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Abstract—Channel dispersion plays a fundamental role in
assessing the backoff from capacity due to finite blocklength.
This paper analyzes the channel dispersion for a simple channel
with memory: the Gilbert-Elliott communication model in which
the crossover probability of a binary symmetric channel evolves
as a binary symmetric Markov chain, with and without side
information at the receiver about the channel state. With side
information, although capacity is invariant to the chain dynamics,
dispersion is shown to be the sum of two terms: due to the
Markov chain dynamics and due to the the randomness in the
error generation, respectively.

I. INTRODUCTION

The fundamental performance limit for a channel in the fi-
nite blocklength regime is M∗(n, ε), the maximum cardinality
of a codebook of blocklength n which can be decoded with
block error probability no greater than ε. Denoting the channel
capacity by C, the approximation

logM∗(n, ε)
n

≈ C (1)

is asymptotically tight for channels that satisfy the strong
converse. However for many channels, error rates and block-
length ranges of practical interest, (1) is too optimistic. It has
been shown in [1] that a much tighter approximation can be
obtained by defining a second parameter referred to as the
channel dispersion:

Definition 1: The dispersion V (measured in squared infor-
mation units per channel use) of a channel with capacity C is
equal to

V = lim
ε→0

lim sup
n→∞

1
n

(nC − logM∗(n, ε))2

2 ln 1
ε

. (2)

In conjunction with the channel capacity C, channel dispersion
emerges as a powerful analysis and design tool [1]. In order
to achieve a given fraction η of capacity with a given error
probability, the minimal required blocklength is proportional
to V/C2, namely1,

n &

(
Q−1(ε)
1− η

)2
V

C2
. (3)
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1As usual, Q(x) =
R∞
x

1√
2π
e−t

2/2 dt .

More specifically, [1] shows that for simple memoryless
channels the two-term expansion

logM∗(n, ε) = nC −
√
nV Q−1(ε) +O(log n) , (4)

gives an excellent approximation (unless the blocklength is
very small). The expansion (4) was first proved for a discrete
memoryless channel by Strassen [2]. The new upper and lower
bounds found in [1] allowed us to demonstrate the remarkable
tightness of the approximation, prove (4) for the additive white
Gaussian noise channels, refine Strassen’s proof, and improve
the bounds on the O(log n) term (see also [3], [4]).

In this paper, we initiate the study of the dispersion of
channels subject to fading with memory. For coherent channels
that behave ergodically, channel capacity is independent of
the fading dynamics [5] since a sufficiently long codeword
sees a channel realization whose empirical statistics have
no randomness. In contrast, channel dispersion does depend
on the extent of the fading memory since it determines
the blocklength required to ride out not only the noise but
the channel fluctuations due to fading. One of the simplest
models that incorporates fading with memory is the Gilbert-
Elliott channel (GEC): a binary symmetric channel where the
crossover probability is a binary Markov chain [6], [7]. The
results and required tools depend crucially on whether the
channel state is known at the decoder.

II. CHANNEL MODEL

Let {Sj}∞j=−∞ be a homogeneous Markov process with
states {1, 2}, transition probabilities2

P[S2 = 1|S1 = 1] = P[S2 = 2|S1 = 2] = 1− τ , (5)
P[S2 = 2|S1 = 1] = P[S2 = 1|S1 = 2] = τ , (6)

and initial distribution

P[S1 = 1] = P[S1 = 2] = 1/2 . (7)

Now for δ1, δ2 ∈ [0, 1] we define {Zj}∞j=−∞ as conditionally
independent given S∞−∞ and

P[Zj = 0|Sj = s] = 1− δs , (8)
P[Zj = 1|Sj = s] = δs . (9)

2The results in this paper can be readily generalized at the expense of more
cumbersome expressions to Gilbert-Elliott channels with asymmetric Markov
chains.



The Gilbert-Elliott channel acts on an input binary vector Xn
1

by adding (modulo 2) the vector Zn1 :

Y n1 = Xn
1 + Zn1 . (10)

III. CAPACITY

The capacity C1 of a Gilbert-Elliott channel with the state
Sn known perfectly at the receiver depends only on the
stationary distribution PS1 and is given by

C1 = log 2− E [h(δS1)] (11)
= log 2− P[S1 = 1]h(δ1)− P[S1 = 2]h(δ2) , (12)

where h(x) = −x log x− (1− x) log(1− x) is the binary en-
tropy function. In the symmetric-chain special case considered
in this paper,

C1 = log 2− 1
2
h(δ1)− 1

2
h(δ2). (13)

When the state Sn is not known at the receiver, the capacity
is given by [8]

C0 = log 2− E
[
h(P[Z0 = 1|Z−1

−∞])
]

(14)

= log 2− lim
n→∞

E
[
h(P[Z0 = 1|Z−1

−n])
]
. (15)

Throughout the paper we use subscripts 1 and 0 to denote
when the state Sn is known and is not known, respectively.

IV. MAIN RESULTS

Before showing the expansion for the Gilbert-Elliott channel
we recall the corresponding result for the binary symmetric
channel (BSC) [1], [3].

Theorem 1: The dispersion of the BSC with crossover
probability δ is

V (δ) = δ(1− δ) log2 1− δ
δ

. (16)

Furthermore, provided that V (δ) > 0 and regardless of
whether ε ∈ (0, 1) is a maximal or average probability of
error we have

logM∗(n, ε) = n(log 2− h(δ))−
√
nV (δ)Q−1(ε)

+
1
2

log n+O(1) . (17)

Theorem 2: The dispersion of the Gilbert-Elliott channel
with state Sn known at the receiver, and state transition
probability τ ∈ (0, 1) is

V1 =
1
2

(V (δ1) + V (δ2))

+
(
h(δ1)− h(δ2)

2

)2(1
τ
− 1
)
. (18)

Furthermore, provided that V1 > 0 and regardless of whether
ε ∈ (0, 1) is a maximal or average probability of error we have

logM∗(n, ε) = nC1 −
√
nV1Q

−1(ε) +O(log n) , (19)

where C1 is given in (13). Moreover, (19) holds even if the
transmitter knows the full state sequence Sn in advance (i.e.,
non-causally).

Note that the condition V1 > 0 for (19) to hold ex-
cludes only some degenerate cases for which we have:
M∗(n, ε) = 2n (when both crossover probabilities are 0 or
1) or M∗(n, ε) = b 1

1−εc (when δ1 = δ2 = 1/2).
To formulate the result for the case of no state information

at the receiver, we define the stationary process:

Fj = − logPZj |Zj−1
−∞

(Zj |Zj−1
−∞) . (20)

Theorem 3: The dispersion of the Gilbert-Elliott channel
with no state information and state transition probability τ ∈
(0, 1) is

V0 = Var [F0] + 2
∞∑
i=1

E [(Fi − E [Fi])(F0 − E [F0])] . (21)

Furthermore, provided that V0 > 0 and regardless of whether
ε is a maximal or average probability of error, we have

logM∗(n, ε) = nC0 −
√
nV0Q

−1(ε) +O(log n) , (22)

where C0 is given by (14).
It can be shown that the process Fj has a smooth spectral

density SF (f), and that

V0 = SF (0) , (23)

which provides a way of computing V0 by a Monte Carlo
simulation paired with a spectral estimator. Another method
is to notice that the terms in the infinite sum (21) decay as
(1−2τ)j . Hence, given any prescribed precision it is sufficient
to compute only finitely many terms in (21). Each term can
in turn be computed with required precision by noting that
PZj |Zj−1

−∞
[1|Zj−1

−∞ ] is a Markov process with a simple transition
kernel.

The proof of Theorem 2 is outlined in the appendix, while
the proof of Theorem 3 being somewhat more technical can
be found in [10].

V. DISCUSSION

The natural application of expansion (4) is in approximating
the maximal achievable rate. Unlike the BSC case (17), the
prelog constant for the GEC is unknown and therefore a nat-
ural choice for the approximation would be 0 log n. However,
in view of robustness of the prelog in (17) to variation in
crossover probability, we chose the following expression for
numerical comparison

C0,1 −
√
V0,1

n
Q−1(ε) +

1
2n

log n . (24)

To demonstrate the tightness of (24) we have computed
numerically the upper and lower bounds developed in the
course of the proof of Theorems 2 and 3. The comparison
is shown on Fig. 1. For the case of state known (left plot) the
achievability bound is (45) and the converse bound is (62),
see the appendix. For the state not known (right plot), we
computed the capacity and dispersion:

C0 ≈ 0.280 bit , (25)
V0 ≈ 2.173 bit2 . (26)
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Fig. 1. Rate-blocklength tradeoff at block error rate ε = 10−2 for the Gilbert-Elliott channel with parameters δ1 = 1/2, δ2 = 0 and state transition
probability τ = 0.1. The left (right) plot is for the case when the state is known (not known) at the receiver.

The plots in Fig. 1 suggest that not only do our bounds
tightly describe the value of 1

n logM∗(n, ε), but also that the
simple expression (24) is precise enough for addressing many
practical questions.

Let us discuss two such questions. First, for the state
known case, capacity C1 is independent of the state transition
probability τ ; see (13). However, as shown by Theorem 2, the
channel dispersion V1 does indeed depend on τ . But then (18)
implies that this minimal blocklength behaves as O

(
1
τ

)
when

τ → 0. This has an intuitive explanation: to achieve the
full capacity of a Gilbert-Elliott channel we need to wait
until the influence of the random initial state “washes away”.
Since transitions occur on average every 1

τ channel uses, the
blocklength should be O

(
1
τ

)
as τ → 0. Comparing (16)

and (18) we can ascribe a meaning to each of the two terms
in (18): the first one gives the dispersion due to the usual BSC
noise, whereas the second one is due to memory in the channel.

Next, consider the case in which the state is not known at the
decoder. As shown in [8], when the state transition probability
τ decreases to 0 the capacity C0(τ) increases to C1. This is
sometimes interpreted as implying that if the state is unknown
at the receiver slower dynamics are advantageous. Our refined
analysis, however, shows that this is true only up to a point.

Indeed, fix a rate R < C1 and an ε > 0. In view of the
tightness of (24), the minimum blocklength, as a function
of state transition probability τ needed to achieve rate R is
approximately given by

N0(τ) ≈ V0(τ)
(

Q−1(ε)
C0(τ)−R

)2

, (27)

provided that C0(τ) > R, of course.
Heuristically, there are two effects: when the state transition

probability τ decreases we can predict the current state better
and therefore, the capacity grows; on the other hand, as
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Fig. 2. Minimal blocklength, needed to achieve R = 0.4 bit and ε = 0.01 as
a function of state transition probability τ . The channel is the Gilbert-Elliott
with no state information at the receiver, δ1 = 1/2, δ2 = 0.

discussed above, when τ decreases we also have to wait longer
until the chain “forgets” the initial state. The trade-off between
these two effects is demonstrated on Fig. 2, where we plot
N0(τ) for the same parameters as in Fig. 1.

VI. CONCLUSION

In this paper, we have proved an approximation of the
form (4) for the Gilbert-Elliott channel. In Fig. 1, we have
illustrated the relevance by comparing it numerically with
bounds. As we have found previously in [1] and [3], expan-
sions such as (4) have practical importance by providing tight
approximations of the speed of convergence to capacity, and by
allowing for estimation of the blocklength needed to achieve



a given fraction of capacity, as given by (3).
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finite blocklength regime,” submitted to IEEE Trans. Inform. Theory, Nov.
2008.

[2] V. Strassen, “Asymptotische Abschätzungen in Shannon’s Informa-
tionstheorie,” Trans. Third Prague Conf. Information Theory, 1962,
Czechoslovak Academy of Sciences, Prague, pp. 689-723.

[3] Y. Polyanskiy, H. V. Poor and S. Verdú, “New channel coding achievabil-
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APPENDIX
PROOF OF THEOREM 2

For our analysis we need to invoke a few relevant results
from [1] and [3]. Consider an abstract channel PY |X ; for an
arbitrary input distribution PX define an (extended) random
variable

i(X;Y ) = log
dPY |X(Y |X)
dPY (Y )

, (28)

where PY =
∫
dPXPY |X=x.

Theorem 4 (DT bound): For an arbitrary PX there exists a
code with M codewords and average probability of error ε
satisfying

ε ≤ E
[
exp

{
−
[
i(X;Y )− log

M−1

2

]+}]
. (29)

The optimal performance of binary hypothesis testing plays
an important role in our development. Consider a random
variable W taking values in a set W which can take probability
measures P or Q. A randomized test between those two
distributions is defined by a random transformation PZ|W :
W 7→ {0, 1} where 0 indicates that the test chooses Q. The
best performance achievable among those randomized tests is
given by3

βα(P,Q) = min
∑
w∈W

Q(w)PZ|W (1|w) , (30)

3We write summations over alphabets for simplicity; however, all of our
general results hold for arbitrary probability spaces.

where the minimum is taken over all probability distributions
PZ|W satisfying

PZ|W :
∑
w∈W

P (w)PZ|W (1|w) ≥ α . (31)

The minimum in (30) is guaranteed to be achieved by the
Neyman-Pearson lemma. Thus, βα(P,Q) gives the minimum
probability of error under hypothesis Q if the probability of
error under hypothesis P is not larger than 1 − α. It is easy
to show that (e.g. [9]) for any γ > 0

α ≤ P
[
dP

dQ
≥ γ

]
+ γβα(P,Q). (32)

On the other hand,

βα(P,Q) ≤ 1
γ0
, (33)

for any γ0 that satisfies

P
[
dP

dQ
≥ γ0

]
≥ α . (34)

Virtually all known converse results for channel coding
follow from the next theorem by a judicious choice of QY |X
and a lower bound on β, see [1].

Theorem 5 (meta-converse): Consider two different ab-
stract channels PY |X and QY |X defined on the same input and
output spaces. For a given code (possibly randomized encoder
and decoder pair), let

ε = average error probability with PY |X

ε′ = average error probability with QY |X

PX = QX = encoder output distribution with
equiprobable codewords.

Then,
β1−ε(PXY , QXY ) ≤ 1− ε′ , (35)

where PXY = PXPY |X and QXY = QXQY |X .
Proof of Theorem 2: Achievability: We choose PXn

equiprobable. Since the output of the channel is (Y n, Sn) we
need to write down the expression for i(Xn;Y nSn). To do
that we define an operation on R× {0, 1}:

a[b] =

{
0 , b = 0 ,
a , b = 1

. (36)

Then we obtain

i(Xn;Y nSn) = log
PY n|XnSn

PY n|Sn

(37)

= n log 2 +
n∑
j=1

log
(
δ
[Zj ]
Sj

+ δ̄
[1−Zj ]
Sj

)
(38)

where (37) is by independence of Xn and Sn and (38) is
because under equiprobable Xn we have that PY n|Sn is also
equiprobable. Using (38) we can find

E [i(Xn;Y nSn)] = nC1 and (39)
Var[i(Xn;Y nSn)] = nV1 +O(1) . (40)



By (38) we see that i(Xn;Y nSn) is a sum of weakly
dependent random variables. For such a process, Tikhomirov’s
theorem [11] provides an extension of the Berry-Esseen in-
equality, namely:∣∣∣P [i(Xn;Y nSn) > nC1 +

√
nV1λ

]
−Q(λ)

∣∣∣ ≤ B2 log n√
n

.

(41)
In addition, similarly to Lemma 45, Appendix G of [1], we
can show for arbitrary A:

E [exp{−i(Xn;Y nSn) +A} · 1{i(Xn;Y nSn) ≥ A}] ≤
B1 log n√

n
. (42)

In (41) and (42), B1 and B2 are fixed constants, which do not
depend on A or λ.

Finally, we set

log
M−1

2
= nC1 −

√
nV1Q

−1(εn) , (43)

where

εn = ε− (B1 +B2) log n√
n

. (44)

Then, by Theorem 4 we know that there exists a code with M
codewords and average probability of error pe bounded by4

pe ≤ E
[
exp

{
−
[
i(Xn;Y nSn)− log

M−1

2

]+}]
(45)

≤ P
[
i(Xn;Y nSn) ≤ log

M−1

2

]
+
B1 log n√

n
(46)

≤ εn +
(B1 +B2) log n√

n
(47)

≤ ε , (48)

where (46) is by (42) with A = log M−1
2

, (47) is by (41)
and definition of log M−1

2
and (48) is by (44). Therefore, by

invoking Taylor’s expansion in (43) we have

logM∗(n, ε) ≥ logM ≥ nC1 −
√
nV1Q

−1(ε) +O(log n) .
(49)

Converse: In the converse part we will assume that the
transmitter has access to the full state sequence Sn and then
generates Xn based on both the input message and Sn. Take
the best such code with M∗(n, ε) codewords and average
probability of error no greater than ε. We now propose to treat
the pair (Xn, Sn) as a combined input to the channel and the
pair (Y n, Sn) as a combined output, available to the decoder.
Note that in this situation, the encoder induces a distribution
PXnSn and is necessarily randomized because the distribution
of Sn is given by the output of the Markov chain and is
independent of the transmitted message W .

To apply Theorem 5 we choose the auxiliary channel that
passes Sn unchanged and generates Y n equiprobably:

QY n|XnSn(yn, sn|xn) = 2−n . (50)

4In the statement of the theorem we claimed a stronger result about maximal
probability of error. Its proof is only slightly different and is omitted.

Note that by the constraint on the encoder, Sn is independent
of the message W . Moreover, under the Q-channel the Y n is
also independent of W and we clearly have

ε′ ≥ 1− 1
M∗

. (51)

Therefore by Theorem 5 we obtain

β1−ε (PXnY nSn , QXnY nSn) ≤ 1
M∗

. (52)

To lower bound β1−ε (PXnY nSn , QXnY nSn) via (32) we
notice that

log
PXnY nSn

QXnY nSn

= log
PY n|XnSnPXnSn

QY n|XnSnQXnSn

(53)

= log
PY n|XnSn

QY n|XnSn

(54)

= i(Xn;Y nSn) , (55)

where (53) is because PXnSn = QXnSn and (55) follows
simply by noting that PY n|Sn in (37) is also equiprobable.
Now set

log γ = nC1 −
√
nV1Q

−1(εn) , (56)

where this time

εn = ε+
B2 log n√

n
+

1√
n
. (57)

By (32) we have for α = 1− ε:

β1−ε ≥ 1
γ

(
1− ε− P

[
log

PXnY nSn

QXnY nSn

≥ log γ
])

(58)

=
1
γ

(1− ε− P [i(Xn;Y nSn) ≥ log γ]) (59)

≥ 1
γ

(
1− ε− (1− εn)− B2 log n√

n

)
(60)

=
1√
nγ

, (61)

where (59) is by (55), (60) is by (41) and (61) is by (57).
Finally,

logM∗(n, ε) ≤ − log β1−ε (62)

≤ log γ +
1
2

log n (63)

= nC1 −
√
nV1Q

−1(εn) +
1
2

log n (64)

= nC1 −
√
nV1Q

−1(ε) +O(log n), (65)

where (62) is just (52), (63) is by (61), (64) is by (56) and (65)
is by Taylor’s formula applied to Q−1 using (57) for εn.


