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Introduction

Value of feedback:
I In coding for memoryless channels:

1. Fixed blocklength: feedback does not improve reliability
function (Dobrushin’62).
Fine print: For symmetric channels and R > Rc .

2. Variable length: feedback helps a lot (Burnashev’76).

I In hypothesis testing (This talk!):

1. Fixed sample size: feedback does not improve exponential
tradeoff.

2. Variable sample size: feedback helps a lot.

Disclaimer:

Everything in this talk is discrete, memoryless and
asymptotic.
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Fixed sample size
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Classical binary hypothesis testing

Tester?

PY

QY

Y1, Y2 , . . .

Two types of errors:

ᾱn = P[Y n 6∈ E ]

βn = Q[Y n ∈ E ]

Exponential performance:

EP = lim
n→∞

−1

n
log ᾱn

EQ = lim
n→∞

−1

n
log βn

Question: What is the achievable region of (EP ,EQ)?
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Exponential tradeoff (Hoeffding’65, Blahut’74)

0 D(Q||P)
0

D(P||Q)

Exponent E
P

E
xp

on
en

t E
Q

µ(s) = logE P

[(
PY (Y )

QY (Y )

)s]
, −1 ≤ s ≤ 0

EP(s) = sµ′(s)− µ(s)

EQ(s) = (s + 1)µ′(s)− µ(s)
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Hypothesis testing + control of inputs

Tester??

PY |X

QY |X

Y1, Y2 , . . .X1, X2 , . . .

Test:

1. A feedback controller:

Xn = fn(Y1, . . . ,Yn−1) ,

2. A critical region E :

{Y n ∈ E} =⇒ declare PY |X

Question: What is the achievable region of (EP ,EQ)?
Note: |X | = 1 ⇐⇒ classical setup PY vs QY .
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Simple strategies: fix Xj = const

0
0

Exponent E
P

E
xp

on
en

t E
Q

X=1

X=2

Thus, the best non-feedback tradeoff is . . .
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Optimal open-loop tradeoff

0
0

Exponent E
P

E
xp
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t E
Q
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What about feedback?

Theorem

Feedback does not help (the red curve is still optimal).

Proofs:

1. [Hayashi’09]: upper-bound on the growth of Rényi divergence

Dλ(PY n ||QY n) ≤ nmax
x

Dλ(PY |X=x ||QY |X=x)

Note: slick, but requires PY |X=x ∼ QY |X=x .

2. [PV’10]: Change measure via a tilted channel

VY |X = cP
1+s(X )
Y |X Q

−s(X )
Y |X

and apply martingale arguments to log
PY |X
QY |X

.

Note: does not require PY |X=x ∼ QY |X=x .
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Variable sample size
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Wald binary hypothesis testing

Tester?

PY

QY

Y1, Y2 , . . .

Variable sample size test:

1. A stopping time τ of the filtration Fn = σ{Y1, . . . ,Yn}
2. A critical region E ∈ Fτ .

Figures of merit (non-Bayesian!):

ᾱ = P[Y τ 6∈ E ]

β = Q[Y τ ∈ E ]

`P = E P [τ ]

`Q = EQ [τ ]
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Wald binary hypothesis testing

Tester?

PY

QY

Y1, Y2 , . . .

Variable sample size test:

1. A stopping time τ of the filtration Fn = σ{Y1, . . . ,Yn}
2. A critical region E ∈ Fτ .

Figures of merit (non-Bayesian!):

ᾱ = P[Y τ 6∈ E ]

β = Q[Y τ ∈ E ]

`P = E P [τ ]

`Q = EQ [τ ]

=⇒


EP = lim

`P ,`Q→∞
− 1

`P
log ᾱ

EQ = lim
`P ,`Q→∞

− 1

`Q
log β
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Question: What pairs (EP ,EQ) are achievable?

Note: If PY 6� QY or QY 6� PY then any (EP ,EQ) is achievable.
Thus, assume

PY ∼ QY

Y. Polyanskiy and S. Verdú Binary hypothesis testing with feedback
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Exponential tradeoff

0 D(Q||P)
0

D(P||Q)

Exponent E
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Exponential tradeoff

0 D(Q||P)
0

D(P||Q)

Exponent E
P

E
xp

on
en

t E
Q

Theorem

The optimal region is {EPEQ ≤ D(PY ||QY )D(QY ||PY )}

Proof: Wald’45 + SPRT + Berk’73.
Y. Polyanskiy and S. Verdú Binary hypothesis testing with feedback
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Hypothesis testing + control of inputs + variable size

Tester??

PY |X

QY |X

Y1, Y2 , . . .X1, X2 , . . .

Test:

1. A feedback controller:

Xn = fn(Y1, . . . ,Yn−1) ,

2. A stopping time τ

3. A critical region E ∈ Fτ :

{Y τ ∈ E} =⇒ declare PY |X
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Some general remarks

Let
S =

⋃
all tests

(ᾱ, β, `P , `Q) ⊂ R4
+

We can show

I S is convex but not closed.

I Every supporting hyperplane touches S at SPRT.

I . . . and every such point is a “sharp corner”.

I projection of S on (`P , `Q) is R2
+ \ {axes}

For Bayesian setup dynamic programming states:

Optimal controller is a stationary function of log
PYn|Xn

QYn|Xn
.

The optimal test is SPRT.
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Open-loop achievable (EP ,EQ)

0
0

Exponent E
P

E
xp

on
en

t E
Q

X=2

X=1
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Question: What pairs (EP ,EQ) are achievable?
Note: Without feedback we can easily achieve

{EPEQ ≤ max
x

D(PY |X=x ||QY |X=x)D(QY |X=x ||PY |X=x)}

Theorem

With feedback the optimal region is

{EPEQ ≤ max
x1

D(PY |X=x1 ||QY |X=x1) max
x2

D(QY |X=x2 ||PY |X=x2)}

Y. Polyanskiy and S. Verdú Binary hypothesis testing with feedback
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Proof (converse)

Denote maximal divergences:

d∗P
4
= max

x
D(PY |X=x ||QY |X=x)

d∗Q
4
= max

x
D(QY |X=x ||PY |X=x)

Wald’s converse:

d(1− ᾱ||β) ≤ E P [τ ]D(PY ||QY )

d(β||1− ᾱ) ≤ EQ [τ ]D(QY ||PY )
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Proof (converse)

Denote maximal divergences:

d∗P
4
= max

x
D(PY |X=x ||QY |X=x)

d∗Q
4
= max

x
D(QY |X=x ||PY |X=x)

Simple generalization of Wald’s converse:

d(1− ᾱ||β) ≤ d∗P`P (1)

d(β||1− ᾱ) ≤ d∗Q`Q (2)

Asymptotically, for tests achieving (EP ,EQ):

d(1− ᾱ||β) = `QEQ + o(`Q)

d(β||1− ᾱ) = `PEP + o(`P)

(1) × (2) =⇒
`P`QEPEQ ≤ `P`Qd∗Pd∗Q + o(`P`Q)

Y. Polyanskiy and S. Verdú Binary hypothesis testing with feedback



Fixed sample size Variable sample size

Proof (achievability)

0

Sample, n

γ

−γ

lo
g

P
Y

n
|X

n

Q
Y

n
|X

n

drift: +D(P ||Q)

drift: -D(Q||P )

Analysis of SPRT:

ᾱ ≈ e−γ

β ≈ e−γ

`P ≈
γ

drift under P

`Q ≈
γ

drift under Q

↓
EP ≈ drift under P

EQ ≈ drift under Q
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Problem: Choosing x to maximize D(PY |X=x ||QY |X=x) achieves

EP = d∗P
EQ < d∗Q

Solution: With feedback can optimize both drifts simultaneously!

Xn+1 =

{
argmaxx D(PY |X=x ||QY |X=x), log

PYn|Xn

QYn|Xn
> 0

argmaxx D(QY |X=x ||PY |X=x), o/w

Reason: log-likelihood is positive most of the time (under P).

Note: Same control strategy is asymptotically optimal in a certain
Bayesian setting [Naghshvar-Javidi’10].
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Optimal (EP ,EQ) achievable with feedback

0
0

Exponent E
P

E
xp

on
en

t E
Q

Optimal feedback region
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Open-loop controller + variable size test

Theorem

The open-loop region is strictly smaller unless for some x

D(PY |X=x ||QY |X=x) = d∗P
D(QY |X=x ||PY |X=x) = d∗Q

(one input simultaneously maximizes both divergences).

Proof:

I WLOG use SPRT.

I Then stopping time concentrates at `P or `Q (Berk’73).

I For any input sequence a non-vanishing portion of Xj ’s should
be suboptimal for either P or Q.

I Thus accumulated drift cannot be `Pd
∗
P and `Qd

∗
Q

simultaneously.
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Thank You!
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