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This preprint is about Gilbert-Elliott channel (GEC) w/o state knowledge. Most of

the discussions however, reduce to questions regarding the binary hidden Markov chain,
computation of its Blackwell measure and in particular its entropy rate.

Plan:

• Precise definitions of all processes involved.

• Overview of the convergence properties.

• α, φ and ψ-mixing coefficients.

• Markovity and proofs of convergence properties.

• Relation between T -operators on [0, 1] and R+.

• Properties of the K operator and the method of computation for the entropy rate.

• Iterations in projective space.

• Interpetation as a random walk in PGL(2,R).

• Another method of computation of H.

• Attempt to prove othe expansion with O(log n) term.

• Proof of the expansion with o(
√
n) term.

• Bound for |C1 − C0|.

• Bound for |V0 − V1|.

• Entropy process in GEC may be not α-mixing.
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1 GEC

1.1 Precise definitions

Let {Sj}∞j=−∞ be a homogeneous Markov process with states {1, 2}, transition probabilities

P[S2 = 1|S1 = 1] = P[S2 = 2|S1 = 2] = 1− τ , (1.1)

P[S2 = 2|S1 = 1] = P[S2 = 1|S1 = 2] = τ , (1.2)

and initial distribution
P[S1 = 1] = P[S1 = 2] = 1/2 . (1.3)

A quantity governing the dependence of the process Sj is given by

µ = 1− 2τ .

Now for δ1, δ2 ∈ [0, 1] we define {Zj}∞j=−∞ as conditionally independent given S∞
1 and

P[Zj = 0|Sj = s] = 1− δs , (1.4)

P[Zj = 1|Sj = s] = δs . (1.5)

NOTE: for the GEC w/o state known we always assume 1/2 ≥ δ1 ≥ δ2.
The GEC channel acts on a binary vector Xn via binary addition:

Y n = Xn + Zn .

The capacity of the GEC channel is

C = log 2−H ,

where H is the entropy rate of the process Zj and is given by

H = lim
n→∞

1

n
H(Zn) (1.6)

= lim
n→∞

Eh(P[Zn = 1|Zn−1
1 ) (1.7)

= Eh(P[Z0 = 1|Z−1
−∞]) . (1.8)

For convenience we define the following operation on R× {0, 1}:

a{z} =

{

a , z = 1 ,

1− a , z = 0
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We now define several related processes (the idea behind notation: a random variable
with index j must be measurable with respect to σ{Sj , Zj}):

Rj = P[Sj+1 = 1|Zj
1 ] , (1.9)

Qj = P[Zj+1 = 1|Zj
1 ] = δ1Rj + δ2(1−Rj) , (1.10)

Gj = − log P
Zj |Zj−1

1

(Zj|Zj−1
1 ) = − logQ

{Zj}
j−1 , (1.11)

R∗
j = P[Sj+1 = 1|Zj

1 , S0] , (1.12)

Q∗
j = P[Zj+1 = 1|Zj

1 , S0] = δ1R
∗
j + δ2(1−R∗

j ) , (1.13)

G∗
j = − log P

Zj |Zj−1

1
,S0

(Zj |Zj−1
1 , S0) = − logQ∗

j−1
{Zj} , (1.14)

Pj = P[Sj+1 = 1|Zj
−∞] , (1.15)

Uj = P[Zj+1 = 1|Zj
−∞] = δ1Pj + δ2(1− Pj) , (1.16)

Fj = − log P
Zj |Zj−1

−∞

(Zj|Zj−1
−∞) = − logU

{Zj}
j . (1.17)

Note that

• Pj , Uj and Fj are the only stationary processes (unless τ = 1/2).

• All processes are bounded: for Gj and Fj this follows from (1.70).

1.2 Convergence properties

In Section 1.4 we show the following:

∣

∣

∣
P[Sj+1 = 1|Zj

1 , S0 = 1]− P[Sj+1 = 1|Zj
1 , S0 = 2]

∣

∣

∣
≤ 1

2

∣

∣

∣

∣

ln
τ

1− τ

∣

∣

∣

∣

|µ|j−1 . (1.18)

From this and

Rj = P[Sj+1 = 1|Zj
1 ] (1.19)

=
∑

a∈{1,2}
P[Sj+1 = 1|Zj

1 , S0 = a]P[S0 = a|Zj
1 ] (1.20)
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we find that1

∣

∣Rj −R∗
j

∣

∣ ≤ 1

2

∣

∣

∣

∣

ln
τ

1− τ

∣

∣

∣

∣

|µ|j−1 a.s. , (1.21)

∣

∣Qj −Q∗
j

∣

∣ ≤ (δ1 − δ2)
1

2

∣

∣

∣

∣

ln
τ

1− τ

∣

∣

∣

∣

|µ|j−1 a.s. , (1.22)

|Rj − Pj | ≤ 1

2

∣

∣

∣

∣

ln
τ

1− τ

∣

∣

∣

∣

|µ|j−1 a.s. , (1.23)

|Qj − Uj | ≤ (δ1 − δ2)
1

2

∣

∣

∣

∣

ln
τ

1− τ

∣

∣

∣

∣

|µ|j−1 a.s. . (1.24)

These bounds imply:

|R∗
j −Rj | → 0 a.s. (1.25)

|Pj −Rj | → 0 a.s. (1.26)

|Q∗
j −Qj | → 0 a.s. (1.27)

|Uj −Qj | → 0 a.s. (1.28)

For example, we show (1.23) as follows

|Rj − Pj | =

∣

∣

∣

∣

∣

∣

∑

a∈{1,2}
P[Sj+1 = 1|Zj

1 , S0 = a](P[S0 = a|Zj
1 ]− P[S0 = a|Zj

−∞])

∣

∣

∣

∣

∣

∣

(1.29)

≤ max
a

P[Sj+1 = 1|Zj
1 , S0 = a]−min

a
P[Sj+1 = 1|Zj

1 , S0 = a] (1.30)

≤ 1

2

∣

∣

∣

∣

ln
τ

1− τ

∣

∣

∣

∣

|µ|j−1 . (1.31)

Alternatively, a martingale argument shows the following:

Rj, R
∗
j

d→ P0 , (1.32)

Qj, Q
∗
j

d→ U0 . (1.33)

Introduce also T – a standard shift operator:

Sj ◦ T = Sj+1 , Zj ◦ T = Zj+1 .

Then it is easy to derive (using stationarity of Sj, Zj where necessary) that:

Qj = E

[

Q∗
j

∣

∣

∣
Zj
1

]

, (1.34)

Qj−1 ◦ T = E

[

Qj

∣

∣

∣
Zj
2

]

, (1.35)

Q∗
j = E

[

Q∗
j−1 ◦ T

∣

∣

∣
Zj
1 , S0

]

. (1.36)

1Notice that since R0, R
∗

0 , P0 are all in [τ, 1− τ ], direct argument shows that |µ|j−1 can be replaced with
|µ|j .
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On the other hand, we have:

H(Zn|Zn−1
1 ) = E [Gn] = E [h(Qn)] , (1.37)

H(Zn|Zn−1
1 , S0) = E [G∗

n] = E [h(Q∗
n)] , (1.38)

H = E [F0] = E [h(U0)] , (1.39)

and so by using the Jensen’s inequality and (1.33) we find that

E [h(Q∗
1)] ≤ E [h(Q∗

2)] ≤ · · · ≤ E [h(Q∗
n)] ր H , (1.40)

E [h(Q1)] ≥ E [h(Q2)] ≥ · · · ≥ E [h(Qn)] ց H . (1.41)

1.3 α, φ and ψ-mixing coefficients of the process (Sj, Zj).

Define σ-algebras
Fa
b = σ{Sa

b , Z
a
b } .

Then the α, φ and ψ-mixing coefficients for this filtration are defined as

α(n) = sup |P[A,B]− P[A]P[B]| , (1.42)

φ(n) = sup
|P[A,B]− P[A]P[B]|

P[A]
, (1.43)

ψ(n) = sup
|P[A,B]− P[A]P[B]|

P[A]P[B]
, (1.44)

where the suprema are over A ∈ F0
−∞, B ∈ F∞

n and P[A] > 0, P[B] > 0 where necessary.
Obviously, we have

α(n) ≤ φ(n) ≤ ψ(n) . (1.45)

Here is a simple bound on ψ(n). Notice that

P[B|A] = P[B,Sn = 1|A] + P[B,Sn = 2|A] (1.46)

= P[B|Sn = 1]P[Sn = 1|A] + P[B|Sn = 2]P[Sn = 2|A] . (1.47)

Now because Sj is such a simple Markov process, we can easily show that we have for any
a, b ∈ {1, 2}

P[Sn = a|S0 = b] =
1

2
± 1

2
|µ|n , (1.48)

and hence

∣

∣

∣

∣

P[Sn = 1|A]− 1

2

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

a∈{1,2}
P[Sn = 1|S0 = a]P[S0 = a|A]− 1

2

∣

∣

∣

∣

∣

∣

(1.49)

≤
∑

a∈{1,2}

∣

∣

∣

∣

P[Sn = 1|S0 = a]− 1

2

∣

∣

∣

∣

P[S0 = a|A] (1.50)

≤ 1

2
|µ|n . (1.51)
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Also notice that

P[B] =
1

2
P[B|Sn = 1] +

1

2
P[B|Sn = 2] . (1.52)

From (1.47) and (1.52) we derive

|P[AB]− P[A]P[B]|
P[A]P[B]

=
|P[B|A]− P[B]|

P[B]
(1.53)

=

∣

∣

∣

∑

a∈{1,2} P[B|Sn = a]
(

P[Sn = a|A]− 1
2

)

∣

∣

∣

1
2

∑

a∈{1,2} P[B|Sn = a]
(1.54)

≤ |µ|n . (1.55)

From (1.45) we conclude
α(n) ≤ φ(n) ≤ ψ(n) ≤ |µ|n . (1.56)

1.4 Markovity of Rj, R
∗
j and Pj

First notice that Rj and Qj, R
∗
j and Q∗

j , and Pj and Uj determine each other (because
δ1 > δ2). Since almost surely we have Qj−1, Q

∗
j−1, Uj−1 < 1/2 we have that (Qj−1, Zj) and

Gj , (Q
∗
j−1, Zj) and G

∗
j , and (Uj−1, Zj) and Fj determine each other.

Define two “R-propagation” functions T0,1 : [0, 1] 7→ [τ, 1− τ ]:

T0(x) =
x(1− τ)(1 − δ1) + (1− x)τ(1− δ2)

x(1− δ1) + (1− x)(1− δ2)
, (1.57)

T1(x) =
x(1− τ)δ1 + (1 − x)τδ2

xδ1 + (1− x)δ2
. (1.58)

Note that T0,1 are fractional-linear (Möbius) transformations, when viewed on complex
plane.

Having defined these operators it is very easy to see that:

Rj+1 = TZj+1
(Rj) , j ≥ 0 (1.59)

R∗
j+1 = TZj+1

(R∗
j ) , j ≥ −1 (1.60)

Pj+1 = TZj+1
(Pj) , j ∈ Z , (1.61)

where for we start Rj and R∗
j as follows:

R0 = 1/2 , (1.62)

R∗
−1 = 1{S0 = 1} , (1.63)

R∗
0 = T0,1(R

∗
−1) = TZ0

(R∗
−1) = (1− τ)1{S0 = 1}+ τ1{S0 = 2} . (1.64)
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Therefore, it can be shown that all of these processes are Markov and their transition kernel
is given by

K(x, ·) = (δ1x+ δ2(1− x))∆T1(x)(·) + ((1− δ1)x+ (1− δ2)(1− x))∆T0(x)(·) ,

where
∆x0

(A) = 1A(x0)

is a Dirac measure sitting at x0.
Note that Pj is a stationary process, whose marginal distribution is equal to the unique

stationary distribution of the kernel K. Unfortunatelly, this distribution is very hard to
describe (in some cases it is concentrated on the set of measure 0).

So, processes Rj and R∗
j can be described as:

R0 ∼ ∆1/2 , (1.65)

Rj ∼ Kj(1/2, ·) , (1.66)

R∗
0 ∼ 1

2
∆τ +

1

2
∆1−τ , (1.67)

R∗
j ∼ 1

2
Kj(τ, ·) + 1

2
Kj(1− τ, ·) . (1.68)

Also notice that because of

min(τ, 1 − τ) ≤ T0, T1 ≤ max(τ, 1 − τ)

we have
min(τ, 1− τ) ≤ Rj , R

∗
j , Pj ≤ max(τ, 1− τ) (1.69)

and therefore also

min(δ1τ + δ2τ̄ , δ1τ̄ + δ2τ) ≤ Qj , Q
∗
j , Uj ≤ max(δ1τ + δ2τ̄ , δ1τ̄ + δ2τ) . (1.70)

Finally, to prove (1.18) we first notice that

P[Sj+1 = 1|Zj
1 , S0 = 1] = TZj

◦ TZj−1
· ◦TZ1

(P[S1 = 1|S0 = 1]) , (1.71)

P[Sj+1 = 1|Zj
1 , S0 = 2] = TZj

◦ TZj−1
· ◦TZ1

(P[S1 = 1|S0 = 2]) . (1.72)

The (1.18) then follows from the following bound, valid for any z ∈ {0, 1} and x, y ∈ (0, 1):

|Tz(x)− Tz(y)| ≤
1

4
|µ|
∣

∣

∣

∣

ln
x

1− x
− ln

y

1− y

∣

∣

∣

∣

. (1.73)

We could directly prove (1.73) by establishing two facts:
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1. There is a distance on (0, 1) defined by

d(x, y) =

∣

∣

∣

∣

ln
x

1− x
− ln

y

1− y

∣

∣

∣

∣

and Tz is µ-contracting in this distance.

2. The distance d(x, y) and the usual |x− y| are related via

|x− y| ≤ 1

4
d(x, y) .

However, a more instructive proof follows if we discuss the relation with projective
geometry. To treat T0 and T1 in one swoop, I will replace δ1, δ2 or δ̄1, δ̄2 with b1, b2 in the
definition of Tz.

First notice that the operator Tz can be thought of as acting on a two-dimensional
probability vector [x, 1− x]′:

(

x
1− x

)

7→ 1

b1x+ b2(1− x)

(

b1τ̄x+ b2τ(1− x)
b1τx+ b2τ̄(1− x)

)

.

Of course, this operator is not linear. However, we might notice that the denominator
only serves the purpose of renormalizing the new vector so that it lies on the “probability
simplex”. But notice that the principal information that we need is only contained in

the “direction” of the vector

(

x
1− x

)

. In mathematical terms this means that we must

understand our vector as an element of the projective line RP 1, which can be conveniently
represented as a quotient of R2. Under this identification the positive quadrant R2

+ is
identified with “positive” ray of RP 1 which we will denote as RP 1

+ = [0,+∞].
Having made this identification we may write that operator Tz works on the projective

line element

(

x1
x2

)

as follows:

(

x1
x2

)

7→
(

b1τ̄ b2τ
b1τ b2τ̄

)(

x1
x2

)

△
= Az

(

x1
x2

)

.

In this way, we see that Tz might be thought as a linear transformation of R2 and therefore
a projective transformation of RP 1. Moreover, because all coefficients in the matrix are
non-negative, this operator Tz maps positive-quadrant R2

+ into itself. Such transformation
is notable because it contracts projective distance. The projective distance between the

8



elements of R2
+ is defined as1

dP (x, y) =

∣

∣

∣

∣

ln
x1
x2

− ln
y1
y2

∣

∣

∣

∣

.

Note that this is a natural distance for a projective geometry because it is actually a log
of the cross-ratio:

dP (x, y) = | ln(x, y; 0,∞)| = lnmax[(x, y; 0,∞), (y, x; 0,∞)] .

Since cross-ratio is an invariant of a projective space (preserved under projective trans-
formation), dP (x, y) is preserved under the stabilizer of the [0,∞] in the projective group
PGL(2,R); equivalently, this stabilizer is a subgroup of GL(2,R) that maps R2

+ onto R2
+

(i.e. all non-negative 2x2 matrices).
This distance is also natural in relation to hyperbolic geometry: if you represent rays

by the points at which they intersect the line x = 1, then the (geodesic) distance between
those points in the Poincare half-plane model is exactly | ln y1 − ln y2|.

If, however, Tz maps R2
+ into R2

+ then, as shown in Section 2 of [3] the mapping Tz is
contracting:

dP (Tz(x), Tz(y)) ≤ τB(Tz)dP (x, y) , (1.74)

where τB(Tz) is a “projective norm” which has many different expressions, but for the RP 1

case is given by

τB

(

a b
c d

)

=



















√

ad
bc

−1
√

ad
bc

+1
, ad > bc ,

√

bc
ad

−1
√

bc
ad

+1
, ad < bc ,

In general,

τB(T ) =
e∆/2 − 1

e∆/2 + 1
= tanh(∆/4) ,

where ∆ is the dP -diameter of the image of Rn
+ ↔ RPn−1

+ . In the one-dimensional case
∆ = | ln ad

bc |. In general, (see the book of Seneta “Non-negative matrices and Markov
Chains” and the paper of Hopf referenced there)

∆(T ) = lnmax
ijkl

tij
tik

tlk
tlj

. (1.75)

1In general, for other dimension > 2 we have:

dP (x, y) = ln
maxi xi/yi
minj xj/yj

= max
i,j

ln
xiyj
xjyi

.
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Anyway, for our T we have

τB(Tz) = |1− 2τ | = |µ| .

This and the Birkhoff bound (1.74) imply

dP (Tz(x), Tz(y)) ≤ |µ|dP (x, y) . (1.76)

On the other hand, if we convert the projective line element

(

x1
x2

)

back to the probability

vector:
(

x1
x2

)

7→
(

x1/(x1 + x2)
x2/(x1 + x2)

)

,

then the projective distance can be written as

dP (x, y) = d

((

x
1− x

)

,

(

y
1− y

))

=

∣

∣

∣

∣

ln
x

1− x
− ln

y

1− y

∣

∣

∣

∣

.

Because the derivative of ln x
1−x is upper-bounded by 4 we have

|x− y| ≤ 1

4
dP (x, y) . (1.77)

Combining (1.76) and (1.77) we obtain (1.73).
Side note: It is always true (and easy to show) that for discrete distributions we have:

D(P ||Q) ≤ dP (P,Q) .

Therefore, all theorems on geometric-ergodicity that are derived using Birkhoff’s contrac-
tion inequality also automatically imply a geoemtric convergence with respect to diver-
gence! On the other hand, there is no corresponding lower-bound.

To see this we give a counter-example in the binary case. First notice that if t = x
1−x

and θ = y
1−y are projective-line elements corresponding to x and y then

d(x||y) = t

1 + t
ln
t

θ
+ ln

1 + θ

1 + t
.

Now if we set t = 2θ and send θ → ∞ we get:

d(x||y) → 0 , but dP (x, y) =

∣

∣

∣

∣

ln
t

θ

∣

∣

∣

∣

= ln 2 6→ 0 .
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1.5 Relation between T -operators on [0, 1] and R+

As explained above, we can think of operator Tb in two ways: first, as acting on [0, 1] and
defined via (1.57), in which case Tb as an element of PGL(2,R) is identified with

Tb ∼
(

τ̄ b1 − τb2 τb2
b1 − b2 b2

)

On the other hand, Tb can be thought as acting on the the ratio x
1−x and in this case it is

an operator defined as

T̃b(r) =
τ̄ b1r + τb2
τb1r + τ̄ b2

∼
(

τ̄ b1 τb2
τb1 τ̄ b2

)

Both of them are elements of PGL(2,R) and the relation between these two is given
by

T̃b = ATbA
−1 (1.78)

Tb = A−1T̃bA (1.79)

A ∼
(

1 0
−1 1

)

(1.80)

A−1 ∼
(

1 0
1 1

)

(1.81)

Operator A can be thought, geometrically, as a remapping of projective-elements from the
coordinates based on x1 + x2 = 1 to coordinates based on x2 = 1:

x
A7→ x

1− x
(1.82)

1
A7→ ∞ (1.83)

∞ A7→ −1 (1.84)

Figure 1.1 gives an idea about both operators.
Finally, we can think of Tb as acting on R2 restricted to the simplex x+ y = 1. In this

case, it is easy to show that Tb is just a restriction of the following operator in PSL(2,C):

L−1TbL =

(

1 i
1 1

)

◦
(

τ̄ b1 τb2
τb1 τ̄ b2

)

◦
(

1 −i
−1 1

)

Here L is the transform that maps R2
+ ∩ {x+ y = 1} to R+.
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Figure 1.1: Operators T0 and T1 as acting on [0, 1] (left) and R+ (right)

1.6 Properties of K and method to compute H

K can be viewed as an operator acting on either measures ν or (by duality) as acting on
functions f :

νK(·) =

∫

[0,1]
ν(dx)K(x, ·) , (1.85)

Kf(x) =

∫

K(x, dy)f(y) (1.86)

= (δ1x+ δ2(1− x))f(T1(x)) + ((1− δ1)x+ (1− δ2)(1 − x))f(T0(x))(1.87)

As an operator that acts on functions (defined on [τ, 1− τ ]) it has the following properties:

• If f is monotone then Kf is monotone;

• If f is convex (concave) then Kf is convex (concave);

• Knf → E [f(P0)] .

• If f is ∩-concave then

E [f(Rn)] = Knf(1/2) ց E [f(P0)] .

• If f is ∩-concave then

E [f(R∗
n)] =

1

2
Knf(τ) +

1

2
Knf(1− τ) ր E [f(P0)] .
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• Note thatKf only depends on the values of f on [τ, 1−τ ]. But among all f continuous
on [τ, 1− τ ] s.t. supp f ⊆ [τ, 1 − τ ] we have

Kf = 0 =⇒ f = 0 .

Proof outline: Show that f(τ) = f(1 − τ) = 0. Then assume that there is some
open interval U s.t. f(U) > ǫ. Then ∃xn → (1− τ) s.t. f(xn) > ǫ, which contradicts
continuity of f on [τ, 1− τ ].

To compute H notice that by (1.40) and (1.41) it is sufficient to compute E [h(Q∗
n)] and

E [h(Qn)]. But
E [h(Q∗

n)] = E [h(δ1R
∗
n + δ2(1−R∗

n))] = PR∗

0
Knh̃ ,

where
h̃(x) = h(δ1x+ δ2(1− x))

is a monotonically increasing (since δ1, δ2 ≤ 1/2), ∩-concave function. So the problem boils
down to computing measures

ν∗n =
1

2
∆τK

n +
1

2
∆1−τK

n .

This can not be easily done because n-th measure is composed of 2n Dirac measures
and therefore requires too much memory to store. The obvious solution is to quantize
the interval [τ, 1 − τ ]. This approach was proposed by Mushkin and Bar-David. It was
criticized for not providing an accuracy estimate. However, notice that because of the
monotonicity of h̃ we can “round-down” the location of each ∆-measure comprising ν∗n
towards the closest quantization level and still have a lower bound on E [h(Q∗

n), Call the
new (quantized) measure ν̂∗n:

ν̂∗nh̃ ≤ ν∗nh̃
△
= E [h(Q∗

n)] .

Now because of the monotonicity of K this measure ν̂∗n can also be used insteado of the
true ν∗n as a source for computing ν∗n+1. In other words, for any monotonically increasing
f we have

(ν̂∗nK)f ≤ (ν∗nK)f .

Therefore, such “rounding-down” at each stage leads to a lower bound to E [h(Q∗
n)] on each

stage. Similar rounding-up can be used in computing E [h(Qn)]. The pair of these bounds
is guaranteed to sandwich the true value of H:

ν̂∗nh̃ ≤ H ≤ ν̂nh̃ .

13



1.7 Definition of the Blackwell’s measure

By construction we know that for any measurable and bounded f we have

∀x0 ∈ [0, 1] : Knf(x0) → E [f(P0)] . (1.88)

Therefore, given the linearity of K we can define a measure µ (corresponding to P0, of
course) without a reference to P0 as follows:

µf = lim
n→∞

Knf(1/2) .

It raises two questions: How to analytically (from the definition of K in (1.87)) prove that
limKnf exists and is a constant? We know that when f(x) = ax + b then µf = a/2 + b
(because E [P0] = 1/2); what about an analytical proof of this?

Finally, the main challenge is to be able to integrate any other (non-linear) functions
f over µ with the ultimate goal of integrating a binary entropy function (see (1.88) also).

Answer to question 1: Note that since every continuous function on [0, 1] is uniformly
continuous for any ǫ we can find a δ such that fluctuation of f on any δ-interval is below
ǫ. Then according to representation (1.108) we see that for n large enough every operator
Tb1 ◦· · ·◦Tbn will map [0, 1] into an interval smaller than δ (because of Birkhoff contraction).
Hence,

|f ◦ Tb1 ◦ · · · ◦ Tbn(x)− f ◦ Tb1 ◦ · · · ◦ Tbn(y)| ≤ ǫ , ∀x, y ∈ [0, 1] ∀bn ∈ {0, 1}n .

Choosing y = 1/2 we get that Knf(x) → Knf(1/2). Note this is proof essentially depends
on continuity of f (that is there is only a weak convergence of νKn → µBlackwell).

Answer to question 2: Note that among linear polynomials ax + b only b = −a/2 are
eigenvalues of K:

K(ax+ b) = λ(ax+ b) ⇐⇒ λ = 1− 2τ , b = −a/2 .

Therefore,
Kn(x− 1/2) = (1− 2τ)n(x− 1/2) → 0

and therefore
Knx→ Kn1/2 = 1/2 .

Here is another nice property of operator K:

Kf = S(f ◦ T1) , (1.89)

Sg = p1(x)g(x) + p0(x)g ◦ U , (1.90)

U(x) = T−1
1 ◦ T0 =

δ̄1δ2x

(δ2 − δ1)x+ δ1δ̄2
∼
(

δ̄1δ2 0
(δ2 − δ1) δ1δ̄2

)

. (1.91)

Fantastically, U and S do not depend on τ !!!
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Note: searching for an eigenvalue f = ax+b
cx+d as in

Kf = uf + v(x− 1/2) (1.92)

leads to c = 0, i.e. f = ax+ b. I have got the same results for f = ax2+b
cx+d , f = ax2+ bx+ c,

f = x2+ax+b
x2+cx+d

and f = x3+ax+b
x3+cx+d

. Some approach alternative to (1.92) is needed.

1.8 Easy case: τ = 0

In the case τ = 0 the operator K becomes much simpler (it also arises in the problem
of binary hypothesis testing between Bernoulli(δ1) and Bernoulli(δ2)). We denote this
operator by K0:

K0f = p0 · f ◦ T ′
0 + p1 · T ′

1 ,

where

T ′
0(x) =

x(1− δ1)

x(1− δ1) + (1− x)(1− δ2)
, (1.93)

T ′
1(x) =

xδ1
xδ1 + (1− x)δ2

. (1.94)

In this case the operator K0 satisfies many nice properties. For example, there are
algebraic relations:

K0

(

x

1− x

)n

= (−1)n−1(αn − αn+1)

n−1
∑

k=0

(−1)k
(

x

1− x

)k

+ αn+1

(

x

1− x

)

,

where we denote for simplicity
(

x
1−x

)0
= x (i.e. identity mapping). Constants αj are

merely

αj = E P1

(

dP1

dP2

)j

= δ1

(

δ1
δ2

)j

+ δ̄1

(

δ̄1

δ̄2

)j

Similar relation can be derived for K0

(

1−x
x

)n
with αj replaced by βj where E P1

is
replaced with E P2

.
This allows (in principle) to decompose interesting functions f in Laurant series over

(

x
1−x

)j
, j ∈ (−∞,∞).

Interpretation with binary hypothesis testing is as follows:

Kk
0 f(x) = E

xf(πk) ,

where πn = P[θ = 1|Fn] and π0 = x, a.s. (a Markov process of conditional probabilities).
I.e. K0 is a Markov kernel of the πn process.
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So from here, since we know πn → 1{θ = 1} we get

Kn
0 f → xf(0) + (1− x)f(1) n→ ∞ . (1.95)

Also, we know that
πn

1− πn
=
dP1

dP2

∣

∣

∣

∣

Fn

π0
1− π0

.

This demontstrates that functions f = g(ln x) are particularly easy to evaluate for in-
terations, because Kn

0 f is then subject to law of large numbers, Chernoff bound, CLT
etc.

What analytical properties of K0 make it so simple and treatable? There are two:

1. Notice that K0 is isomorphic to a simpler operator K ′
0 defined as

K ′
0f = p0(1)f ◦ T ′

0 + p1(1)f ◦ T ′
1 . (1.96)

Indeed, a very simple argument shows that

K ′
0

f

x
=

1

x
K0f ,

and therefore,

(K ′
0)

nf =
1

x
Kn

0 f .

2. Another great property of K0 is that T ′
0 and T ′

1 commute:

T ′
0 ◦ T ′

1 = T ′
1 ◦ T ′

0

This is possible iff matrices defining T0 and T1 are simultaneously diagonalizable
(i.e. they have same eigenvectors, or equivalently T0 and T1 have two common fixed
points: 0 and 1).1

The row-eigenvectors when put together in a matrix become
1 0
−1 1

which corresponds

to a function x
1−x . So the change of variables y=x

1−x establishes isomorphism of K ′
0 and

K ′′
0 g(y) = p0(1)g(a1y) + p1(1)g(a2y) .

3. Finally, if you want to reduce K ′′
0 to a convolutional operator, then we only need to

change z = log y and then we get

K ′′′
0 h(z) = p0(1)h(z + a′1)p1(1)h(z + a′2) = h ∗Q ,

1Question: if K′ is a fractional linear operator of the form (1.96) and T ′

0 and T ′

1 are fractional-linear
and have two common fixed points. Is it true that all K′ are isomorphic to each other? To some K′

0? (i.e.
the one with fixed points 0 and 1).
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for some discrete distribution Q. Properties of powers of convolutional operators are
well known (see Feller) and they are simply an equivalent reformulation of the sums of
iid r.v.’s. Note that typically asymptotic properties of convolutional-type operators
are naturally studied via Fourier transform. It is interesting therefore that in K0

we have commuting T ′
0, T

′
1 and our main tool is the Fourier transform. Perhaps to

study general K we need to apply non-commutative Fourier analysis or something
like that.

1.9 Isomorphism of iterations

Suppose that X is a topological space and X∗ is a space of continous functions (in fact
we can restrict to other subclasses, such as algebraic, or rational etc). Then operator
K : X∗ → X∗ defines an iterative system. Our purpose is to evaluate (if it exists) the limit

g(x) = lim
n
Knf .

We say that (X∗,K) is isomorphic to (Y ∗, L) if there exists an isomorphism U : X∗ →
Y ∗ such that

K = U−1 ◦ L ◦ U
or diagrammatically:

K : X∗ U→ Y ∗ L→ Y ∗ U−1

→ X∗ .

For example, in the previous subsection we showed that ([0, 1]∗,K0) is isomorphic to a
convolutional operator (C(R), (·) ∗Q).

Not all operators are isomoprhic:

• K = 1 and K = 0 are not isomorphic.

• K = 1 and K = ∆a (f 7→ f(a)) are not isomorphic.

• K-ergodic markov kernel (e.g. K above for τ > 0) and K = K0.

In all cases, the proof is simply by considering the dimensionality of the space of limits
limKnf (e.g. for ergodic K it is 1 dimensional, for K0 it is 2-dimensional (1.95)).

1.10 Iterations in projective space

First, notice the following series for the binary entropy

h(x) = ln 2−
∞
∑

k=1

(2x− 1)2k

2k(2k − 1)
(1.97)

converging for 0 < x < 1. Then it is sufficient to study limn→∞Knf(x) for polynomial
functions f(x).
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We now define an operation F̂ which maps functions on RP1 to functions on R1. First,
function F : RP1 7→ RP1 is defined as

[s1 : s2]
F7→ [f1(s1, s2) : f2(s1, s2)] .

Then we set

F̂ (x)
△
=

f1(x, 1 − x)

f1(x, 1 − x) + f2(x, 1− x)
.

Finally, if we define pseudo-addition and pseudo-multiplication over RP1 as

[a1 : a2]⊕ [b1 : b2] = [a1(a2 + b2) + a2(a1 + b1) : b1b2 − a1a2] , (1.98)

[a1 : a2]⊙ [b1 : b2] = [a1b1 : a2b2] .

(these operations are rational functions on RP
2 7→ RP

1; they are not defined everywhere,
e.g. [1 : 0]⊙ [0 : 1] is undefined). It is easy to check that

F̂ ◦ Ĝ = F̂ ◦G , (1.99)

F̂ · Ĝ = F̂ ⊙G , (1.100)

F̂ + Ĝ = F̂ ⊕G . (1.101)

Finally, we can show that if F̂ = f then Ĝ = Kf , where

G = KF =

[

Π⊙ (F ◦ T1)
]

⊕
[

Π̄⊙ (F ◦ T0)
]

, (1.102)

where all functions are RP1 7→ RP1 and are defined as follows:

Π : [s1 : s2] 7→ [δ1s1 + δ2s2 : δ̄1s1 + δ̄2s2] , (1.103)

Π̄ : [s1 : s2] 7→ [δ̄1s1 + δ̄2s2 : δ1s1 + δ2s2] , (1.104)

T1 : [s1 : s2] 7→ [δ1τ̄ s1 + δ2τs2 : δ1τs1 + δ2τ̄ s2] , (1.105)

T0 : [s1 : s2] 7→ [δ̄1τ̄ s1 + δ̄2τs2 : δ̄1τs1 + δ̄2τ̄ s2] , (1.106)

Equation (1.102) replaces main equation (1.87) in the projective-space language. It
might be more convenient since if treated as iteration for (homogeneous) functions R2 7→ R2

it maps polynomial F into polynomial G. So the main question is how to find limKnF
(NB: we know it must converge to a constant function).

1.11 Iterations on τ − x plane

We can also view iterations (1.87) as being done one the τ −x plane (or even C2?). Indeed
we start with

F0(x, τ) = f(x) ,
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for some polynomial f(x) for which we want to compute E [f(P0)]. Then

Fn+1(x, τ) = (δ1x+ δ2x̄)Fn

(

xτ̄δ1 + x̄τδ2
xδ1 + x̄δ2

, τ

)

+ (δ̄1x+ δ̄2x̄)Fn

(

xτ̄ δ̄1 + x̄τ δ̄2
xδ̄1 + x̄δ̄2

, τ

)

(1.107)

We know that Fn(·, τ) must converge to a constant on [0, 1]. Each Fn(·, τ) has 2n+1 − 1
poles in x. This is because

Fn(x, τ) =
∑

bn∈{0,1}n
f ◦ Tb1 ◦ · · · ◦ Tbn · pbn · pbn−1

◦ Tbn · · · pb1 ◦ · · · ◦ Tbn , (1.108)

where p0(x) = δ̄1x+ δ̄2x̄, p1(x) = δ1x+ δ2x̄.
Idea: can we establish some (integral? differential? combinatorial?) invariant that is

preserved across the iterations for Fn(x, τ) and then use the fact that Fn(x, 1/2) is easily
computable. E.g.,

∂

∂τ
Fn(x, τ) = (δ2x̄−δ1x)

(

∂Fn−1

∂x

)(

xτ̄δ1 + x̄τδ2
xδ1 + x̄δ2

, τ

)

+(δ̄2x̄−δ̄1x)
(

∂Fn−1

∂x

)(

xτ̄ δ̄1 + x̄τ δ̄2
xδ̄1 + x̄δ̄2

, τ

)

Another idea: look for functions F which are preserved by the iteration (1.107).
Finally, the curve u = T1(x), v = T0(x) is an affine algebraic variety generated by

[(τ̄ − u)δ1 + (u− τ)δ2](v − τ)δ̄2 = (u− τ)δ2[(τ̄ − v)δ̄1 + (v − τ)δ̄2] ,

For some weird reason the δ2 = 0 case is special, for it the variety is defined as

v − τ = 0 .

1.12 Random walk on PGL(2,R)

The problem at hand can be interpreted as a random walk on PGL(2,R). Consider the
faithful (and sharply 2-transitive?) action of PGL(2,R) on RP1 given as

(

a b
c d

)

[x : y] = [ax+ by : cx+ dy] .

Consider the closed subset (a positive ray of RP1)

RP
1
+

△
= {[x : y]|x ≥ 0, y ≥ 0} ⊂ RP

1 ,

which is homeomorphic to [0, 1] under the map

θ : [x : y] 7→ x

x+ y
.
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The closed subgroup of PGL(2,R) fixing RP1
+ will be denoted PGL+(2,R):

PGL+(2,R)
△
= {g ∈ PGL(2,R) : g(RP1

+) ⊂ RP
1
+}

To define the random walk we take two elements T0, T1 ∈ PGL+(2,R) and a function
π : RP1

+ → [0, 1]. The random walk is defined as follows:

g0 = 1 , gt+1 =

{

T1 ◦ gt , w.p. π(gt([1 : 1])) ,

T0 ◦ gt , w.p. 1− π(gt([1 : 1])) .

The original problem:

T0 =

(

(1− τ)(1 − δ1) τ(1− δ2)
τ(1− δ1) (1− τ)(1− δ2)

)

, T1 =

(

(1− τ)δ1 τδ2
τδ1 (1− τ)δ2

)

,

where δ1, δ2, τ ∈ [0, 1] are some parameters and

π([x : y]) =
δ1x+ δ2y

x+ y
.

Note that in the interesting case τ < 1/2 we have T0, T1 ∈ PSL+(2,R) and thus the
random walk takes place in the PSL+(2,R) – this is safe to assume1.

Let us denote by µt the measure on PGL+(2,R) corresponding to the distribution of
random element gt. Notice that as shown above we have for any probability measure ν on
RP

1
+:

a∗(µt × ν) → νBlackwell , t→ ∞ (1.109)

where νBlackwell is a certain (so called Blackwell) probability measure on RP1
+ and a∗

corresponds to the map a defining the action:2

a : PGL(2,R) × RP
1 → RP

To connect with the random processes defined above:

Rj = θ(gj([1 : 1])) , (1.110)

Qj = π(gj([1 : 1])) , (1.111)

P0
d
= θ∗(νBlackwell), (1.112)

U0
d
= π∗(νBlackwell). (1.113)

1Notice that above we frequently take δ1 = 1

2
and δ2 = 0 to focus ideas. In this case this is not

permitted since then operator T1 6∈ PGL and we get a random walk on a monoid of fractional linear

functions RP
1 → RP

1 instead of the PGL (which is a group of invertible elements of that monoid).
2Corresponding to π : RP1 → R we denote π∗ the pushforward of measures on RP

1 to measures on R,
etc.
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The main goal: Learn how to integrate functions with respect to νBlackwell. According
to (1.109) we have

∫

fdνBlackwell = lim
t→∞

f(gt([x0 : y0])) ,

for any [x0 : y0] ∈ RP1
+. In particular the holy grail is to compute

∫

h ◦ π dνBlackwell ,

where h(x) = −x log x − (1 − x) log(1 − x) is the binary entropy function. Note that
according to (1.97) it is enough to learn how to integrate rational functions on RP

1. In
fact nobody knows how to integrate even a single function f : RP1 → R except the trivial
case:

f = cθ + d

(Note:
∣

∣θ ◦ gt − 1
2

∣

∣ ≤ |1− 2τ |t and thus
∫

θdνBlackwell =
1
2 .) For example, can we get some

expression in τ (for some fixed δ1 and δ2) for

∫
(

x

x+ y

)2

dνBlackwell?

Maybe any other polynomial in x
x+y?

Simplification: Analyze the simplified problem by taking T0, T1 as above but

π([x : y]) =
1

2
. (1.114)

In this case distribution µt of gt is just a t-fold convolution of the distribution µ1 which is
a sum of two delta-distributions on T0 and T1:

µ1 =
1

2
∆T0

+
1

2
∆T1

, (1.115)

µt = µ1 ∗ · · · ∗ µ1 . (1.116)

It looks like all of the properties quoted above (in particular (1.109)) hold in this simplified
setup. The idea is to apply Fourier transform to study this question: if µ̂1 is the F.t. of
µ1 then

µ̂t = (µ̂1)
t .

Now, what is Fourier transform on PGL(2,R) (or PSL(2,R) when τ < 1/2)?
Note: τ = 0 is the only special case when we have nice closed-form expressions. What

makes the most difference in is that when τ = 0 we see that T0 and T1 commute. So
if the non-commutativity is the key roadblock, then it is natural to attack it with the
“non-commutative Fourier”.
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1.13 Monte Carlo method for computing H

An often used method of computation of H is based on the Shannon-McMillan-Breiman
theorem, namely:

1

n
log PZn [Zn] → −H a.s. and in L1 . (1.117)

The purpose of this note is to demonstrate numerically that a much faster convergence
happens for the sequence:

1

n

n
∑

j=1

h(Qj−1) → H a.s. and in L1 . (1.118)

Indeed, we have shown above that Qk forms a Markov chain (i.e. easy to simulate) with

Q0 =
δ1 + δ2

2

and

Qj =

{

T ′
0(Qj−1) , with probability 1−Qj−1 ,

T ′
1(Qj−1) , with probability Qj−1 ,

where T ′
0(q) and T ′

1(q) are some fractional-linear functions (i.e. Mobius transforms), de-
pending on τ, δ1, δ2. It can also easily be shown that

τ min(δ1, δ2) ≤ Qj ≤ (1− τ)max(δ1, δ2) a.s. (1.119)

Notice now that

log PZn [Zn] =

n
∑

k=1

log PZk|Zk−1 [Zk|Zk−1] , (1.120)

and that

E

[

log PZk|Zk−1 [Zk|Zk−1]
∣

∣

∣
Zk−1

]

= −h(P[Zk = 1|Zk−1
1 ]) (1.121)

= −h(Qk−1) . (1.122)

With this we can rewrite (1.120) as

− log PZn [Zn] =

n
∑

k=1

{

−h(Qk−1)− log PZk|Zk−1 [Zk|Zk−1]
}

+

n
∑

k=1

h(Qk−1) .

Because of (1.119) the first term is a running sum of an a.s.-bounded martingale difference
process and therefore by the Azuma inequality and (1.117) we prove (1.118).

This effect is demonstrated numerically for the case τ = 0.1, δ1 = 0.16, δ2 = 0.07 and
H ≈ 0.514 bit on the Fig. 1.2.
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Figure 1.2: Comparing speed of convergence in (1.117) and (1.118). τ = 0.1, δ1 = 0.16, δ2 =
0.07 and H ≈ 0.514 bit.

1.14 Attempt to prove the O(logn) expansion

The capacity of the GEC without state knowledge is given by:

C0 = log 2−H . (1.123)

(1.124)

Here is a theorem that we are willing to prove:

Theorem 1 The dispersion of the Gilbert-Elliott channel with no state information and
state transition probability τ ∈ (0, 1) is

V0 = Var [F0] + 2
∞
∑

i=1

E [(Fi − E [Fi])(F0 − E [F0])] . (1.125)
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Furthermore, provided that V0 > 0 and regardless of whether ǫ is a maximal or average
probability of error, we have

logM∗(n, ǫ) = nC0 −
√

nV0Q
−1(ǫ) +O(log n) , (1.126)

where C0 is given by (1.123).

Proof: The proof is a step-by-step repetition of the proof of Theorem for the CSIR
case. In particular, the expression for the information density i(Xn;Y n) becomes

i(Xn;Y n) = log
PY n|Xn

PY n

(1.127)

= n log 2−
n
∑

j=1

Gj . (1.128)

For this i(Xn;Y n) we only need to establish that there exist a constant B2 such that for
any λ we have

∣

∣

∣
P

[

i(Xn;Y n) > nC0 +
√

nV0λ
]

−Q(λ)
∣

∣

∣
≤ B2 log n√

n
. (1.129)

The idea of proving (1.129) is to first approximate i(Xn;Y n) by a sum over a stationary
process (following the proof of Theorem 2.6 in [2]) and then apply Tikhomirov’s theorem [1].

Define

Sn = log 2−
n
∑

j=1

Fj ,

and notice that

E [Sn] = nC0 , (1.130)

Var[Sn] = nV0 +O(1) , (1.131)

where (1.131) follows from (1.56) by a usual argument (e.g., see [2]). So, similar to the
proof of Theorem-CSIR, an application of Tikhomirov’s theorem proves for some B′

2 > 0:

∣

∣

∣
P

[

Sn > nC0 +
√

nV0λ
]

−Q(λ)
∣

∣

∣
≤ B′

2 log n√
n

. (1.132)

We will show below that for some constant A3 we have

|i(Xn;Y n)− Sn| ≤ A3 a.s. . (1.133)

Clearly (1.133) and (1.132) imply (1.129) after applying Taylor’s expansion toQ
(

λ± A3√
nV0

)

.
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To demonstrate (1.133) denote

qmin = min(δ1τ + δ2τ̄ , δ1τ̄ + δ2τ) , (1.134)

qmax = max(δ1τ + δ2τ̄ , δ1τ̄ + δ2τ) . (1.135)

By (1.70) we have
qmin ≤ Qj, Uj ≤ qmax .

Then, by the definition of Gj and Fj we have

|Gj − Fj | ≤ max
[qmin,1−qmin]

∣

∣

∣

∣

d log x

dx

∣

∣

∣

∣

· |Qj − Uj| (1.136)

=
log e

qmin
(δ1 − δ2)|µ|j . (1.137)

where (1.150) is by (1.24).
But then we have

|i(Xn;Y n)− Sn| =

∣

∣

∣

∣

∣

∣

n
∑

j=1

(Gj − Fj)

∣

∣

∣

∣

∣

∣

(1.138)

≤
n
∑

j=1

|Gj − Fj | (1.139)

≤ log e

qmin
(δ1 − δ2)

n
∑

j=1

|µ|j (1.140)

≤ log e

qmin
(δ1 − δ2)

|µ|
1− |µ| = A3 . (1.141)

This proves (1.133) with A3 defined above.
It now remains to show that the process 1√

n

∑n
j=1 PZj |Zj−1

−∞

satisfies Berry-Esseen type

of bound. Note that this process is asymptotically normal with variance V0 as shown by
Theorem 2.6 in [2]. Unfortunally, I could not show that Fj is α-mixing and therefore
application of Tikhomirov’s theorem is not valid.

1.15 Proof of the o(
√
n) expansion

Theorem 2 The dispersion of the Gilbert-Elliott channel with no state information and
state transition probability τ ∈ (0, 1) is

V0 = Var [F0] + 2
∞
∑

i=1

E [(Fi − E [Fi])(F0 − E [F0])] . (1.142)
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Furthermore, provided that V0 > 0 and regardless of whether ǫ is a maximal or average
probability of error, we have

logM∗(n, ǫ) = nC0 −
√

nV0Q
−1(ǫ) + o(

√
n) , (1.143)

where C0 is given by (1.123).

Proof: Achievability: In this proof we will demonstrate how central-limit theorem
result for the information density implies the o(

√
n) expansion. Otherwise, the proof is

a step-by-step repetition of the proof of Theorem for the CSIR case. In particular, with
equiprobable PXn , the expression for the information density i(Xn;Y n) becomes

i(Xn;Y n) = log
PY n|Xn

PY n

(1.144)

= n log 2 + log PZn(Zn) . (1.145)

Provided that condition 2 of Theorem 2.6 in [2] holds, it yields the following:

P

[

i(Xn;Y n) > nC0 +
√

nV0λ
]

→ Q(λ) . (1.146)

We denote

qmin = min(δ1τ + δ2τ̄ , δ1τ̄ + δ2τ) , (1.147)

qmax = max(δ1τ + δ2τ̄ , δ1τ̄ + δ2τ) . (1.148)

By (1.70) we have
qmin ≤ Qj, Uj ≤ qmax .

Then, by the definition of Gj and Fj we have

|Gj − Fj | ≤ max
[qmin,1−qmin]

∣

∣

∣

∣

d log x

dx

∣

∣

∣

∣

· |Qj − Uj| (1.149)

=
log e

qmin
(δ1 − δ2)|µ|j , (1.150)

where (1.150) is by (1.24). The bound (1.150) automatically proves that condition 2 of
Theorem 2.6 in [2] is satisfied and therefore (1.146) holds.

Then, by Theorem ?? (DT bound) we know that there exists a code with M codewords
and average probability of error pe bounded by

pe ≤ E

[

exp

{

−
[

i(Xn;Y n)− log
M−1

2

]+
}]

(1.151)

≤ E
[

exp
{

− [i(Xn;Y n)− logM ]+
}]

(1.152)
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where (1.152) is by monotonicity of exp{−[i(Xn;Y n)−a]+} with respect to a. Furthermore,
notice that for any random variable U and a, b ∈ R we have

E
[

exp
{

− [U − a]+
}]

≤ P[U ≤ b] + exp{a− b} . (1.153)

To see (1.153), notice that b < a is trivial and for b ≥ a we have

exp
{

− [U − a]+
}

= 1{U ≤ a}+ exp{a− U} · 1{U > a} (1.154)

≤ 1{U ≤ b}+ exp{a− U} · 1{U > b} (1.155)

≤ 1{U ≤ b}+ exp{a− b} , (1.156)

from which (1.153) follows by taking the expectation1.
Fix some ǫ′ > 0 and set

log γn = nC0 −
√

nV0Q
−1(ǫ− ǫ′) .

Then continuing from (1.152) we obtain

pe ≤ P[i(Xn;Y n) ≤ log γn] + exp{logM − log γn} (1.157)

= ǫ− ǫ′ + o(1) + exp{logM − log γn} , (1.158)

where (1.157) follows by applying (1.153) and (1.158) is by (1.146). If we set logM =
log γn − log n then the right-hand side of (1.158) for large n falls below ǫ. Hence we
conclude that for n large enough we have

logM∗(n, ǫ) ≥ log γn − log n (1.159)

≥ nC0 −
√

nV0Q
−1(ǫ− ǫ′)− log n , (1.160)

or because ǫ′ was arbitrary, this is equivalent to

logM∗(n, ǫ) ≥ nC0 −
√

nV0Q
−1(ǫ) + o(

√
n) . (1.161)

Converse: To apply Theorem ?? (meta-converse) we choose the auxiliary channel
QY n|Xn which simply outputs an equiprobable Y n independent of the input Xn:

QY n|Xn(yn|xn) = 2−n . (1.162)

Similar to the CSIR case we get

β1−ǫ (PXnY n , QXnY n) ≤ 1

M∗ , (1.163)

1This upper-bound reduces (1.151) to the usual Feinstein’s Lemma.
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and also

log
PXnY n

QXnY n

= n log 2 + log PZn(Zn) (1.164)

= i(Xn;Y n) . (1.165)

We pick any ǫ′ > 0 and set

log γn = nC0 −
√

nV0Q
−1(ǫ+ ǫ′) . (1.166)

By (??) we have for α = 1− ǫ:

β1−ǫ ≥ 1

γn
(1− ǫ− P [i(Xn;Y n) ≥ log γn]) (1.167)

=
1

γn
(ǫ′ + o(1)) , (1.168)

where (1.168) is from (1.146). Finally, from (1.163) we get

logM∗(n, ǫ) ≤ − log β1−ǫ (1.169)

= log γn − log(ǫ′ + o(1)) (1.170)

= nC0 −
√

nV0Q
−1(ǫ+ ǫ′) +O(1) (1.171)

= nC0 −
√

nV0Q
−1(ǫ) + o(

√
n) . (1.172)

This concludes the proof.

1.16 Bounds on |C0 − C1|
First notice that

|C0 − C1| = C1 − C0

since C0 < C1 for all τ ∈ (0, 1).
To estimate (C1 − C0) we define

ξj = Fj + log PZj |Sj
(Zj |Sj) (1.173)

and notice that
C1 − C0 = E [ξ0] .

Two lemmas below will prove the following

Theorem 3 Assuming 1/2 ≥ δ1 ≥ δ2 > 0 and with τ → 0 we have

C1 −O(
√
−τ ln τ) ≤ C0 ≤ C1 −O(τ) .
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Lemma 4 Assuming 1/2 ≥ δ1 ≥ δ2 and denoting

pmax = max{τ, 1− τ} , (1.174)

pmin = min{τ, 1− τ} , (1.175)

we have the following:

E [ξ1] ≥ h(δ1pmax + δ2pmin))− pmaxh(δ1)− pminh(δ2) . (1.176)

In particular, with τ → 0 we have

E [ξ1] ≥ O(τ) .

Proof: Notice the following relation w.r.t. ξ1:

E [ξ1|Z0
−∞] = h(δ1P0 + δ2(1− P0))− P0h(δ1)− (1− P0)h(δ2) (1.177)

= P0d(δ1||δ1P0 + δ2(1− P0)) (1.178)

+(1− P0)d(δ2||δ1P0 + δ2(1− P0)) (1.179)

≥ 0 (1.180)

Looking at (1.179) we observe that the smallness of E [ξj ] = C1 − C0 implies that Pj−1 is
tightly concentrated around 0 and 1 (i.e. the state predictor is almost certain about the
next state). This information about Pj−1 will be used to prove the bound on |V1 − V0|.

We now aim to analyze the function:

f(x) = h(δ1x+ δ2(1− x))− xh(δ1)− (1− x)h(δ2) .

This is a positive, ∩-concave function turning to 0 at the endpoints:

f(0) = f(1) = 0 .

Therefore, since we know that P0 always belongs to an interval between τ and 1 − τ we
have

f(P0) ≥ min(f(τ), f(1− τ)) .

Once we check that the minimum is always attained at the point which is closer to 1 we
get (1.176). This follows from an easily checkable inequality which is valid for 1/2 ≥ δ1 ≥ δ2
and x ∈ [0, 1/2]:

h(δ1x+ δ2(1− x)) + (1− 2x)[h(δ1)− h(δ2)] ≥ h(δ1(1− x) + δ2x) . (1.181)

Note: this bound can be improved because actually P0 always belongs to an interval
between the two fixed points x0 and x1:

T0(x0) = x0 , T1(x1) = x1 .

For small τ this replaces pmin with something of the order τ 1−δ2
δ1−δ2

.
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Lemma 5 Assuming 1/2 ≥ δ1 ≥ δ2 > 0 we have for τ → 0

E [ξ1] ≤ O
(

√

−τ log τ
)

. (1.182)

Remark 1 : The resulting bound is only used for estimating the rate of convergence of C0(τ)
to C1 with τ → 0. Numerically this bound is not very tight and for this reason we do not
provide all the constants.

Remark 2 : A similar bound can be proved for δ2 = 0. For this case we must notice
that

E [(P0 − 1{S1 = 1})2] = E [P0(1− P0)]

and then prove that if this expectation is small then P0 is concentrated around 0 and 1
and therefore E [ξ1] must also be small as follows from (1.179).

Proof: Because of the expression

H = −E

[

logPZ1|Z0
−∞

[Z1|Z0
−∞]

]

(1.183)

= Eh(δ1P0 + δ2(1− P0)) (1.184)

we can write

C1 − C0 = E [ξ1] (1.185)

= E [h(δ1P0 + δ2(1− P0))− h(δ11{S1 = 1}+ δ21{S1 = 2})] . (1.186)

Because δ2 > 0 we can upper-bound the derivative of the function h(δ1x+ δ2(1− x)) by

∣

∣

∣

∣

d

dx
h(δ1x+ δ2(1− x))

∣

∣

∣

∣

≤ B1 = (δ1 − δ2) log
1− δ2
δ2

.

So we have

E [ξ1] ≤ B1E [|P0 − 1{S1 = 1}|] (1.187)

≤ B1

√

E [(P0 − 1{S1 = 1})2] , (1.188)

where (1.188) follows from the Lyapunov’s inequality.
For any estimator Â of 1{S1 = 1} based on Z0

−∞ we have

E [(P0 − 1{S1 = 1})2] ≤ E [(Â− 1{S1 = 1})2] ,

because P0 = E [1{S1 = 1}|Z0
−∞] is an MMSE estimate.

We now take the following estimator

Ân = 1







0
∑

j=−n+1

Zj ≥ nδa







,
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where n is to be specified later and δa = δ1+δ2
2 . We then have the following simple estimate:

E [(Ân − 1{S1 = 1})2] = P[1{S1 = 1} 6= Ân] (1.189)

≤ P[Ân 6= 1{S1 = 1}, S1 = · · · = S−n+1] (1.190)

+ 1− P[S1 = · · · = S−n+1] (1.191)

=
1

2
τ̄n (P[B(n, δ1) < nδa] + P[B(n, δ2) ≥ nδa]) + 1− τ̄n ,(1.192)

where B(n, δ) denotes the binomially distributed random variable. Using Chernoff bounds
we can find that for some E1 we have

P[B(n, δ1) < nδa] + P[B(n, δ2) ≥ nδa] ≤ 2e−nE1 .

Then we get
E [(Ân − 1{S1 = 1})2] ≤ 1− τ̄n(1− e−nE1) .

We now set denote for convenience:

β = − ln τ̄ = − ln(1− τ) .

and choose

n =

⌈

− 1

E1
ln

β

E1

⌉

.

Putting it all together we get

E [(Ân − 1{S1 = 1})2] ≤ 1− τ̄ · e−
β

E1
ln β

E1

(

1− β

E1

)

.

When τ → 0 we have β = τ + o(τ) and then it is not hard to obtain

E [(Ân − 1{S1 = 1})2] ≤ τ

E1
ln

τ

E1
+ o(τ ln τ) .

This proves (1.182).

1.17 Bound on |V0 − V1|
Expression (1.142) does not reveal the behavior of the V0 with τ → 0. In the CSIR case
we had an expression much easier to work with:

V1 =
1

2
(v(δ1) + v(δ2))

+

(

h(δ1)− h(δ2)

2

)2(1

τ
− 1

)

. (1.193)

This Section is devoted to proving the following result:
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Theorem 6 In the conditions of Theorem 2, assume that δ1 ≥ δ2 > 0. Then, we have

|V0 − V1| ≤ 2
√

V1δV + δV , (1.194)

where δV satisfies

δV ≤ B0 +
B0

2(1 −
√

|µ|)
ln
eB1

B0
, (1.195)

B0 =
d2(δ1||δ2)
d(δ1||δ2)

|C0 − C1| , (1.196)

B1 =

√

B0

|µ|

(

d(δ1||δ2)
∣

∣

∣

∣

ln
τ

1− τ

∣

∣

∣

∣

+
h(δ1)− h(δ2)

2|µ|

)

, (1.197)

d2(a||b) = a log2
a

b
+ (1− a) log2

1− a

1− b
. (1.198)

Finally, with τ → 0 this implies that

V0 = V1 + o

(

1

τ

)

= O

(

1

τ

)

. (1.199)

Proof: First define

δV = lim
n→∞

1

n
Var





n
∑

j=1

ξj



 , (1.200)

where ξj was defined in (1.173). Also denote

ηj = − logPZj |Sj
(Zj |Sj) ,

which then leads to
Fj = ηj + ξj .

Now notice that

E [ηj ] = log 2− C1 , (1.201)

Var





n
∑

j=1

ηj



 = nV1 +O(1) . (1.202)

So that intuitively ξj is a correction term, compared to CSIR case, and allegedly for small
τ it must be small.

As was discussed earlier, the (1.179) and the fact that E [ξj] tends to 0 with τ → 0
together imply that Pj ’s distribution is conecntrated around 0 and 1. Since E [σ20 ] can be
written as a function of P−1 this concentration will lead to an upper-bound on E [σ20 ].
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Now to the original question:

V0 = lim
n→∞

1

n
Var





n
∑

j=1

Fj



 (1.203)

= lim
n→∞

Var





1√
n

n
∑

j=1

ηj +
1√
n

n
∑

j=1

ξj



 . (1.204)

By Cauchy-Schwartz we have

Var[A+B] = Var[A] + Var[B]± 2
√

Var[A] Var[B] . (1.205)

And we also have

Var





1√
n

n
∑

j=1

ηj



 = V1 + o(1) , (1.206)

Var





1√
n

n
∑

j=1

ξj



 = δV + o(1) . (1.207)

Together from (1.204)-(1.207) we conclude (1.194).
We now move on to prove (1.195). Define a centered random variable:

ξ̂j = ξj − E [ξj ] = ξj − (C1 − C0) .

Then, we have

δV = E [ξ̂20 ] + 2
∞
∑

j=1

E [ξ̂0ξ̂j] .

Lemma 7 In the conditions of Theorem 6, we have

E [ξ̂0]
2 ≤ B0 . (1.208)

Lemma 8 In the conditions of Theorem 6, we have

E [ξ̂0ξ̂j] ≤ B1|µ|j/2 . (1.209)

Assuming these two lemmas we bound δV as follows. Set

N =

⌈

2 ln B0

B1

ln |µ|

⌉

.
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Then we use Cauchy-Schwarz for j < N and (1.209) for j ≥ N :

∞
∑

j=1

E [ξ̂0ξ̂j] ≤ (N − 1)B0 +B1

∑

j≥N

|µ|j/2 (1.210)

≤
ln B0

B1

ln
√

|µ|
B0 +

B0

1−
√

|µ|
(1.211)

≤ B0

1−
√

|µ|
ln
eB1

B0
. (1.212)

So we get, overall,

δV ≤ B0 + 2
B0

1−
√

|µ|
ln
eB1

B0
,

which is exactly (1.195). Notice that we have actually demonstrated a very slightly
stronger:

V1 + δV − 2
√

V1 · δV ≤ V0 ≤ V1 + δV + 2
√

V1 · δV .

Finally, (1.199) follows once we notice that with τ → 0

δV ≤
B0 ln

1
B0

+ o(B0 lnB0)

τ

and use Lemma 5.
Proof of Lemma 7: First notice that

E [ξ21 |Z0
−∞] = P0d2(δ1||δ1P0 + δ2(1− P0))

+(1− P0)d2(δ2||δ1P0 + δ2(1− P0)) . (1.213)

We now state a Lemma:

Lemma 9 Assume that δ1 ≥ δ2 > 0 and a, b ∈ [δ2, δ1], then

d(a||b)
d2(a||b)

≥ d(δ1||δ2)
d2(δ1||δ2)

. (1.214)

Applying this Lemma twice (with a = δ1 or δ2 and b = δ1x+ δ2x̄) we obtain:

xd2(δ1||δ1x+ δ2x̄) + x̄d2(δ2||δ1x+ δ2x̄)

≤ d2(δ1||δ2)
d(δ1||δ2)

(xd(δ1||δ1x+ δ2x̄) + x̄d(δ2||δ1x+ δ2x̄)) . (1.215)

If we substitute x = P−1 here, then from (1.213) and (1.179) we get that

E [ξ20 |Z−1
−∞] ≤ d2(δ1||δ2)

d(δ1||δ2)
E [ξ0|Z−1

−∞] .
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Averaging this we obtain1

E [ξ20 ] ≤
d2(δ1||δ2)
d(δ1||δ2)

(C1 − C0) . (1.217)

Proof of Lemma 9: We first notice that the base of the log cancels in (1.214) and
so we replace log by ln below. Next observe that Lemma follows trivially if we proved the
following two statements:

∀δ ∈ [0, 1/2] :
d(a||δ)
d2(a||δ)

is a non-increasing function of a ∈ [0, 1/2] . (1.218)

and
d(δ1||b)
d2(δ1||b)

is a non-decreasing function of b ∈ [0, δ1] . (1.219)

Steps for proving (1.218):

1. Take derivative of d2(a||δ)
d(a||δ) and require it to be non-negative. This leads to

{

2d(a||δ) + ln a
δ · ln 1−a

1−δ ≤ 0 , if a ≤ δ ,

2d(a||δ) + ln a
δ · ln 1−a

1−δ ≥ 0 , if a ≥ δ .
(1.220)

2. Now think of the expression in (1.220) as a function of δ:

fa(δ) = 2d(a||δ) + ln
a

δ
· ln 1− a

1− δ
.

It is easy to check that
fa(a) = 0 , f ′a(a) = 0 . (1.221)

So we need only to prove that

fa(δ) =

{

a ∪-convex , δ ∈ [0, a] ,

a ∩-concave , δ ∈ [a, 1/2] .
(1.222)

Indeed, if (1.222) holds then 0 will be an affine minorant for fa(δ) on [0, a] and an
affine majorant on [a, 1/2], which is exactly (1.220).

1Note that it can also be shown that analogous to (1.215) we have

xd2(δ1||δ1x+ δ2x̄) + x̄d2(δ2||δ1x+ δ2x̄)

≥
d2(δ2||δ1)

d(δ2||δ1)
(xd(δ1||δ1x+ δ2x̄) + x̄d(δ2||δ1x+ δ2x̄)) . (1.216)

which results in

E [ξ20 ] ≥
d2(δ2||δ1)

d(δ2||δ1)
(C1 − C0)

and therefore shows that (1.217) can not be improved significantly.

35



3. To prove (1.222) we analyze the second derivative of fa:

f ′′a (δ) =
2a

δ2
+

2ā

δ̄2
− 1

δ2
ln
δ̄

ā
− 2

δδ̄
− 1

δ̄2
ln
δ

a
.

We now apply the following bounds to each of the log-terms:

1− 1

x
≤ lnx ≤ x− 1 (1.223)

(the LHS bound follows from the RHS bound applied to lnx = − ln 1
x).

Application of the RHS bound of (1.223) yields

f ′′a (δ) ≤ 2a

δ2
+

2ā

δ̄2
− 1

δ2

(

δ̄

ā
− 1

)

− 2

δδ̄
− 1

δ̄2

(

δ

a
− 1

)

, (1.224)

≤ 0 whenever δ ≥ a . (1.225)

And similarly application of the LHS bound of (1.223) yields

f ′′a (δ) ≥ 2a

δ2
+

2ā

δ̄2
− 1

δ2

(

1− ā

δ

)

− 2

δδ̄
− 1

δ̄2

(

1− a

δ

)

, (1.226)

≥ 0 whenever δ ≤ a . (1.227)

4. This finishes the proof of (1.218).

Proof of (1.219):

1. Taking derivative of d(δ1||b)
d2(δ1||b) with respect to b and requiring it to be non-negative is

equivalent to

2(1 − 2b)

(

δ ln
δ

b

)(

δ̄ ln
δ̄

b̄

)

+ (δb̄ + δ̄b)

(

δ ln2
δ

b
− δ̄ ln2

δ̄

b̄

)

≥ 0 . (1.228)

2. It is convenient to introduce x = b/δ ∈ [0, 1] and then we define

fδ(x) = 2(1− 2δx)δδ̄ lnx · ln 1− δx

δ̄
+ δ(1 + x(1− 2δ))

(

δ ln2 x− δ̄ ln2
1− δx

δ̄

)

,

for which we must show
fδ(x) ≥ 0 . (1.229)

If we think of A = lnx and B = ln 1−δx
δ̄

as independent variables, then (1.228) is
equivalent to solving

2γAB + αA2 − βB2 ≥ 0 ,
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which after some manipulation (and observation that we naturally have a requirement
A ≤ 0 ≤ B) reduces to

A

B
≤ −γ

α
− 1

α

√

γ2 + αβ .

After substituting our values for A,B,α, β and γ we get that (1.228) will be shown
if we can show

lnx

ln 1−δx
δ̄

≤ − 1− 2δx

1 + x(1− 2δ)

δ̄

δ
−
(

(

1− 2δx

1− 2δx+ x

)2( δ̄

δ

)2

+
δ̄

δ

)1/2

(1.230)

3. To show (1.230) we are allowed to upper-bound lnx and ln 1−δx
δ̄

(we need an upper-
bound and not the lower-bound for the latter because lnx ≤ 0). So we use the
following two bounds correspondingly:

lnx ≤ (x− 1)− (x− 1)2/2 + (x− 1)3/3− (x− 1)4/4 + (x− 1)5/5 , (1.231)

ln y ≤ (y − 1)− (y − 1)2/2 + (y − 1)3/3 , (1.232)

both of which follow from the fact that the derivative of lnx of the corresponding
order is always negative. Applying these bounds we find that we need to prove

(x− 1)− (x− 1)2/2 + (x− 1)3/3− (x− 1)4/4 + (x− 1)5/5

δ(1 − x)− δ2(1− x)2/2 + δ3(1− x)3/3

≤ − 1− 2δx

1 + x(1− 2δ)

δ̄

δ
−
(

(

1− 2δx

1− 2δx+ x

)2( δ̄

δ

)2

+
δ̄

δ

)1/2

(1.233)

4. After a tedious algebra the (1.233) simplifies to

δ2(1− x)3

(1− δ)5
Pδ(1− x) ≥ 0 , (1.234)

where

Pδ(x) = −(4δ2 − 1)(1− δ)2/12 (1.235)

+ (1− δ)(4 − 5δ + 4δ2 − 24δ3 + 24δ4)x/24 (1.236)

+ (8− 20δ + 15δ2 + 20δ3 − 100δ4 + 72δ5)x2/60 (1.237)

− (1− δ)3(11 − 28δ + 12δ2)x3/20 (1.238)

+ (1− δ)3(1− 2δ)2x4/5 . (1.239)

5. Assume that Pδ(x0) < 0 for some x0. For all δ ∈ (0, 1/2] we can easily check that
Pδ(0) > 0 and Pδ(1) > 0. Therefore, there must be a root x1 of Pδ in (0, x0) and a
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root x2 in (x0, 1) by continuity. It is also easily checked that P ′
δ(0) > 0 for all δ. Bu

then we must have at least one root of P ′
δ in [0, x1) and at least one root of P ′

δ in
(x2, 1].

Now, P ′
δ(x) is a cubic polynomial such that P ′

δ(0) > 0. So it must have at least one
root on the negative real axis and two roots on [0, 1]. But since P ′′

δ (0) > 0, it must
be that P ′′

δ (x) also has two roots on [0, 1]. But P ′′
δ (x) is a quadratic polynomial, so

its roots are algebraic functions of δ, for which we can easily check that one of them
is always larger than 1. So, P ′

δ(x) has at most one root on [0, 1]. And therefore the
assumption was incorrect and

Pδ ≥ 0 on [0, 1] .

Proof of Lemma 8: We write first

E [ξ̂j ξ̂0] = E [ξjξ0]− (E [ξ0])
2 .

Now we can find from the definition of ξj that

E [ξj|S0
−∞, Z

j−1
−∞] = f(Pj−1, R

∗
j−1) ,

where
f(x, y) = yd(δ1||δ1x+ δ2(1− x)) + (1− y)d(δ2||δ1x+ δ2(1− x)) .

Notice the following relation:

d

dλ
H(λ̄Q+ λP ) = D(P ||λ̄Q+ λP )−D(Q||λ̄Q+ λP ) +H(P )−H(Q) .

This has two consequences. First it shows that a function

D(P ||λ̄Q+ λP )−D(Q||λ̄Q+ λP )

is monotonically decaying with λ (since it is a derivative of a concave function). Sec-
ond, we have the following general relation for the excess of the entropy above its affine
approximation:

d

dλ

∣

∣

∣

∣

λ=0

[H((1 − λ)Q+ λP )− (1− λ)H(Q)− λH(P )] = D(P ||Q) (1.240)

d

dλ

∣

∣

∣

∣

λ=1

[H((1 − λ)Q+ λP )− (1− λ)H(Q)− λH(P )] = −D(Q||P ) . (1.241)

Also it is clear that for all other λ’s the derivative is in between these two extreme values.
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First we observe that

max
x,y∈[0,1]

∣

∣

∣

∣

df(x, y)

dy

∣

∣

∣

∣

= max
x∈[0,1]

|d(δ1||δ1x+ δ2(1− x))− d(δ2||δ1x+ δ2(1− x))| (1.242)

= max(d(δ1||δ2), d(δ2||δ1)) (1.243)

= d(δ1||δ2) , (1.244)

where (1.243) is because the function under the absolute value is decreasing and (1.244) is
because we are restricted to δ2 ≤ δ1 ≤ 1

2 . On the other hand, we see that

f(x, x) = h(δ1x+ δ2(1− x))− xh(δ1)− (1− x)h(δ2) ≥ 0 . (1.245)

Comparing with (1.240) and (1.241), we have:

max
x∈[0,1]

∣

∣

∣

∣

df(x, x)

dx

∣

∣

∣

∣

= max(d(δ1||δ2), d(δ2||δ1)) (1.246)

= d(δ1||δ2) . (1.247)

Together with (1.244) this also implies (though we don’t need it):

||∇f ||2 ≤
√
5d(δ1||δ2) . (1.248)

We now return to the original question. First, we notice that:

E [ξj|S0
−∞, Z

j−1
−∞ ] = f(Pj−1, Pj−1)±B2|µ|j−1 , (1.249)

where for convenience we denote

B2 =
1

2
d(δ1||δ2)

∣

∣

∣

∣

ln
τ

1− τ

∣

∣

∣

∣

.

The (1.249) follows by observing that

Pj−1 = TZj−1
◦ · · ·TZ1

(P0) , (1.250)

R∗
j−1 = TZj−1

◦ · · ·TZ1
(R∗

0) (1.251)

and applying (1.73).
An obvious generalization of (1.249) is the following:

E [ξj|Sk
−∞, Z

j−1
−∞] = f(Pj−1, Pj−1)±B2|µ|j−1−k . (1.252)

Notice that by comparing the expression for f(x, x) with (1.179) we have

E [f(Pj−1, Pj−1)] = E [ξj] . (1.253)
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Next we show that

E [ξj|S0
−∞, Z

0
−∞] = E [ξj]± |µ| j−1

2 [2B2 +B3] , (1.254)

where

B3 =
h(δ1)− h(δ2)

2|µ| .

Denote
t(Pk, Sk)

△
= E [f(Pj−1, Pj−1)|Sk

−∞Z
k
−∞] . (1.255)

Then because of (1.247) and since Pk only affects the initial condition for Pj−1 when written
as (1.250), we have for arbitrary x0 ∈ [τ, 1− τ ]:

t(Pk, Sk) = t(x0, Sk)±B2|µ|j−k−1 . (1.256)

On the other hand, as an average of f(x, x) function t(x0, s) satisfies

0 ≤ t(x0, Sk) ≤ max
x∈[0,1]

f(x, x) ≤ h(δ1)− h(δ2) .

From here and (1.48) we have

E [t(x0, Sk)|S0
−∞Z

0
−∞] =

1

2
[t(x0, 1) + t(x0, 2)] ±

h(δ1)− h(δ2)

2
|µ|k ,

or together with (1.256):

E [t(Pk, Sk)|S0
−∞Z

0
−∞] =

1

2
[t(x0, 1) + t(x0, 2)] ±

[

h(δ1)− h(δ2)

2
|µ|k +B2|µ|j−k−1

]

.

Since this is valid for any x0 even x0 depending on Sk we can average over x0 distributed
as PPk|Sk

and get

E [t(Pk, Sk)|S0
−∞Z

0
−∞] = E [t(Pk, Sk)]±

h(δ1)− h(δ2)

2
|µ|k . (1.257)

Summing together (1.252), (1.253), (1.255), (1.256) and (1.257) we obtain that for arbitrary
0 ≤ k ≤ j − 1 we have

E [ξj|S0
−∞Z

0
−∞] = E [ξj]±

[

h(δ1)− h(δ2)

2
|µ|k + 2B2|µ|j−k−1

]

.

Setting here k = ⌊j − 1/2⌋ we obtain (1.254).

40



With the help of (1.254) we obtain

E [ξ0ξj] = E
[

ξ0E [ξj |S0
−∞, Z

0
−∞]

]

(1.258)

= E

[

ξ0

(

E [ξj]± (2B2 +B3)|µ|
j−1

2

)]

(1.259)

= (E [ξ0])
2 ± E [|ξ0|](2B2 +B3)|µ|

j−1

2 (1.260)

= (C0 − C1)
2 ±

√

E [(ξ0)2](2B2 +B3)|µ|
j−1

2 (1.261)

= (C0 − C1)
2 ±

√

B0(2B2 +B3)|µ|
j−1

2 , (1.262)

where (1.261) is a Lyapunov’s inequality and (1.262) is Lemma 7.
Finally, we have

|E [ξ̂0ξ̂j]| ≤
√

B0(2B2 +B3)|µ|
j−1

2 .

1.18 Entropy process in GEC may be not α-mixing.

The purpose of this section is to show that the process

Gj = − logP
Zj |Zj−1

1

(Zj |Zj−1
1 )

at least for some δ1, δ2 and τ has the following property:

σ{Z1, Z2, . . . Zj} = σ{Gj} ,

or in other words single value of Gj determines all of the previous Zj
1 and in particular this

means that the α-mixing coefficients for the Gj satisfy

αG(n) = 1/4 .

At the same time Gj ’s underlying time-shift transformation is a Bernoulli shift and there-
fore, Gj is ergodic and even (weakly) mixing.

Theorem 10 Assume that τ < 1/2, δ1 > δ2 and the following holds

δ21(1− δ2)
√

4(1 − δ2)(1 − δ1)τ2 + (1− τ)2(δ1 − δ2)2

> (δ2 − 2δ1δ2 + δ21)(δ1 − δ2)(1 − τ) + (1− δ1)
2δ2
√

4δ1δ2τ2 + (1− τ)2(δ1 − δ2)2 .(1.263)

Then, (Pj−1, Zj) can be computed from Pj and (Rj−1, Zj) can be computed from Rj . Con-
sequently, {Fs, Zs} is a function of Ft for s ≤ t and similarly for the {Gs, Zs} and Gt.
Finally, for the α-mixing coefficients this implies

αP (n) = αR(n) = αF (n) = αG(n) = 1/4 ∀n ≥ 0 .
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Remark: Condition (1.263) is satisfied, for example, for δ2 = 0. In general, for any fixed
δ1 and τ , (1.263) holds for δ2 sufficiently small. For example, for δ1 = 1/2 and τ = 0.1 we
have δ2 ≤ 0.025.

Proof: We will only consider the case of (Pj , Fj , Zj). First, let us show that if (Pj−1, Zj)
is computable from Pj then all the other claims follow. Indeed, as shown above, (Pj , Zj+1)
is a bijective function of Fj+1. Therefore, Fj+1 determines Pj and, hence, by the claim of
the theorem, determines (Pj−1, Zj) which is Fj . So we have

αP (n) = αF (n) = 1/4.

By (1.61) we have
Pj = TZj

(Pj−1) .

Define two fixed points (see Fig. 1.1 for an illustration):

T1(x1) = x1 , (1.264)

T0(x0) = x0 . (1.265)

Since almost surely there are infinitely many Zk = 1 among −∞ < k < j it is clear
from recursion (1.61) that almost surely Pj belongs to the interval (x0, x1). At the same
time both operators T0 and T1 map (x0, x1) into itself. Suppose that

T0(x1) < T1(x0) . (1.266)

In this case it is easy to see that

T0(x0, x1) ∩ T1(x0, x1) = ∅ .
But then knowing the value of TZj

(Pj−1) we can exactly determine which operator was
applied and what was the value of Pj−1. Finally, the condition (1.266) after some algebra
reduces to (1.263).

To show the claim about (Rj, Gj , Zj) we only need to notice that R0 = 1/2 and x0 <
1/2 < x1. Then, Rj belongs to (x0, x1) and the same reasoning applies. QED.
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