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Hypothesis testing via a comparator and

hypercontractivity

Yury Polyanskiy

Abstract

This paper investigates the best achievable performance by a hypothesis test satisfying a structural

constraint: two functions are computed at two different terminals and the detector consists of a simple

comparator checking if the functions agree. Such tests arise as part of study of fundamental limits

of channel coding, and hypothesis testing with communication (rate) constraints. A simple expression

for the Stein exponent is found. Connections to the Gács-Körner common information and to hyper-

contractivity properties of the conditional expectation operator are identified. In the case of zero Stein

exponent, a non-vanishing lower bound on probability of error is established by pairing estimates of

Ahslwede-Gács and Mossel et al.

I. INTRODUCTION

A classical problem in statistics and information theory is that of determining which of the

two distributions, P or Q, better fit an observed data vector. As shown by Neyman and Pearson,

the binary hypothesis testing (in the case of simple hypotheses) admits an optimal solution based

on thresholding the relative density of P with respect to Q (a Radon-Nikodym derivative). The

asymptotic behavior of the tradeoff between the two types of errors has also been well studied

by Stein, Chernoff [1], Hoeffding [2] and Blahut [3]. Knowledge of this tradeoff is important by

itself and is also useful for other parts of information theory, such as channel coding [4, Section

III.E] and data compression [5, Section IV.A].
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The problem becomes, however, much more complex with the introduction of structural

constraints on the allowable tests. For example, it may happen that observations consist of

two parts, say Xn = (X1, . . . , Xn) and Y n = (Y1, . . . , Yn), which need to be compressed down

to nR bits each before the decision is taken. Even the memoryless case, in which under either

hypothesis the pairs (Xi, Yi) are independent and identically distributed (i.i.d.) according to

PXY or QXY , is a notoriously hard problem with only a handful of special cases solved [6]–[9].

Formally, this problem corresponds to finding the best test of the form

T = 1{(f(Xn), g(Y n)) ∈ A} , (1)

where optimization is over functions f and g with finite co-domains of cardinality 2nR and

critical regions A. Here and below T = 1 designates the test choosing the distribution P and

T = 0 the distribution Q.

Another rich source of difficult problems is the distributed case, in which observations are

taken by spatially separated sensors (whose measurements are typically assumed to be correlated

in space but not in time). The goal is then to optimize the communication cost by designing

(single letter) quantizers and a good (single or multi round) protocol for exchanges between the

sensors and the fusion center; see [10]–[12] and references therein. These problems can again

be restated in the form of constraining the allowable tests similar to (1).

In this paper we consider tests employing a comparator, namely those satisfying the constraint:

T = 1{f(Xn) = g(Y n)} , (2)

where the cardinality of the common co-domain of f and g is unrestricted. This constraint

is motivated by the meta-converse method [4, Section III.E], which proves a lower bound on

probability of error by first using a channel code as a binary hypothesis test and then comparing

its performance with that of an optimal (Neyman-Pearson) test. However, so constructed test

necessarily satisfies the structural constraint (2) and thus it is natural to investigate whether

imposing (2) incurs exponential performance loss.

Another situation in which tests of the form (2) occur naturally is in the analysis of parallel

systems, such as in fault-tolerant parallel computers, that under normal circumstances perform

a redundant computation of a complicated function with high probability of agreement, while it

is required to lower bound the probability of agreement when the fault occurs (modeled as PXY

changing to QXY ).
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The main result is that in the memoryless setting Stein exponent of tests satisfying (2) can

indeed be quite a bit smaller than D(PXY ||QXY ) and in fact is given by

E
△
= min

VXY :
VX=PX

VY =PY

D(VXY ||QXY ) , (3)

where D(·||·) is the Kullback-Leibler divergence, and the optimization is over all joint distri-

butions VXY with marginals matching those of PXY . In particular, E = 0 if (and only if) the

marginals of QXY coincide with those of PXY .

In fact, for the latter case, the hypothesis testing with constraint (2) turns out to be intimately

related to a problem of determining the common information C(X ; Y ) in the sense of Gács and

Körner [13]. Using a technique pioneered by Witsenhausen [14] our conference submission [15]

showed that the error probability cannot decay to zero at all (even subexponentially). This was

demonstrated in the special case of high confidence level and QXY = PXPY . In this paper we

complete the lower bound by invoking hypercontractivity estimates from [16] and [17].

Interestingly, the exponent E has appeared before in the context of hypothesis testing with

rate constraints (1), see [7, Theorems 5 and 8], and distributed detection [11, Theorem 2]. We

identify the reasons for this below and also use this correspondence to prove the strong converse

for the results in [7].

II. BACKGROUND AND NOTATION

Consider a distribution PXY on X ×Y . We denote a product distribution on X n×Yn by P n
XY

and by PXY > 0 the fact that PXY is non-zero everywhere on X × Y .

Fix some PXY and QXY . For each integer n ≥ 1 and 0 ≤ α ≤ 1 the performance of the best

possible comparator hypothesis test of confidence level α is given by

β̃α(P
n
XY , Q

n
XY )

△
= inf Q[T = 1] ,

where infimum is over all (perhaps, randomized) maps f : X n → R and g : Yn → R such that

P[T = 1] ≥ α ,

where T is defined in (2). Here and below we follow the agreement that P and Q denote measures

on some abstract spaces carrying random variables (Xn, Y n) distributed as P n
XY and Qn

XY , resp..

June 20, 2013 DRAFT



4

For a finite X × Y and a given distribution PXY we define a bipartite graph with an edge

joining x ∈ X to y ∈ Y if PXY (x, y) > 0. The connected components of this graph are called

components of PXY and the entropy of the random variable indexing the components is called

the common information of X and Y , cf. [13]. If the graph is connected, then PXY is called

indecomposable. In particular indecomposability implies PX > 0 and PY > 0.

We also define a maximal correlation coefficient S(X ; Y ) between two random variables X

and Y as

S(X ; Y ) = sup
f,g

E [f(X)g(Y )]

supremum taken over all zero-mean functions of unit variance. For finite X×Y indecomposability

of PXY implies S(X ; Y ) < 1 and (under assumption PX > 0,PY > 0) is equivalent to it.

Finally, we recall [13] that a pair of sets A ∈ X n and B ∈ Yn is called a λ-block for P n
XY if

P n
X [A] > 0, P n

Y [B] > 0 and

P[Xn ∈ A|Y n ∈ B] ≥ λ , P[Y n ∈ B|Xn ∈ A] ≥ λ .

An elegant theorem of Gács and Körner states

Theorem 1 ([13]): Let PXY be an indecomposable distribution on a finite X × Y . Then for

every λn ≥ exp{−o(n)} there exists a sequence νn = o(n) such that for all n any λn-block

(A,B) for P n
XY satisfies

P n
XY [A×B] ≥ exp{−νn} . (4)

Note that the proof in [13] can be extended to some PXY on infinite spaces X and Y . In short,

the technique of considering a Markov kernel PX|Y ◦PY |X as in [13] applies to any geometrically

ergodic Markov process, of which there are plenty [18]. We omit the details here.

III. ERROR-EXPONENT ANALYSIS

A. Stein exponent

Our main exponential result is

Theorem 2: Consider an indecomposable PXY on a finite X ×Y . Then for an arbitrary QXY

and any 0 < α < 1 we have

lim
n→∞

1

n
log β̃α(P

n
XY , Q

n
XY ) = −E ,
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where E is defined in (3). Moreover, if E = ∞ then there exists n0(α) such that β̃α(P
n
XY , Q

n
XY ) =

0 for all n ≥ n0.

Proof: Achievability: Consider functions

f(xn) = 1{xn 6∈ T n
[PX ]} , (5)

g(yn) = 2 · 1{yn 6∈ T n
[PY ]} , (6)

where T n
[P ] denotes the set of P -typical sequences [19, Chapter 2] over the alphabet of P . Then,

on one hand by typicality:

P[f(Xn) = g(Y n)] = P n
XY [T

n
[PX ] × T n

[PY ]] (7)

≥ 1− o(1) . (8)

On the other hand, using joint-type decomposition it is straightforward to show that the set

T n
[PX ] × T n

[PY ] under the product measure Qn
XY satisfies

Qn
XY [T

n
[PX ] × T n

[PY ]] = exp{−nE + o(n)} . (9)

For the case of E < ∞, this has been demonstrated in the proof of [7, Theorem 5]. For the case

E = ∞, we need to show that for all n ≥ n0 we have

Qn
XY [T

n
[PX ] × T n

[PY ]] = 0 .

Indeed, assuming otherwise we find a sequence of typical pairs (xn, yn) with positive QXY -

probability. But then the sequence of the joint types V
(n)
XY associated to (xn, yn) belongs to the

closed set of joint distributions {VXY : VXY ≪ QXY } and by compactness must have a limit

point V̄XY . By the δ-convention [19, Chapter 2], the accumulation point must have marginals

V̄X = PX and V̄Y = PY and thus E ≤ D(V̄XY ||QXY ) < ∞ – a contradiction.

Converse: We reduce to the special case of the theorem, stated as Theorem 3 below. If E = ∞

then there is nothing to prove, so assume otherwise and take an arbitrary VXY with VX = PX ,

VY = PY and D(VXY ||QXY ) < ∞. Our goal is to show that

β̃α(P
n
XY , Q

n
XY ) ≥ exp{−nD(VXY ||QXY ) + o(n)} . (10)

If VXY 6> 0 then we can replace VXY with (1− ǫ)VXY + ǫPXPY , which is everywhere positive

on X × Y , and then take a limit as ǫ → 0 in (10). Thus we assume VXY > 0.
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Denote

An
△
= {f(Xn) = g(Y n)} .

By the special case of the theorem we have

V n
XY [An] ≥ exp{−o(n)} . (11)

Then, by a standard change of measure argument, we must have

Qn
XY [An] ≥ exp{−nD(VXY ||QXY ) + o(n)} . (12)

Optimizing the choice of VXY in (12) proves (10) and the Theorem.

It remains to consider the case of matching marginals:

Theorem 3 (Special case E = 0): Let PXY be indecomposable, QXY > 0 and QX = PX ,

QY = PY . Then for any 0 < α < 1 we have

β̃α(P
n
XY , Q

n
XY ) ≥ exp{−o(n)} . (13)

Proof: First we show that any test of level α must contain a λ-block with λ ≥ α
2

. Indeed,

let

λi = min{P[f(Xn) = i|g(Y n) = i],

P[g(Y n) = i|f(Y n) = i]} (14)

λmax = max
i

λi , (15)

where i ranges over the (necessarily finite) co-domain of f and g. Clearly,

α ≤ P[T = 1] (16)

=
∑

i

P[f(Xn) = g(Y n) = i] (17)

≤
∑

i

λi max{P[f(Xn) = i],P[g(Y n) = i]} (18)

≤ λmax

∑

i

max{P[f(Xn) = i],P[g(Y n) = i]} (19)

≤ λmax

∑

i

P[f(Xn) = i] + P[g(Y n) = i] (20)

= 2λmax , (21)
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where (18) is by the definition of λi and Bayes rule. From (21) we have λmax ≥ α
2

and there

must exist an index i such that sets {f(Xn) = i} and {g(Xn) = i} form a λ-block for the P n
XY

with λ ≥ α
2

.

By the Gács-Körner effect (Theorem 1) the probability of this λ-block is subexponentially

large:

P[f(Xn) = g(Y n) = i] ≥ exp{−o(n)} .

Therefore, in particular we have (since the marginals of Xn and Y n under P and Q coincide)

Q[f(Xn) = i] ≥ exp{−o(n)} , (22)

Q[g(Y n) = i] ≥ exp{−o(n)} . (23)

Thus, the sets {f(Xn) = i} and {g(Y n) = i} must occupy a subexponential fraction of typical

sets T n
[PX ] and T n

[PY ]. In view of (9) it is natural to expect that

Q[f(Xn) = g(Y n) = i] ≥ exp{−o(n)} (24)

(note that marginals match and thus E = 0 as per (3)). Under the assumption QXY > 0 it is

indeed straightforward to show (24) by an application of blowing-up lemma; see [9, Theorem

3].

Finally, (24) completes the proof because

Q[T = 1] ≥ Q[f(Xn) = g(Y n) = i] .

B. Discussion

It should be emphasized that although intuitively one imagines that the behavior of β̃α should

markedly depend on how the connected components of PXY and QXY relate to each other,

Theorem 2 demonstrates that the Stein exponent is not sensitive to the decomposition of QXY .

The assumption of indecomposability of PXY in Theorem 2, however, is essential. Indeed,

consider the case of X = Y = {0, 1} and X = Y uniform (under PXY ) vs X, Y independent

uniform (under QXY ). Clearly a test {Xn = Y n} demonstrates

β̃1(P
n
XY , Q

n
XY ) ≤ 2−n , (25)

while according to the definition (3) we have E = 0.
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We also remark that the case of E = ∞ is possible. For example, let X, Y be binary with

PXY (0, y) =
1
2
− PXY (1, y) =

p

2
for p > 1

2
, and QXY (x, y) =

1
2
1{x = y}.

C. Hypothesis testing with a 1-bit communication constraint

The exponent E in (3) is related to hypothesis testing under the communication constraint (1).

In fact, Theorem 2 extends [7, Theorem 5] to the entire range 0 < ǫ < 1, thereby establishing

the full strong converse. This result has been obtained in [9] under different assumptions on

PXY and QXY
1.

Corollary 4: Consider a hypothesis testing between an indecomposable PXY and an arbitrary

QXY with structural restriction on tests of the form

T = 1{(f(Xn), Y n) ∈ A} (26)

with binary-valued f . Then for any 0 < ǫ < 1 we have

inf Q[T = 1] = exp{−nE + o(n)} ,

where infimum is over all tests satisfying P[T = 1] ≥ 1− ǫ and E is given by (3).

Proof: Clearly, any test with binary-valued f and g of the form (2) is also a test of the

form (26). Thus Theorem 2 establishes the achievability part. Conversely, for any test of the

form (26) we may find sets A0 and A1 such that

P[T = 1] = P[{Y n ∈ A0, f(X
n) = 0}

∪{Y n ∈ A1, f(X
n) = 1}] (27)

≥ 1− ǫ . (28)

Then without loss of generality assume that the first set in the union has P-probability larger

than 1−ǫ
2

. Define the following function

g(yn) =























0, yn ∈ A0

1, yn ∈ A1 \ A0

2, otherwise

1Namely, we do not require D(PXY ||QXY ) < ∞ or positivity of QXY , but require indecomposability of PXY .
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Then we have

P[f(Xn) = g(Y n)] ≥ P[yn ∈ A0, f(X
n) = 0] (29)

≥
1− ǫ

2
, (30)

and thus by Theorem 2 we conclude:

Q[T = 1] ≥ Q[f(Xn) = g(Y n)] (31)

≥ exp{−nE + o(n)} . (32)

We remark that the correspondence between the hypothesis tests with 1-bit compression and

those of interest in this paper (2) does not hold in full generality. In particular, it was shown

in [7, Theorem 5] that the exponent E in (3) is still optimal in the 1-bit scenario without the

requirement of indecomposability of PXY , while example (25) demonstrates the contrary for our

setup.

IV. NON-VANISHING LOWER BOUNDS VIA HYPERCONTRACTIVITY

By Theorem 3 in the case when marginals of PXY and QXY coincide the error cannot decay to

zero exponentially. In [15] we conjectured that in the cases of matching marginals β̃α(P
n
XY , Q

n
XY )

does not vanish as n → ∞. In this section we prove this conjecture:

Theorem 5: Consider an indecomposable PXY on a finite X × Y and QXY > 0 such that

QX = PX and QY = PY . Then there exists r ≥ 1 such that for all n ≥ 1 and all 0 ≤ α ≤ 1 we

have

β̃α(P
n
XY , Q

n
XY ) ≥

(α

2

)r

.

Remark 1: Theorem is clearly not extendable to QXY 6> 0. Indeed, if QXY (x0, y0) = 0 then

a test of sample size n = 1 with critical region {X = x0, Y = y0}, cf. (5)-(6), achieves β̃ = 0

and α < 1 with the exception of a trivial case PXY (x0, y0) = 1.

Previously in [15] we showed Theorem 5 for QXY = PXPY and α ≥ α0(PXY ) by invoking

the maximal correlation ideas of Witsenhausen [14]. Here we complete the proof by apply-

ing methods of hypercontractivity following the steps of Ahslwede and Gács, who improved

Gács-Körner’s result (4) to a non-vanishing lower bound [16]. This extension (from maximal
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correlation to hypercontractivity) is very popular in the modern approach in harmonic analysis

and concentration of measure, where spectral gap inequality is amplified to a log-Sobolev

inequality [20], which is known to be equivalent to hypercontractivity.

Proof: Let f, g be the comparator-based test and let W = f(Xn), Ŵ = g(Y n). Then, as

in (21) there exists i such that

P[Ŵ = i|W = i] ≥
α

2
(33)

P[W = i|Ŵ = i] ≥
α

2
(34)

On the other hand by [16, Theorem 1] we have for some p > 0 and u < 1

P[Ŵ = i] ≥
(α

2

)p

P[W = i]u , (35)

P[W = i] ≥
(α

2

)p

P[Ŵ = i]u . (36)

Thus, we have

P[W = i],P[Ŵ = i] ≥
(α

2

)
p

1−u

. (37)

On the other hand,

Q[W = Ŵ ] ≥ Q[W = i, Ŵ = i] (38)

≥ Q[W = i]p1Q[Ŵ = i]q1 (39)

= P[W = i]p1P[Ŵ = i]q1 (40)

≥
(α

2

)

(p1+q1)p
1−u

(41)

where (39) holds for some p1, q1 > 0 by [17, Corollary 8.2], (40) because marginals of PXY

and QXY coincide and (41) is by (37).
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[13] P. Gács and J. Körner, “Common information is far less than mutual information,” Prob. Contr. Inf. Theory, vol. 2, no. 2,

pp. 149–162, 1973.

[14] H. Witsenhausen, “On sequences of pairs of dependent random variables,” SIAM J. Appl. Math., vol. 28, pp. 100–113,

1975.

[15] Y. Polyanskiy, “Hypothesis testing via a comparator,” in Proc. 2012 IEEE Int. Symp. Inf. Theory (ISIT), Cambridge, MA,

Jul. 2012.

[16] R. Ahlswede and P. Gacs, “Spreading of sets in product spaces and hypercontraction of the Markov operator,” Ann. Probab.,

pp. 925–939, 1976.

[17] E. Mossel, K. Oleszkiewicz, and A. Sen, “On reverse hypercontractivity,” Arxiv preprint arXiv:1108.1210v3, Aug. 2012.

[18] I. Kontoyiannis and S. Meyn, “Spectral theory and limit theorems for geometrically ergodic Markov processes,” Ann. Appl.

Probability, vol. 13, no. 1, pp. 304–362, 2003.

[19] I. Csiszár and J. Körner, Information Theory: Coding Theorems for Discrete Memoryless Systems. New York: Academic,

1981.

[20] M. Ledoux, “Concentration of measure and logarithmic Sobolev inequalities,” Seminaire de probabilites XXXIII, pp. 120–

216, 1999.

June 20, 2013 DRAFT


