant ¢ > 0.



Remark 1: Tt is tempting to expect that I(X;[Y]ys) will have “diminishing returns” in M for any Pxy, i.e.,
that it will satisfy the inequality I(X;[Y]as,.ar,) < I(X; [Y]ar,) + I(X; [Y]ar, ). However, as demonstrated by the
following example, this is not the case. Let X ~ Uniform({0,1,2,3}) and Y = [ X+ Z] mod 4, where Z is additive
noise statistically independent of X with Pr(Z =0) =0 and Pr(Z =1) =Pr(Z =2) =Pr(Z =3) = (1-6)/3.
Clearly,

I(X;[Y]s) = I(X3Y) =2 — h(d) — (1 —9)log(3), (10)
and it can be verified that
iy [ ) 3 (5) <14

Thus, for this example we have that 27(X;[Y]2) < I(X;[Y]4) for all § ¢ {1/4,1}.
Proposition 2 (Data processing inequality): If X —Y — V form a Markov chain in this order, then

I(X; [V]m) < I(X5[Y]nm).

Proof. For any function f : V ~ [M] we can generate a random function f : ) [M] which first passes Y’
through the channel Py |y and then applies f on its output. By (9), we can always replace f by some deterministic
function f : ) +— [M] such that

I(X; f(Y) 2 I(X: f(Y) = I(X: £(V)-

]
Proposition 3: For a fixed Py, the function Py x — I(X;[Y]a) is convex.

Proof. For any f: ) + [M], let I/(Px x Py|x) £ 1(X; f(Y)), and note that

I(X;[Y]m) = sup I/(Px x Pyx).

f:Y—[M]

Since the supremum of convex functions is also convex, it suffices to show that for a fixed Py the function
I7(Px x Py|x) is convex in Py|x. To this end, consider two channels Pil,‘ « and Pf,‘ +» and let P}(Y)| « and
PJ%(Y)\ » respectively, be the induced channels from X to f(Y’). Clearly, for the channel O‘P11/| v+ (1= a)P§| x>
the induced channel is O‘P}(Y)| v+ (1= a)PJ?(Y)‘ - Let Z € [M] be the output of this channel, when the input is

X. From the convexity of the mutual information w.r.t. the channel we have
I (Px x (aPlx +(1- a)PEx)) = 1(X; 2)
<ol (Px x Pyx) + (1 —a) I/ (Px x Pyx),
as desired. m

Remark 2: In contrast to mutual information, the functional I(X;[Y]5s) is in general not concave in Py for a
fixed Py| x- To see this consider the following example: X = ) = {1,2,3}, M = 2, and the channel from X to
Y is clean, i.e., Y = X. Let Py, = (3,1, 1) and Px, = (3, 1, 3). Clearly, I(X1;[Y]x) = I(Xa;[Y]n) = 1. For
any a € (0,1), let Px = aPx, + (1 — a)Px,. It can be verified that

I(X; [Y]m) < 1.

Remark 3 (Complexity of finding the optimal quantizer): For the special case where ¥ = X, the function
I(X;[Y]ar) reduces to*

H([Y]m) 2 sup H(Y). (12)
YeY]|m

“Recent work by Cicalese, Gargano and Vaccaro [12] provides closed-form upper and lower bounds on H (IY]a)-



Furthermore, when M = 2 the optimization problem in (12) is equivalent to

. 1
max pr subject to: me < 2 (13)
zeA rzeA

where p, = Pr(X = z), z € X. The problem (13) is known as the subset sum problem and is NP-hard [13]. See
also [12]. Thus, when |X| is not constrained, the problem of finding the optimal quantizer of Y is in general NP-
hard. Nevertheless, for the case where & is binary, a dynamic programming algorithm finds the optimal quantizer
with complexity O(|V|3), see [9].

Proposition 4: For any 8 > 0, any natural M, and n large enough, we have that
log(M)
nlog(e)

Consequently, for any 5 > 0 and natural M we have that infx IDy; (K, 8) = 0, which motivates the restriction to
finite input alphabets in our main theorems.

Proof. Let Y ~ Bernoulli(1/2), Z ~ Bernoulli(6), Y 1L Z, and X =Y & Z. Let (X",Y") ~ Py For product
distributions Pf?y we have that for any U satisfying the Markov chain U — Y™ — X", it holds that [14], [15]
I(U; X™) 1(U; X)
oy Ssup ———,
I(U;Y™) I(U;Y)
where the supremum is taken w.r.t. all Markov chains U —Y — X with fixed Pxy and I(U;Y") > 0. For the doubly

symmetric binary source Pxy of interest, this supremum is (1 — 2(5)2 [15], and consequently, we obtain that for
any f:{0,1}" — [M], it holds that

I(F(Y™); X™)

IDy (2", 8) < (14)

(15)

< (1—20)°I(f(Y™);Y™)
< (1—-20)°H(f(Y™))
< (1 —26)%log(M). (16)

For any (3 > 0, take n large enough such that 8 < n - 2log(e), and set

0= % 15 o(©) a7
we obtain that
1 [y < B (1s)
On the other hand, we have that
I(X™Y™) = n(1 - h(3)) = B(L + o(1)). (19)
Thus, for n large enough (14) indeed holds. =
A. Relations to quantization for maximizing divergence
For two distributions P, Q on ), Q < P, define
vu(P,Q) 2 sup  D(PT||QY), (20)
[ Y=[M]

where P/ and Q7 are the distributions on [M] induced by applying the function f on the random variables
generated by P and @, respectively. A classical characterization of Gelfand-Yaglom-Perez [16, Section 3.4], shows
that ¥y (P,Q)  D(P||Q) as M — oo. We are interested here in understanding the speed of this convergence.
To this end, we prove the following result.



Proposition 5: For any 3, ¢ > 0, there exists two distributions P, @ on N such that D(P||Q) = f and ¢¥p (P, Q) <
Me for any M € N.

Proof. Consider the following two distributions:

2°™m m=1,...,T
Pim)={2"T-D m=1

LO m>T

(P(m) 1<m<k

g(m) - P(m) E<m<T
R PO e

— 3 i g(m)P(m) m=T+1

where 0 < g(m) <1 is some monotonically non—increasing function. We have that

D(P||Q) = Z 27" log(1/g(m)), 1)

m=k+1
whereas for any f:{0,1,...} — [M] we have that
P(A)
D(P|QF)y < M- P(A)1 .
(PQD = A s, P8 G a)

Let A = AN[k]. Without loss of generality, we can assume that A\ A, # (), as otherwise P(A)log(P(A)/Q(A)) =
0. Thus, we can define £ £ min{a : a € A\ Az} and write

P(A) = P(Ay) + P(A\ Ag) < P(A) +2-27°
Q(A) = Q(Ax) + Q(A\ Ag) > P(A) +27g(0) (23)

Let t = 2°P(A;) + 2, and 7 = 2 — g(¢) such that the bounds above read as P(A) < 2% and Q(A) > 27(t — 1),
and

(22)

P(A) 0 T
P(A)log < —2l10g (1 - f) . 24)
W) t
We note that the function ¢(t) = —tlog(1— 7) is convex and monotone decreasing in the range ¢ > 7. This implies
that (24) is maximized by choosing A such that P(Ay) = 0, for which ¢t = 2, and we obtain
2
DP Q) < M -27 Vg 0 (25)
Now, take g(m) = 2~ “+ for some 0 < a < 1, and note that it is indeed monotone non-increasing in m =
1,2,..., which yields
G
D(P — il
(PlQ)=o >, — (26)
m=k+1
DP!|IQ)) < 2M (24 + %) < oM (2_’“ + %) . @7)

The statement follows by noting that we can always choose k such that the left hand side of (27) is smaller than
€, and then we can choose 7" > k and « such that the left hand side of (26) is equal to 5. =

Proposition 5 shows that for any fixed M, and any value of D(P|@), the ratio ¢5/(P,Q)/D(P||Q) can be
arbitrarily small.”> Note that choosing a different (-divergence in the definition of (P, Q) instead of the KL-
divergence, could lead to very different results. In particular, under the total variation criterion, the 1-bit quantizer
fly) = sign(P(y) — Q(y)) achieves dry(P7,Q7) = dryv(P,Q) for any pair of distributions P,@Q on ). An
interesting question for future study is for which ¢-divergences is the ratio ¥y, (P, Q)/D, (P, Q) always positive.

SHowever, under some restrictions on the distributions P and Q, it is shown in [17] that a 2-level quantizer suffices to retain a constant
fraction of D(P||Q).



III. BOUNDS FOR BINARY X

In this section, we consider the case of |X| = 2, and provide upper and lower bounds on IDj;(2, 3). We begin
by studying the case where M = |X’| = 2, through which we shall demonstrate why the multiplicative decrease in
mutual information is small when I(X;Y") is high (close to 1). These findings illustrate that the more interesting
regime for IDy;(2, ) is the one where £ is small. For this regime, we derive lower and upper bound that match
up to constants that do not depend on S.

A. Binary Quantization (M = 2)

The aim of this subsection is to analyze the performance of quantizers whose cardinality is equal to that of
X. In this case, a natural choice for the quantizer is the maximum a posteriori (MAP) estimator of X from Y.
Intuitively, when I(X;Y") is high (close to H(X)), the MAP estimator should not make many errors and the
mutual information between it and X should be high as well. We make this intuition precise below. However, when
I(X;Y) is low, it turns out that not only does the MAP estimator fail to retain a significant fraction of I(X;Y),
but it can be significantly inferior to other binary quantizers.

Assume without loss of generality that X = {1,2}. The maximum a posteriori (MAP) quantizer is defined by

1 if Pr(X =1]Y =y) > 1/2
fmar(y) =< 2 if Pr(X=1Y=y)<1/2, (28)
1-U+2(1-U) if Pr(X =1|Y =y) = 1/2
where U ~ Bernoulli(1/2) is statistically independent of (X,Y). Let Pemap(y) = Pr(fuap(Y) # X|Y =y) and

P.map = Ey P vap(Y). By the concavity of the binary entropy function ¢ +— h(t), we have that h(t) > 2t for any
0 <t < 1/2, with equality iff ¢ € {0,1/2}. Consequently,

H(X|Y) =Eyh(Pemar(Y)) > 2P, map- (29)
Let X ~ Bernoulli(p) and I(X;Y) = 3. We have that
I(X; fmar(Y)) (30)

= H(X) — H(X|[fuar(Y))

= h(p) — Pr(fmar(Y) = 1)h(PT(X # 1 fmuar(Y) = 1))
— Pr(fmar(Y) = 2)h(Pr(X # 2| fmar(Y) = 2))

> h(p) — h(Pe,map)

zmm—h<H@?”>

=Mm—h<mﬂfﬁ>. (31)

Since 5 < h(p) < 1, we have obtained that

I(X;fuap(Y)) > min t— h ( )
<
>

B<t<1

B+s—h(s) A<s

) o .
Since I(X;[Y]2) > I(X; fmar(Y)), it follows that the right hand side of (32) is a lower bound on ID2(2, ).

In order to obtain an upper bound on ID2(2, 3), assume X ~ Bernoulli(1/2) and Py |x is the binary erasure
channel (BEC), i.e., Y = {0,1,7} and

o
Pr(Y:yX:x):{f_ﬁ ;fz:?:v, (33)



such that I(X;Y) = 3. Consider the quantizer

i ={} Ho<i,

Since there exists an optimal deterministic quantizer, and any deterministic 1-bit quantizer for the BEC output is
of the form fz(y), this must be an optimal 1-bit quantizer. Note that the induced channel from X to fz(Y) is a

Z-channel, and it satisfies
I(X;fz(Y))Zgh (;:§>+1—h<;:§> (34)

By the optimality of the quantizer fz(-) for this particular distribution, it follows that the right hand side of (34)
constitutes an upper bound on IDy(2, 3).

We have therefore established the following proposition.

Proposition 6: For all 0 < e < 2/5 we have

€ 1+4+¢ €
_n(f) < —e)<1-— .
1—h (2) <IDy(2,1—€) S1—=—<h (1 +€> (35)

Thus, for large (3, the loss for quantizing the output to one bit is small and the fraction of the mutual information
that can be retained approaches 1 as the mutual information increases. In particular, the natural MAP quantizer is
never too bad, and retains a significant fraction of at least 1 — h((1 — 3)/2) of the mutual information /.

In the small 8 regime, we arrive at qualitatively different behavior. We next show that the MAP quantizer can
be highly sub-optimal when {3 is small. To that end, consider again the distribution X ~ Bernoulli(1/2) and Py |x
given by (33). i.e., a BEC. It is easy to verify that in this case both inequalities in (31) are in fact equalities for all
0 < 8 < 1. It follows that for a BEC with capacity 8 < 1 and uniform input, we have that

1-p

G faae(V)) = 1= (257 ) = B o(52) 6o
I(X;fz(Y)) = gh <;:g> +1—h<;:g> = g—i—o(ﬂ). 37

Thus, the asymmetric quantizer fz(y) retains 50% of the mutual information, whereas the fraction of mutual
information retained by the symmetric MAP quantizer vanishes as [ goes to zero.

One can argue that fz(y) is a MAP estimator just as fuap(y), as the two quantizers attain the same error
probability in guessing the value of X based on Y, and dismiss our findings about the sub-optimality of fyap(y)
by attributing it to the randomness required by the MAP quantizer, as defined in (28), in the BEC setting. This is not
the case however. To see this consider a channel with binary symmetric input and output alphabet )V = {0, 1} x{g, b},
defined by

B if y = (z,9)
Pr(Y =y[X =2) = (1-5) (3 +6) ify=(x,b)
1-8)(5=08) ify=(1-2)
for some 0 < 8 <1 and 0 < ¢ < 1/2. Note that for § = 0, this channel becomes a BEC with capacity 1 — /3. For
any 0 > 0, the corresponding MAP quantizer is deterministic, but as § — 0, the channel approaches a BEC, and its

performance becomes closer and closer to (36). Similarly, the performance of a binary quantizer that assigns the
same value to both “bad” outputs, i.e., f(y) =2 if y = (0,¢9) and f(y) = 1 otherwise, approach (37) as § — 0.
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B. Lower Bound on Quantized Mutual Information

We prove the following lower bound on I(X;[Y]as).
Theorem 3: For any Pxy with |[X| =2 and I(X;Y) = f3, and any n € (0,1) we have that

I(X5 Y ag,n,8)) 2 1B, (38)
where
_ A 1
MQ(”) B) = {01(77) max {log (ﬁ) 71}J ) (39)
and
A D2
ci(n) = Ty (40)

Proof. Consider the joint distribution Pxy, and for any y € ) define oy = Pr(X = 1]Y = y), @ £ E(ay) =
Pr(X =1) and

Dy £ D(Pyjy—y||Px) =d(oy | @), (41)

where d(p1||p2) = p1log(p1/p2) + (1 — p1)log((1 — p1)/(1 — pg)) is the binary KL divergence function. Let
r £ max{log(%),log(:1-)}. We further define the function

F(v) £ Pr(Dy > ), (42)

and note that it is non-increasing and satisfies

106Y) =€y = [ Fin, (43)
0

where v* = SUpycy D, < k. Let L be some natural number, let 0 = 9 < v < --- < yp <y =" + 0, for
some arbitrary small § > 0, and define the following (2L + 1)-level quantizer

0 dlaylla) <m
f) =90 ay<a,v <doy|a) <y - (44)
0 oy >y < d(oy||la) < et
We have that for / =1,...,L
d(Elay[f(Y) = ={[|@) = v, d(E[ay[f(Y) = {la) =
and by the definition of F'(+) we also have

Pr({f(Y)=—-0tU{f(Y) =10}) = F(y) — F(ye+1).

Thus,
I(X; f(Y))
L
= Z Pr(f(Y) = O)D(Px|sv)=¢l Px)
e:L—L
> (F(v) = F(yes1)) e
=1
L
= F(y)m + Z F(vo)(ve = ve-1) = F(ye1)e
=2
L
=Y F() (e =), (45)

~
Il
—_
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where in the last equality we used 79 = 0 and F(yz11) = F(y* + &) = 0. Our goal is therefore to choose the
numbers {’yg}le such as to maximize (45). For a general L, this problem is difficult and we therefore resort to a
possibly suboptimal choice according to the rule

no=el(XY), 0= (1) " =0 (46)
for{=2,...,L,L+1 and some 0 < € < 1 to be specified. Note that this choice guarantees that
Yer1 =¥ S0 (ve—ye-1), £=1,..., L. 47

This implies that

I(X;Y)—/O Fy)dy

/£+1
e

(Ver1 — 7o) F (7e)

M1 Mh

<

~
Il

0

L
<N+ (ve—v-1)F(n)

=1
<m +01(X; f(Y)). (48)
Therefore,
1) = YD), 9)

Substituting in

50
1) 0

it follows that 6 < 2(1; Using this and the fact that 1 L >1—-2xfor0<z< 1 , from (49)

2K
ezlgﬁL:{”%QPW“”>w

(1—77)
H&ﬂmm“;m>mxm>me>

Thus, as |f(-)| = 2L + 1, and L > 4, we have shown that I(X[Y]y) > nl(X;Y) for

8log _27n
Vo { (a n)f(x,n)J' 1)

(1-mn)

Now consider the case where I(X;Y) < 1_7" Note that

8log ( T T )
(1—-mn)

1: (log( )+1og< ) ( Y)»
< 18n (log( )+2log( )>> (52)

)—l
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where (52) follows since I(X;Y) < ﬂ Next, we show that log(k) = O <log( )) Without loss of

XY
generality, assume & < (1 — @), and so k = log (£). Now note that I(X;Y) < H(X) = h(@). Thus, a& >
h=Y(I(X;Y)). We then have the following bound on A= 1(I(X;Y)) [18, Theorem 2.2]
I(X;Y
h(uquy_—ié—lf. (53)
2log( 7 (X ))

Therefore, 2 < — (I(X 7y < I(X vy log ( (ﬁ,y)) which in turn implies that log(x) = loglog(1) < loglog (71()?;1/))4—
) Thus, for any I(X;Y) < %,

1
log(k) < 2log (I(X' Y)) . (54)

/N

log loglog I( %)

Using this in (52) we get

8log (27””>
< 1 55
= _1—n0g<I(X;Y) o
forany I(X;Y) =< T” Therefore, I(X;[Y]a) > nB for M > L% log (%)J whenever < 1_777
When 3 > T” we use the bound
B—I(X;[Y]n) < 1268M 2 (56)
which is established in [7, Theorem 1]. This implies that for 5 > 1-n
2536M 2
I(X;[Y]M)Zﬁ<1—l_n> >np (57)
whenever M > {%J
Since
1 1
9 32log (f) 52 max {10g (f) ,1}
max { 2, o A (58)
I—n" 1-n I—n
combining the results obtained for each case <5 < 1;277 and 5 > T”) establishes
52 max {log (%) , 1}
I(X;[Ym) 208 for M > : :
-n
as desired. m
C. Upper Bound on Quantized Mutual Information
Theorem 4: For any 0 < 3 < 1, there exist a distribution Pxy with I(X;Y) > f3, for which
106 [V]a) < 2M— 2, (59)
In (el(;gﬁ(e))

for every natural M.

Proof. We provide a distribution Pxy with I(X;Y) > S for which no M-level quantizer achieves mutual
information exceeding the right hand side of (59). Let X ~ Bernoulli(1/2) and Y = (X & Z7,T) be the output
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of a binary-input memoryless output-symmetric (BMS) whose input is X, where 7" is a mixed random variable in
[0,1/2) whose probability density function is given by

ro(t) + A 0- <t < VT
fT<t>={ KA :

(60)
0 otherwise

for some 0 < r < 1, Z7 is a binary random variable with Pr(Zr = 1|T = t) = ¢, and (Z7,T) is statistically
independent of X. It can be easily verified that

Pr(ay =T =t) =Pr(ay =1 —t|T =t) = 1/2 . 61)
By [10, Theorem 1], the optimal quantizer partitions the interval [0, 1] into M subintervals Z; = [y;—1,7;) for

i=1,...,M —1and Zpy = [ym—1,7m], where 0 =9 <71 < --- < yp =1, and outputs f(y) =i iff o, € Z;.
We therefore have

1

2

1
<M max Pr(a<ay <b)d (E[ay|a < ay < b H > .
0<a<b<1 2

M
1X: (V) = 3 Pr(ay € T)d (E[ayray e 1)
=1

By the symmetry of the random variable vy around 1/2, we can restrict the optimization to a < 1/2anda < b < 1.
Let b = min{b,1 — b} and b = max{b,1 — b} and define the two intervals 7o = [a,b), T1 = [b, b]. By the convexity
of KL divergence we have that

1

d<EbWﬁz§cu'§bW'2>

N | =

1
=d (Z Pr(ay € Tila < ay < b)Elay|ay € T;] )
i=0
1

< ZPr(ay € Tila < ay <b)d (E[ay]ay € Ti] 1)

, 2
1=0
1
= Pr(ay € Tola < ay < b)d (E[ozy|a < ay < 2) ,

where in the last equation we have used the fact that E[ay |ay € Ti] = 1/2, due to the symmetry of the random
variable ay. We have therefore obtained

I(X; f(Y))
1

<M max Pr(a<ay <b)d <E[ay|a < ay <) H )
0<a<b<j 2

max Pr(a < T < b)d <E[T|a <7< H ;) |

1
0<a<b<s3

1
max Pr(0 < T < b)d <E[T|O <T <} H ) (62)
0<b< 2

where (i) follows since for any interval A C [0,1/2) we have that Pr(ay € A) = 3 Pr(T € A) and E[ay|ay €
A] = E[T|T € A] by (61) and (i) follows since for any choice of 0 < b < 1/2, both terms are individually
maximized by a = 0. It can be verified that for any 0 < p < #

p B 27“;)2 ‘ B T
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and therefore E[T'|0 < T < b] = 2b?, and we have that for any M-level quantizer

M 1 — h(2b?)
I(X: f(Y)) < = . :
(X f(Y) = 5 Ogjr;l?éﬁr 1= 22
< M -log(e)r, (63)

where the last inequality follows by noting that the function —5 (22;;22) is monotone increasing in 0 < b < 1/2, and

(
taking the limit as b — 1/2. It remains to relate r and I(X;Y). Recalling that h(3 —p) < 1 —2log(e)p?, we have
I(X;Y) =1—ER(T)

1
> 2log(e)E 2—T>

= 210g(e)41 (;)
_ elog(e)fln (E) .

2 r

It can be verified that the function g(¢) £ —tIn(t) is monotone increasing in 0 < ¢ < 1/e and its inverse restricted
to this interval satisfies

1t . t
- < t) < : 64
¢ T <9 W= ©4)
It therefore follows that
2I( XY 2[( XY 1
r<er (S ) < ot e “
elog(e og(e elog(e
8 s In (ZI(X;Y))
which gives
I1(X;Y
16 £(v)) < 2 — ) (66)
In ( elog(e) )
2I(X;Y)
for any M-level function f. m
D. Proof of Theorem 1
We begin by proving the lower bound. Using Theorem 3 and solving for 7, we obtain that
52 max {log <%) , 1}
I [Ym) = (1- Vi - B. (67)
As a consequence of Theorem 3, we also have that
1
4 (X Y] 0amaxlog(2),1) J) ol (68)
Now, applying Corollary 1, we obtain that for any M < 104 max {log (%) ,1} it holds that
M—-1 1
I(X;[Y]m) > B. (69)

104 max {log (%) , 1} 2

Combining (67) and (69) establishes that ID (2, 3) > fiower <M—1>

{les(3).13
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To establish the upper bound, we use Theorem 4. Note first that for any M > 1 and 5 > 1/2 we have that
Jupper ({Ml> = 1. Thus, it suffices to prove that ID/(2, 5) < fupper (Ml> for § < 1/2. In
max m.

()] oe()]

this case Theorem 4 shows that

- m 1 log(elog(e)/2)
log (}) <1 + e

< 2 M B
~ In2(1+log(elog(e)/2)) 1og (%)
3._M

2 log (%)

Combining this with the trivial bound ID (2, 8) < 3, we obtain

< - B. (70)

M
()

3
<min ¢ = - (71)
max {log

IDps(2,8) < min

71 B

Noting that for M = 1 we trivially have ID;(2, 3) = 0 and that 3M / 2 < 3(M —1) for M > 1, we obtain the
desired result.

IV. BOUNDS FOR |X| > 2

In the previous section we have shown that if X is binary, then O(log(1/I(X;Y"))) quantization levels always
suffice in order to retain any constant fraction 0 < 1 < 1 of I(X;Y). In this section, we leverage this result in
order to show that in general O(log(1/I(X;Y))*) quantization levels suffice in order to retain a constant fraction
0 <1 < ppf, for k € [|X] - 1],

For a random variable X € {1,...,|X|}, we can define the |X'| — 1 binary random variables A; = 1ix—i
i =1,...,|X] = 1. Clearly, X fully determines {Aj,...,Ajx—1} and vice versa. In particular, the encoding
of X by {A1,---,Ax—1} can be thought of as the “one-hot” encoding of X, with the last bit, whose value

is deterministically dictated by the preceding |X| — 1 bits, omitted. Representing X in this manner, nevertheless,
allows us to reduce the problem of quantizing Y in order to retain information on X, into |X’| — 1 separate problems
of quantizing Y in order to retain information on A;. Since the random variables {Ay, ..., Ajy|_;} are binary, the
results from Theorem 3 can be applied.

The main result of this section is Theorem 5, that lower bounds the worst-case multiplicative loss due to
quantization. Before stating this result, and giving its proof, we demonstrate the technique of reducing to the binary
case via “one-hot” encoding for the setup considered in [7], [8]. Recall that for all M > 2|X| and || > 2|X|, [7
Theorem 1] bounds the worst-case additive gap due to quantization as

sup I(X;Y) — I(X; [Y]ar) < v(|X]) - M1, (72)
Pxy
where the function v(]X|) is explicitly defined in [7] and the supremum is with respect to all Pxy with input alphabet
of cardinality |X'|, and output alphabet of cardinality |)|. We further note that v(|X|) satisfies v(2) < 1268 and
v(|X|) ~ 16me| X |? for large |X|.
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Below, we use a “one-hot” encoding technique combined with (72) for | X'| = 2 only to obtain a slight refinement
of the constant in the additive gap for |X'| > 2 (for large enough values of M).

Proposition 7: For |X| > 2 and any M such that M 7T >4 is an integer, we have
DC(|X], M) < 1268(|X] — 1) - M7 . (73)
Proof. Without loss of generality we may assume |)| > 4, as otherwise the assumption M T > 4 implies that
(X;[Ym) = I(X5Y).
The case |X| = 2 is therefore obtained from (72), which reads

I(X5Y) = I(X;[Y]u) <v(2)- M2 (74)

for all Pxy with binary X.

Now let |X| > 2, and without loss of generality assume X = {1,2,...,|X|}. Define A; £ 1gy_;, for i =
1,2,...,|X| — 1. Then,

I(X;Y)=1(A1,. .., Ax—3Y)

|X|—1
= ) I(A;Y|AT! = 0)Pr(A7 ! =0) (75)
i=1
where Alfl = 0 denotes the event A; = =A,_1=
Let f(y) be an M-level quantizer of the form f(y) = (f1 ), flxj=1(y)). Then,
|X|—1
I(X Z I(Ag; f(YV)| AT = 0) Pr(A = 0)
|%|-1
> > I(A; f(V)|AT = 0) Pr(A7" = 0). (76)
i=1
Thus, combining (75) and (76), gives
|xX|—1
I(X:Y) = I(X; f(YV) < Y (I(AsY[AT = 0)—
i=1
I(As; f;(Y)|AT! = 0)) Pr(AT ! = 0). (77)

From (74), it holds that by choosing |f(y)| = M ™= > 4, for all 1 < i < |X| — 1, we can find quantizers
fi(y); -+, flxj—1(y) for which

I(As YA = 0) — I(Ag (V)| AT = 0) <v(2) - MTFTL (78)
Consequently, with this choice, we obtain
_, X
I(X;Y) = I(X; f(Y)) < v(2) - MF1 ) Pr(A7 ! =0)
i=1
< (1] = )p(2) - M (79)

as desired. m

Next, we focus on the regime of I(X;Y) < 1 and prove an upper bound on the number of quantization levels
M, required to attain a fraction 0 < n < 1 of I(X;Y). Roughly, we show that it suffices to take M that scales
like (log(1/1(X;Y)))"(¥I=1) More precisely, for any k € [|X| — 1], if n < K3 | , then O ((log(1/1(X;Y)))k)
levels suffice.
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Theorem 5: For any Pxy with I(X;Y) = 3, and any n € (0,1), we have that

(X5 (Y510 (n,8)) = 18, (80)
where
; A =1\
Mix(n,8) £ [61 n)log < ; (1)
with ¢1(n) as defined in (40). Furthermore, if 7 < mi_l for some natural k£ < |X'| — 2, we have that
X5 Y it n,8.1)) 2 1155 (82)
where
- x -1\
M, = T ) (%= 1)* :
Proof. As above, define A4; = 1¢x—i, such that
|X|—-1
I(X;Y)=I(Ar,.., Ap_iY) = > Li-pi (84)
where
LETA;YAT =0), i=1,...,]X] -1, (85)
pi £ Pr(A1 =0), i=1,...,]X] -1, (86)
and Aﬁ_l = 0 denotes the event A = --- = A,_1 = 0. Furthermore, set
Ii-pi .
v 2 Bp ci=1,..., X -1, (87)

and let the permutation 7 : [|X| — 1] + [|X'| — 1] be such that v (1) > -+ > v x|-1). For 0 < k < |X| -1, define
the function

k
12 0 (88)

i=1
with the convention that F'(0) = 0, and note that
1) F(t) > |X| 7 for any natural ¢ < |X| — 1, and in particular, F'(|X|—1) =1;

2) F(|lX|-1)—F(t—1) = Zm ! V(i) < (|X] = t)vr() and therefore, for any natural ¢ < |X| — 1 we have
1-F(t-1).
that Uﬂ'(t) Z |X|—t 5
Let n € (0,1) and let 7 be some number satisfying 0 < n < 77 < 1. Let
ky =min{k : F(k)>n}. (89)
By the definition of kj;, we have that F'(k; — 1) < 7. Thus, by the second property, we have that
1— 1—7
Vg Z . (90)
S X -1
Let / = < 1. Consider the conditional joint distribution PA y|ai-1=g- Since A; is a binary random variable, by

Theorem 3 we can design a quantizer f; : ) — [M;] with M; < Lcl( ") log max{( ) l}J quantization levels,
such that I(A; f;(Y)[AT" =0) >0/ L. Let f(y) = (fr)(¥)s -+ Frg) @) : YV (M w)] X X [My,)] be
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the Cartesian product of the quantizers fr(1)(y), - -, fr(k,)(y) attaining this tradeoff between 7’ and the number of
quantization levels. We have that

I(X; f(Y)) =I(A1, .., Axe—1; £(Y))

= Z (Ai; f(V)|AT! = 0) Pr(A7 = 0)

>>§:1' V) ATO™ = 0) Pr(AT®! = 0)

> Z 0 L) Pr(i)

kﬁ
=8> v
=1
n
— j/BF k*
7 (kn)

> np. oD
Since (i) = BUr(i)/Pri) = BUr() > ’%(1'_7?, Vi < kg, by (90), we have that Vi < kj

05 [om s (755) 1}
{ (5| o

we obtained

where the last inequality follows since

\X\

W) < Hm <n> log (Jf_;;ﬁ)] J . ©3)

To establish the first part of the statement, take 7 = /7 and recall that k; < |X| — 1 by definition.
For the second part, note that if n < \XI 7> for some k£ < [X| — 1 we may take ) = \X\Ll’ and that k; < k, as

F(t) > X‘ 7- Substituting into (93), and noting that 1 — 7 > K | , establishes the second part of the statement.
]

Theorem 2 now follows as a rather simple corollary.

Proof of Theorem 2. We first show that for 1 < k < |X| — 2, it holds that I(X; [Y]|ar) > ax(M,|X|,5) - 8. To
that end, for any 0 <7’ <1, and 1 < k < |X| — 2 define

M(|X|, 8,1, k) = Hl 5_277, 10g<(!?(!6— 1)2)]kJ | o

By the second part of Theorem 5, we have that

I(X Y mayeork) =

k

mn . 95)

Solving for 1’ shows that

L 5210g )
XY > — |1- 96
(XG0 h) > N 5, %6)

B
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and maximizing with respect to k yields the bound

I YI) > | _max  ax(M,1X], 6) - 5. ©7)

Moreover, (95) applied with ' = 1/2 and k = 1 shows that

1

I XY X|-1y2 > — 0. 98
(¥ ()] ) 2 7177 o9

Now, applying Corollary 1, we obtain that for any M < 104 log (W) it holds that

M-1 1
I(X;[Y]um) = 2 B. 99)
1041log <%) 2(]X - 1)
which is equivalent to

I(X;[Y]m) > ao(M, |X], B) - B. (100)

Finally, we use the first part of Theorem 5 to show that I(X; [Y]ar) > ajx|—1(M, | X, B)- 3. Recalling the definition
of Mx|(n,3) in (81), we have that for any 0 <n <1

Mx(n, B) = HCl (/) log (mﬂ |X1J
[rm (o (5 )] |

< |l (s ()]

IN

£ Miy (0, 8). (101)
Thus, by the first part of Theorem 5, we have that
I(X5 Y]y, (n8)) 2 nB- (102)
Solving for 1 yields
I(X;[Y]m) 2 ajx—1 (M, |X], 8) - B. (103)

The theorem now follows by combining (97), (100), and (103). =

V. CONNECTIONS TO QUANTIZATION UNDER LOG-L0OSS AND THE INFORMATION BOTTLENECK PROBLEM

In general, an M-level quantizer ¢ for a random variable Y consists of a disjoint partition of its alphabet
Y= Uf\i 1 Si, and a set of corresponding reproduction values a; € A, such that ¢, = Z?ﬁ 1 ai]l{ye&,}, see, e.g., [19].
The performance of the quantizer is measured with respect to some predefined distortion function d : Y x A — R,
which quantifies the “important features” of Y that the quantizer should aim to retain. The expected distortion
Ed(Y,qy) is then typically taken as the quantizer’s main figure of merit.

In our considerations, we observe and quantize the random variable Y, but the distortion measure is evaluated
with respect to X, where X and Y are jointly distributed according to Pxy. This setup is sometimes referred to
as remote source coding (or quantization). If the distortion measure of interest between X and the reconstruction
qy 18 d: X x A R, one can define the induced distortion measure

Ay, ay) = E |d(X,q)[Y =y, (104)

such that E[d(X, qy')] = E[d(Y, gv)]. Consequently, the remote quantization problem is reduced to a direct quanti-
zation problem, with an induced distortion measure [20].
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Under various tasks of inferring information about X from Y, it is natural to take the reconstruction alphabet
A to be the set of all distributions on X, i.e., the |X| — 1 dimensional simplex PIXI=1 [211-[23] . Ideally, we
would like the reconstructed distribution ¢, to be as close as possible to the conditional distribution Pxy—,, for
all y € ). Various loss functions can be used to measure the distance between two distributions, depending on the
ultimate performance criterion for the inference of X. One such loss function, that has enjoyed a special status in
the information theory and machine learning literature [23]-[26] is the logarithmic-loss:

1
d(z, P) = log (P(w)) , V(z, P) e X x pl*I—L, (105)
For the remote quantization setup, the induced distortion measure is
1
d(y,P)2E [log (X)‘ Y = y} , Y(y,P) e Y x pl¥I=1 (106)

Thus, the design of a quantizer for Y under d(y, P) reduces to determining a disjoint partition ) = Uf\i 1 Si of
the alphabet ), and assigning a representative distribution a; € PI¥I=1 for each quantization cell S;, such that
qy = a; iff y € S;. Note that once the sets S;, ¢ = 1,..., M are determined, the reconstructions that minimize
D = Ed(Y,qy) are given by a; = Pxyes,. To see this, let f : Y — [M] be such that f(y) =i if i € S;, set

7= J(¥), and writ
D =Exy [log <qy(1X)>}

=exr o ()

1 Pxr(X|T
- e o (st ) [7]
Pxip(X|T)  ar(X)
= H(X|T) + D(Pxr||ar|Pr)
> H(X|T)
= H(X|f(Y)), (107)
with equality if and only if a; = Px|7—; = Px|yes, for all ¢t € [M].

It follows that, for a given distribution Pxy, the design of the optimal quantizer under the distortion measure (106)
reduces to finding f : JV — [M] which minimizes H(X|f(Y)). Clearly, determining the minimum value of
H(X|f(Y)) is equivalent to our maximization problem (1).

A quantity closely related to 1(X;[Y]ss) is the information bottleneck tradeoff [27], defined as

IBr(Pxy) £ max  I(X;T), (108)
Priy : I(Y;T)<R

which has been extensively studied in the machine learning literature, see e.g. [28]—[30]. There, Y is thought of
as an high-dimensional observation containing information about X, that must be first “compressed” to a simpler
representation before inference can be efficiently performed. The random variable 7' = f(Y") represents a clustering
operation, where for the task of inferring X, all members in the cluster are treated as indistinguishable. A major
difference, however, between the information bottleneck formulation and that of (1) is that the latter restricts |f(-)|
to M, whereas the former allows for random quantizers and restricts the compression rate I(7";Y"). The discussion
above indicates that the problem (1) is a standard quantization/lossy compression problem (or more precisely, a

remote source coding problem). As such, its fundamental limit admits a single-letter solution® and we have that [24],
[31]

: 1 n n
lim —I(X"; [Y"™]an) = IBiog a1 (Pxy ). (109)

n—oo M

®One subtle point to be noted is that the relevant distortion measure for I(X™; [Y]3/n) is not separable. Nevertheless, it is not difficult
to show that restricting the reconstruction distribution to the form gy» (z™) =[]\, g, (z:) entails no loss asymptotically.
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where Pynyn = P%} and [Y"]pn refers to the set of all M"-quantizations of Y. That is, in the asymptotic
limit, our problem (1) corresponds to an information bottleneck problem. However, the scalar setting n = 1 is
of major importance as inference is seldom performed in blocks consisting of multiple independent samples from
Pxy. Overall, our results in the previous sections indicate that when I(X;Y’) is small we may need at least
O©(log(1/I(X;Y)) clusters to guarantee that we retain a significant fraction of the original information.

A. On the Gap Between Scalar Quantization and Information Bottleneck

In this subsection, we show that in the limit I(X;Y) — 0, the restriction to using a scalar quantizer results in
a significantly worse performance than the one predicted by the information bottleneck, which implicitly assumes
quantization is performed in asymptotically large blocks. In particular, we prove the following theorem.

Theorem 6: For any Pxy with |[X| =2 and I(X;Y) = f3, and any n € (0, 1) there exists a quantizer f(Y") such
that 7(X; f(Y)) > nB and

H(f(Y)) < logloglog <;> —2log(1l —n) + 11. (110)

Contrasting this with Theorem 4, and its simplification in (70), which show that there exist distributions Pxy with
|X'| = 2, for which no scalar quantizer with less than loglog(1/3) + log(n) 4+ 1 bits can attain I(X; f(Y)) > np,
we see that the restriction to quantization in blocklength n = 1 entails a significant cost w.r.t. quantization in long
blocks. In particular, if for a distribution Pyy there exists a quantizer f(Y") with entropy H(f(Y)) = R for which
I(X; f(Y)) = T, then certainly IBg(Pxy) > I'. To see this just take T = f(Y') in (108).” It therefore follows
from Theorem 4 and Theorem 6 that the information bottleneck tradeoff may be over-optimistic in predicting the
performance of optimal scalar quantization.

Proof. In the proof of the lower bound of Theorem 4, we have proposed the M-level quantizer (44) with the

parameters specified by (46). For M = L% log (%)J, and 8 < 1;—’7, we have shown that this quantizer attains

I(X; f(Y)) > np. We will now show that for the same quantizer H(f(Y")) = O (loglog(M)).
Let

P2 Pr({f(Y) = () ULF(Y) = €}), £=0,...,L
and note that
H(f(Y)) <1+ H({P}). (111
Our goal is therefore to derive universal upper bounds on H({F,}) that hold for all joint distributions Pxy with
|X] = 2.
First, recall from the proof of Theorem 3 that
L L
I(X;Y)=EDy > Y vwPi=m)» 0P,
=0 =1
where we have used (46) in the last equality. We therefore have

L L
Z 0Py = Py + Z 0‘ P,

=0 =1
0I1(X;Y
§1+7( 20

4!

0
14—
(1—mn)/2

Si (112)
1—n

See [32] for an elaborate discussion on the information bottleneck tradeoff when T is restricted to be a deterministic quantizer of Y.
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where in (112) we have used v; = e/(X;Y"), due to (46), and € = (1 — 7)/2, due to (50).

For a vector a = {agp,a1,...,ar} € Ri“ and a scalar miny{a,} < b < maxy{as}, define the function
L 1
A
f(a,b) = maxz Pylog <P£>
=0
L L
subject to ¥ agPy<b, ¥ Pr=1. (113)

/=0 /=0

The problem (113) is a concave maximization problem under linear constraints, and its solution is [33, p.228]

f(a,b) = min b+ log (Z 2—Mf> . (114)

(=0
Combining (112) and (114) with a; = #° and b = T gives

H({P;}) <min\

L
<Z2 W) . (115)

Setting A = %, gives

L
H({P) < o +log (Zz )

=0
4 12 lfiigJ L ,
_ 8-
< 1—7 : +10g Z 2L
(= Lzll‘;igjﬂ

4 log
< — . 2— 1+L2™
T 1l-7 ( gt " )

Recalling that 1 < < 2(1="/2 and noting that 1 + L2~% < 2log(L) for L > 1, we obtain

1 o(1-m)/2 log L
H{P}) < ——— +log <4 log0> )

L(1—mn)/4
For the first term, we can use the definition of L in (50) to obtain
(1-n)/2 _ (1—n)/2
Lo S Y G
J— 2‘% J—
K log (rr=2xvy) g

< 2.90-m)/2
<3, (116)

where we have used the fact that x > 1, and consequently log (m) > 1. For the second term, we have
that

@ 1 K
log(6) > I log <€5>

@  (1-n)/4 o K
- log (W) tos <5'(1—77)/2>

1—mn
=1 117
1 (117)
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where (i) follows from (46) and (i) follows from (50), where we have used

L= Hiﬂog (,3 : (1,;7)/2”

1—7710g</3-(1in)/2>'

IN

We have therefore obtained that

H({P;}) <7+loglog L —log(l —n).

Now, recalling that L < M < m‘igf%/m, we have that

H({FP}) <10 —loglog(1 — n) — log(1 — n) + loglog log <;)

1
< 10 — 2log(1 — n) + logloglog (5) : (118)

Now, applying (111) with (118) establishes the result. m
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