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Abstract

Channel dispersion plays a fundamental role in assessedpdbkoff from capacity due to finite
blocklength. This paper analyzes the channel dispersioa &mple channel with memory: the Gilbert-
Elliott communication model in which the crossover proliagbdf a binary symmetric channel evolves
as a binary symmetric Markov chain, with and without side@infation at the receiver about the channel
state. With side information, dispersion is equal to theage of the dispersions of the individual binary
symmetric channels plus a term that depends on the Markaw clymamics, which do not affect the
channel capacity. Without side information, dispersioadsial to the spectral density at zero of a certain
stationary process, whose mean is the capacity. In additienfinite blocklength behavior is analyzed

in the non-ergodic case, in which the chain remains in thialrstate forever.
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I. INTRODUCTION

The fundamental performance limit for a channel in the fibitecklength regime is\/*(n, ¢),
the maximal cardinality of a codebook of blocklengttwhich can be decoded with block error
probability no greater than Denoting the channel capacity l6y, the approximation

log M*(n, €)

n

~ (C (1)

is asymptotically tight for channels that satisfy the sg@onverse. However for many channels,
error rates and blocklength ranges of practical inter&$tis(too optimistic. It has been shown in
[1] that a much tighter approximation can be obtained by dejim second parameter referred
to as the channel dispersion:

Definition 1: The dispersio/ (measured in squared information units per channel use) of a

channel with capacity’ is equal t3

- * 2
V= limlimsup 1 (nC —log .Ml (n,©)) .
e—0 5 00 N 21n p

(2)

In conjunction with the channel capacity, channel dispersion emerges as a powerful analysis
and design tool; for example in [1] we demonstrated how chbdrspersion can be used to
assess the efficiency of practical codes and optimize sydesign. One of the main advantages
of knowing the channel dispersion lies in estimating theimal blocklength required to achieve
a given fractiony of capacity with a given error probability?®

Q') V
> _
nz < =) & 3
The rationale for Definition 1 and estimate (3) is the follog/iexpansion

log M*(n,€) = nC — VnVQ '(e) + O(logn) . 4)

As shown in [1], in the context of memoryless channels (4egian excellent approximation
for blocklengths and error probabilities of practical netst.
Traditionally, the dependence of the optimal coding rateblmtklength has been associated

with the question of computing the channel reliability ftion. Although channel dispersion is

1Capacity and all rates in this paper are measured in inféomainits per channel use.
2All logarithms, log, and exponents:xp, in this paper are taken with respect to an arbitrary fixee pagich also determines
the information units.

L eft2/2 dt.

*As usual,Q(x) = [7 —=
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equal to the reciprocal of the second derivative of the lodltg function at capacity, determining

the reliability function is not necessary to obtain charglispersion, which is in fact far easier.
Moreover, for determining the blocklength required to agkia given performance predictions
obtained from error-exponents may be far inferior compaoetthose obtained from (3) (e.g. [1,
Table 1]).

In this paper, we initiate the study of the dispersion of ¢teds subject to fading with memory.
For coherent channels that behave ergodically, channelctdspis independent of the fading
dynamics [2] since a sufficiently long codeword sees a charesization whose empirical
statistics have no randomness. In contrast, channel dispedoes depend on the extent of the
fading memory since it determines the blocklength requteedde out not only the noise but
the channel fluctuations due to fading. One of the simplestaisothat incorporates fading with
memory is the Gilbert-Elliott channel (GEC): a binary syntritechannel where the crossover
probability is a binary Markov chain [3], [4]. The resultscarequired tools depend crucially on
whether the channel state is known at the decoder.

In Section Il we define the communication model. Section éNiews the known results for
the Gilbert-Elliott channel. Then in Section IV we preseat main results for the ergodic case:
an asymptotic expansion (4) and a numerical comparisomsigaght upper and lower bounds
on the maximal rate for fixed blocklength. After that, we mdweanalyzing the non-ergodic
case in Section V thereby accomplishing the first analysitb®ffinite-blocklength maximal rate
for a non-ergodic channel: we prove an expansion similai)p gnd compare it numerically

with upper and lower bounds.

[I. CHANNEL MODEL
Let {S;}32, be a homogeneous Markov process with stdteg} and transition probabilities
P[Sy =181 =1]=P[S2 =2|S1=2]=1—-7, (5)
P[Sy =2|S; =1]=P[S; =1|5; =2] =T. (6)
Now for 0 < 6,6, < 1 we define{Z;}32, as conditionally independent givel; }52, and
P[Z;=0]S; =s] = 1—0s, (7)
Pl Z;=1]S; =5 = 6. (8)
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The Gilbert-Elliott channel acts on an input binary vectot by adding (modulo 2) the vector
AL
Yr=X"+27". 9)
The description of the channel model is incomplete withgécgying the distribution of5;:
PS =1] = pi, (10)
PS1=2] = pp=1-p1. (11)
In this way the Gilbert-Elliott channel is completely sfesd by the parameterg-, 61, ds, p1).
There are two drastically different modes of operation @& @ilbert-Elliott channél When

7 > 0 the chainS; is ergodic and for this reason we consider only the stationasep; = 1/2.

On the other hand, when= 0 we will consider the case of arbitrapy .

[1l. PREVIOUS RESULTS
A. Capacity of the Gilbert-Elliott Channel
The capacityC; of a Gilbert-Elliott channet > 0 and state5™ known perfectly at the receiver
depends only on the stationary distributiél, and is given by
C1 = log2—E[h(dg,)] (12)
= log2 — P[S; = 1]h(01) — P[S; = 2]h(d2), (13)
whereh(z) = —xlog x—(1—x)log(1—z) is the binary entropy function. In the symmetric-chain

special case considered in this paper, both states arelyetjkaly and

G = log2— %h(&l) - %h(éz). (14)

WhenT > 0 and stateS™ is not known at the receiver, the capacity is given by [5]
Co = log2—E [h(P[Z = 1|Z-1))] (15)
= log2— lim E [n(P[Zo = 11Z2)))] (16)
Throughout the paper we use subscriptand 0 for capacity and dispersion to denote the

cases when the state" is known and is not known, respectively.

“We omit the case of = 1 which is simply equivalent to two parallel binary symmetcitannels.
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Recall that for0 < ¢ < 1 the e-capacity of the channel is defined as

1
C. = liminf — log M*(n, €) . (17)

n—oo N
In the caser = 0 and regardless of the state knowledge at the transmitteecmiver, the
e-capacity is given by (assumingd;) > h(ds))

log2 — h(d1), €<p,
o= () ' (18)

lOgQ—h(ég), €>D1.
Other than the case of smédl, — 4, |, solved in [11], the value of thecapacity at the breakpoint

€ = p; IS in general unknown (see also [12]).

B. Bounds

For our analysis of channel dispersion we need to invoke ar&devant results from [1].
These results apply to arbitrary blocklength but as in [1]gixee them for an abstract random
transformationPyx with input and output alphabet& and B, respectively. An(M,¢) code
for an abstract channel consists of a codebook withcodewords(cy, ..., cy) € AY and a
(possibly randomized) decod%‘y :B+— {0,1,... M} (where ‘0’ indicates that the decoder

chooses “error”), satisfying

M
1
-+ > Pyx(mlen) <e. (19)
m=1
In this paper, bottA andB correspond td0, 1}", wheren is the blocklength.
Define the (extended) random variable

Pyix(Y|X)
Py(Y)

where Py (y) = > .a Px(2)Py|x(y|z) and Px is an arbitrary input distribution over the input
alphabetA.

Theorem 1 (DT bound [1])FFor an arbitraryPy there exists a code with/ codewords and

i(X;Y) =log (20)

average probability of error satisfying

e<E [exp {— [i(X:Y) ~ 1og ?FH . 21)

®In this paper we only consider the case of discrete alphabet$1] has more general results that apply to arbitrarpatiets.
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Among the available achievability bounds, Gallager’'s mndtoding bound [6] does not yield
the correcty/n term in (4) even for memoryless channels; Shannon’s (orskainis) bound is
always weaker than Theorem 1 [1], and the RCU bound in [1] reldrathan (21) to specialize
to the channels considered in this paper.

The optimal performance of binary hypothesis testing pysmportant role in our develop-
ment. Consider a random variablg taking values in a sé{V, distributed according to either
probability measurd” or (). A randomized test between those two distributions is déflnea
random transformatio®;,, : W — {0, 1} where0 indicates that the test choos@s The best

performance achievable among those randomized testsesa iy

Ba(P,Q) =min > Q(w) Pz (1|w), (22)

weW
where the minimum is taken over all,y, satisfying
> P(w)Pyw(ljw) > a. (23)
weW

The minimum in (22) is guaranteed to be achieved by the NeyRearson lemma. Thus,
Ba(P, Q) gives the minimum probability of error under hypothegisf the probability of error
under hypothesi$’ is not larger thanl — «. It is easy to show that (e.g. [7]) for any> 0

P
a<P {@ > 7} +78.(P, Q). (24)
On the other hand,
1
Ba(P,Q) < — (25)
70
for any v, that satisfies
P
p{@z%} >a. (26)

Virtually all known converse results for channel codingc(uding Fano’s inequality and
various sphere-packing bounds) can be derived as coedl&withe next theorem by a judicious
choice ofQy|x and a lower bound ow, see [1]. In addition, this theorem gives the strongest

bound non-asymptotically.
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Theorem 2 (meta-conversefonsiderPy x andQy|x defined on the same input and output

spaces. For a given code (possibly randomized encoder arudieiepair), let

€ = average error probability with Py x,
¢ = average error probability with Qy|x,
Px =Qx = encoder output distribution with

equiprobable codewords.

Then,
Bie(Pxy,Qxy) <1—¢, (27)

Wherepxy = PXpy|X and QXY = QXQY|X-

IV. ERGODIC CASE 7 >0
A. Main results

Before showing the asymptotic expansion (4) for the Gillghibtt channel we recall the
corresponding result for the binary symmetric channel (BRE

Theorem 3:The dispersion of the BSC with crossover probabilitis

V(8) = 6(1 — §) log? 1%5 | (28)

Furthermore, provided that' (§) > 0 and regardless of whethér < ¢ < 1 is a maximal or

average probability of error we have

log M*(n,e) = n(log2 — h(8)) —/nV(5)Q ()
+%logn+0(1). (29)
The first new result of this paper is:
Theorem 4:Suppose that the state sequenteis stationaryP[S; = 1] = 1/2, and ergodic,

0 < 7 < 1. Then the dispersion of the Gilbert-Elliott channel withtstS™ known at the receiver

is

Vo= %(v«sl) + V() + i (h(81) = h(5))* (3 - 1) : (30)

T
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Furthermore, provided thaf; > 0 and regardless of whethér< ¢ < 1 is a maximal or average

probability of error we have

log M*(n, €) = nCy — /nV1Q ' (¢) + O(logn), (32)

where C; is given in (14). Moreover, (31) holds even if the transmitt@ows the full state
sequence™ in advance (i.e., non-causally).

Note that the conditioi; > 0 for (31) to hold excludes only some degenerate cases forrwhic
we have:M*(n,e) = 2" (when both crossover probabilities are 0 or 1)Mdr(n,e) = [
(whend; = 05 = 1/2).

The proof of Theorem 4 is given in Appendix A. It is interegtito notice that it is the
generality of Theorem 2 that enables the extension to the ahstate known at the transmitter.

To formulate the result for the case of no state informatibitha receiver, we define the

following stationary process:
Fy = —log Py 1(Z;1Z25) . (32)
Theorem 5:Suppose that < 7 < 1 and the state sequencé® is started at the stationary
distribution. Then the dispersion of the Gilbert-Elliottamnel with no state information is

Vo = Var F0+2ZE F, —E[F))(Fy—E[F))] . (33)

i=1

Furthermore, provided th&t > 0 and regardless of whethers a maximal or average probability

of error, we have
log M*(n,€) = nCy — v/nVoQ ' (e) + o(v/n) , (34)

where(Cj is given by (15).
It can be shown that the process has a spectral densityy(f), and that [10]

Vo = Sr(0), (35)

which provides a way of computing; by Monte Carlo simulation paired with a spectral
estimator. Alternatively, since the terms in the series) @&cay as(1 — 27)/, it is sufficient
to compute only finitely many terms in (33) to achieve any priéed approximation accuracy.
In this regard note that each term in (33) can in turn be coatpwith arbitrary precision by

noting thatP, ;- 1[1]1277}] is a Markov process with a simple transition kernel.
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Capacity

Converse

Achievability

Capacity

\
Normal approximation

Rate R, bit/ch.use
Rate R, bit/ch.use

Converse

1 / . "";:':':,Sfi'f"::j:::;
N Achievability:
Vg Normal:approximation
% 500 00 B0 200 200 3000 300 4000 — 000 D00 2000 200 @00 300 4000
Blocklength, n Blocklength, n
(a) StateS™ known at the receiver (b) No state information

Fig. 1. Rate-blocklength tradeoff at block error rate: 10~2 for the Gilbert-Elliott channel with parametefs = 1/2, 6 = 0

and state transition probability = 0.1.

Regarding the computation @f; it was shown in [5] that
log2 — E[h(P[Z; = 1|27 1))] < Co < log2 ~ E[h(P[Z; = 1|1Z27",S0))],  (36)

where the bounds are asymptotically tight jas- co. The computation of the bounds in (36)
is challenging because the distributionsi#Z; = 1|2 ~'] andP[Z; = 1|Z]~", S,] consist of2/
atoms and therefore are impractical to store exactly. Riogndff the locations of the atoms to
fixed quantization levels inside interv@, 1], as proposed in [5], leads in general to unspecified
precision. However, for the special case @fd, < 1/2 the functionh(-) is monotonically
increasing in the range of values of its argument and it cashimsvn that rounding down (up)
the locations of the atoms shifts the locations of all tharet@mn subsequent iterations down
(up). Therefore, if rounding is performed this way, the dumad versions of the bounds in (36)
are also guaranteed to sandwiCh.

The proof of Theorem 5 is given in Appendix B.

B. Discussion and numerical comparisons

The natural application of (4) is in approximating the maairachievable rate. Unlike the BSC

case (29), the coefficient of tHegn term (or “prelog”) for the GEC is unknown. However, the
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TABLE |

CAPACITY AND DISPERSION FOR THEGILBERT-ELLIOTT CHANNELS IN FIG. 1

State information| Capacity | Dispersion
known 0.5 bit | 2.25 bif
unknown 0.280 bit | 2.173 bit
Parametersd; = 1/2,52, = 0,7 = 0.1.

fact that% log n in (29) is robust to variation in crossover probabilitystiatural to conjecture that
the unknown prelog for GEC is aI%o With this choice, we arrive to the following approximation

which will be used for numerical comparison:

1
logM*ne — 4/ — Q —|——logn (37)

with (C,V) = (C4, V1), when the state is known at the receiver, a0dV') = (Co, V5), when
the state is unknown.

The approximation in (37) is obtained through new non-agptippupper and lower bounds
on the quantity% log M*(n, €), which are given in Appendices A and B. The asymptotic anglys
of those bounds led to the approximation (37). It is natuwatampare those bounds with the
analytical two-parameter approximation (37). Such comsparis shown in Fig. 1. For the case
of state known at the receiver, Fig. 1(a), the achievabldiiynd is (98) and the converse bound
is (115). For the case of unknown state, Fig. 1(b), the aahiéty bound is (152) and the
converse is (168). The achievability bounds are computedhi® maximal probability of error
criterion, whereas the converse bounds are for the avenagmlplity of error. The values of
capacity and dispersion, needed to evaluate (37), are stimedan Table I.

Two main conclusions can be drawn from Fig. 1. First, we ses tlur bounds are tight
enough to get an accurate estimatelabg 1/*(n, ) even for moderate blocklengths Second,
knowing only two parameters, capacity and dispersion,ddaadapproximation (37), which is
precise enough for addressing the finite-blocklength forefgtal limits even for rather short
blocklengths. Both of these conclusions have already bdeeroed in [1] for the case of
memoryless channels.

Let us discuss two practical applications of (37). First,the state-known case, the capadcity

is independent of the state transition probabilityHowever, according to Theorem 4, the channel
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Fig. 2. Minimal blocklength needed to achieye= 0.4 bit ande = 0.01 as a function of state transition probability The

channel is the Gilbert-Elliott with no state informationthe receiverg, = 1/2, 62 = 0.

dispersionV; does indeed depend an Therefore, according to (3), the minimal blocklength
needed to achieve a fraction of capacity behave® @) whenr — 0; see (30). This has an
intuitive explanation: to achieve the full capacity of a lg&itt-Elliott channel we need to wait
until the influence of the random initial state “washes aw&jhce transitions occur on average
every% channel uses, the blocklength should@fé}) asT — 0. Comparing (28) and (30) we
can ascribe a meaning to each of the two terms in (30): thedistgives the dispersion due to
the usual BSC noise, whereas the second one is due to memthrg channel.

Next, consider the case in which the state is not known at #wder. As shown in [5],
when the state transition probabilitydecreases t0 the capacityCy(7) increases t@’;. This is
sometimes interpreted as implying that if the state is umknat the receiver slower dynamics
are advantageous. Our refined analysis, however, showshikas true only up to a point.

Indeed, fix a rate? < Cy(7) and are > 0. In view of the tightness of (37), the minimal block-
length, as a function of state transition probabilityeeded to achieve rate is approximately
given by

Mal) = Vilr) (s ) (38)

When the state transition probabilitydecreases we can predict the current state better; on

the other hand, we also have to wait longer until the chaingéts” the initial state. The trade-
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= = = Capacity
—— Maximal rate at n=3010*
I

|
10" 10° 107 10™

Fig. 3. Comparison of the capacity and the maximal achie/adnle% log M*(n, €) at blocklengthn = 3 - 10* as a function
of the state transition probability for the Gilbert-Elliott channel with no state informatiot the receiverg; = 1/2, 9> = 0;

probability of block error ise = 0.01.

off between these two effects is demonstrated in Fig. 2, evlex plot No(7) for the setup of
Fig. 1(b).

The same effect can be demonstrated by analyzing the maachedvable rate as a function of
7. In view of the tightness of the approximation in (37) forgarn we may replacé; log M*(n, €)
with (37). The result of such analysis for the setup in Fig)lgndn = 3 - 10* is shown as
a solid line in Fig. 3, while a dashed line corresponds to thpacity Cy(7). Note that at
n = 30000 (37) is indistinguishable from the upper and lower bounds. &n see that once
the blocklength is fixed, the fact that capacit§/,(7) grows whenr decreases does not imply
that we can actually transmit at a higher rate. In fact we @mntbat once- falls below some
critical value, the maximal rate drops steeply with dedreps. This situation exemplifies the

drawbacks of neglecting the second term in (4).

In general, ag- — 0 the state availability at the receiver does not affect meithe capacity

nor the dispersion too much as the following result demaiesst
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Theorem 6:Assuming0 < d;,0, < 1/2 andT — 0 we have

Co(t) > C1—O(—7InT), (39)
Co(r) < Ci—O(r), (40)
Vo(r) = v1<r>+0<{_17“]3/4> (41)

— Vi(r) +o(1/7) . (42)

The proof is provided in Appendix B. Some observations onithgort of Theorem 6 are in
order. First, we have already demonstrated that the fact O (1) ast — 0 is important
since coupled with (3) it allows us to interpret the quant}tws a natural “time constant”
of the channel. Theorem 6 shows that the same conclusiors vabén we do not have state
knowledge at the decoder. Second, the evaluatiofobased on the Definition (33) is quite
challenging, whereas in Appendix B we prove upper and lower bound$ grsee Lemma 11.
Third, Theorem 6 shows that for small valuestobne can approximate the unknown value of
Vo with V7 given by (30) in closed form. Table | illustrates that suclpragimation happens to
be rather accurate even for moderate values.ofonsequently, the value d¥y(7) for small

T is approximated by replacingy(7) with Vi(7) in (38); in particular this helps quickly locate

the extremum ofVy(7), cf. Fig. 2.

V. NON-ERGODIC CASE 7 =0

When the range of blocklengths of interest are much smdiken je we cannot expect (31)
or (34) to give a good approximation dfg M*(n, ). In fact, in this case, a model with= 0
is intuitively much more suitable. In the limit = 0 the channel model becomes non-ergodic

and a different analysis is needed.

A. Main result

Recall that the main idea behind the asymptotic expansipns(éh approximating the dis-

tribution of an information density by a Gaussian distribat For non-ergodic channels, it is

®Observe that even analyzifiy[F;], the entropy rate of the hidden Markov procegs is nontrivial, wheread, requires the

knowledge of the spectrum of the procdsdor zero frequency.
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Fig. 4. lllustration to the Definition 2R, (n, €) is found as the unique poimk at which the weighted sum of two shaded

areas equals.

natural to use an approximation via a mixture of Gaussiatmiligions. This motivates the next
definition.

Definition 2: For a pair of channels with capaciti€§, C; and channel dispersiong, 1, > 0
we define anormal approximation?,,,(n, €) of their non-ergodic sum with respective probabil-

ities p1, po (po = 1 — py) as the solution to

219 ((Cl - R)\/%) + 2@ ((02 - R) %) =e. (43)

Note that for anyn > 1 and0 < ¢ < 1 the solution exists and is unique, see Fig. 4 for an
illustration. To understand better the behavioridf, (n, ¢) with n we assume&’; < C5 and then

it can be shown easily thiat

not (pi) +0(1/n), €< pr

I o () <o o

(44)

We now state our main result in this section.
Theorem 7:Consider a non-ergodic BSC whose transition probability is §; < 1/2 with
probability p; and0 < J, < 1/2 with probability 1 — p,. TakeC; = log2 — h(d;), V; = V(6;)

"See the proof of Lemma 15 in Appendix C.
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and defineR,,(n, ¢) as the solution to (43). Then ferg {0, p;, 1} we have
log M*(n,€) = nRyq(n,€) + % logn + O(1) (45)

regardless of whetheris a maximal or average probability of error, and regardigsshether
the stateS is known at the transmitter, receiver or both.

The proof of Theorem 7 appears in Appendix C.

B. Discussion and numerical comparison

Comparing (45) and (44) we see that, on one hand, there issthm% type of convergence
to capacity. On the other hand, because the capacity in #ss depends on the argument
of Q! has also changed accordingly. Moreover, we see thapf®@ < ¢ < p; we have that
capacity is equal td — h(d;) but the maximal rate approachesfibm above In other words,
we see that in non-ergodic cases it is possible to communatatates above thecapacity at
finite blocklength.

In view of (45) it is natural to choose the following expressias the normal approximation
for the t = 0 case:

Rua(n,e) + % logn . (46)

We compare converse and achievability bounds against theat@pproximation (46) in Fig. 5
and Fig. 6. On the latter we also demonstrate numericallypttemomenon of the possibility of
transmitting above capacity. The achievability boundscamaputed for the maximal probability
of error criterion using (313) from Appendix C witi( X™;Y™) given by expression (311),
also from Appendix C, in the case of no state knowledge at #woeiver; and using (317)
with 7(X™; Y"S;) given by the (314) from Appendix C in the case wh&nis available at the
receiver. The converse bounds are computed using (334)Amrendix C, that is for the average
probability of error criterion and with the assumption dditet availability at both the transmitter
and the receiver. Note that the “jaggedness” of the curvaspi®perty of the respective bounds,
and not of the computational precision.

On comparing the converse bound and the achievability banrfelg. 6, we conclude that
the maximal rate% log M*(n, €) cannot be monotonically increasing with blocklength. lotfa
the bounds and approximation hint that it achieves a globaimum at around. = 200.

We have already observed [1] that for certain ergodic chianered values ot, the supremum
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of Zlog M*(n,e) need not be its asymptotic value. Although this conflictshvitte principal
teaching of the error exponent asymptotic analysis (thestawe required error probability, the
higher the required blocklength), it does not contradiet thct that for a memoryless channel

and any positive integef

1 o1
. * _ _ > - *
Y, log M*(nl,1 —(1—¢€)") > - log M*(n,€), 47)

since a system with blocklengtty can be constructed b§independent encoder/decoders with
blocklengthn.

The “typical sequence” approach fails to explain the betrain Fig. 6, as it neglects the
possibility that the two BSCs may be affected by an atypicehber of errors. Indeed, typicality
only holds asymptotically (and the maximal rate convergethe e-capacity, which is equal to
the capacity of the bad channel). In the short-run the sgichaariability of the channel is
nonneglible, and in fact we see in Fig. 6 that atypically lowmbers of errors for the bad
channel (even in conjunction with atypically high numbefseorors for the good channel)
allow a 20% decrease from the error probability (slightlyrenthan0.1) that would ensue from
transmitting at a rate strictly between the capacities eflihd and good channels.

Before closing this section, we also point out that Fanoé&yirality is very uninformative in

the non-ergodic case. For example, for the setup of Fig. 5ave h

lim sup w < limsupsup — (X75,; ¥75,) + log (48)
N—s00 n n—oo Xn T l—e
_ log2 — p1h(01) — p2h(ds) (49)
1—¢€
— 0.71 bit (50)

which is a very loose bound.

VI. CONCLUSION

As we have found previously in [1], asymptotic expansionshsas (4) have practical im-
portance by providing tight approximations of the speed afvergence toef) capacity, and
by allowing for estimation of the blocklength needed to aghkia given fraction of capacity, as

given by (3).
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Fig. 5. Rate-blocklength tradeoff at block error rate- 0.03 for the non-ergodic BSC whose transition probabilityis= 0.11

with probability p1 = 0.1 and d> = 0.05 with probability po = 0.9.
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with probability p1 = 0.1 and §. = 0.05 with probability p2 = 0.9.
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In this paper, similar conclusions have been establishedwfo channels with memory. We
have proved approximations of the form (4) for the Gilbelliel channel with and without state
knowledge at the receiver. In Fig. 1, we have illustratedréievance of this approximation by
comparing it numerically with upper and lower bounds. Inidd, we have also investigated
the non-ergodic limit case when the influence of the inittakes does not dissipate. This non-
ergodic model is frequently used to estimate the fundarémtiés of shorter blocklength codes.
For this regime, we have also proved an expansion similad)tard demonstrated its tightness
numerically (see Fig. 5 and Fig. 6).

Going beyond quantitative questions, in this paper we hd@vs that the effect of the
dispersion term in (4) can dramatically change our undedstg of the fundamental limits
of communication. For example, in Fig. 3 we observe that nbhnapacity fails to predict the
gualitative effect of the state transition probabilitypn maximal achievable rate even for a rather
large blocklengtln = 30000. Thus, channel capacity alone may offer scant guidanceykiems
design in the finite-blocklength regime. Similarly, in themrergodic situation, communicating
at rates above thecapacity of the channel at finite blocklength is possibtepeedicted from
a dispersion analysis; see Fig. 6.

In conclusion, knowledge of channel dispersion in additiorchannel capacity offers fresh

insights into the ability of the channel to communicate atcklengths of practical interest.
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APPENDIX A

PROOF OFTHEOREM 4

Proof: Achievability:We choosePx~» — equiprobable. To model the availability of the state
information at the receiver, we assume that the output ottamnel is(Y", S™). Thus we need

to write down the expression fa(X"; Y"S"). To do that we define an operation &nx {0, 1}:

l—a, b=0,
alt = : (51)

Then we obtain
Pynjxngn (Y7 X7, S)

J(XTYTSY) = o 52
= nlog2+ Z log 5§],Zj} , (53)

j=1
where (52) follows sinceéPs»x~(s"|z") = Ps»(s") by independence ok™ and S™, (53) is be-
cause under equiprobablé’ we have that’« s- is also equiprobable, whil&y, x5, (Y] X}, 5;)
is equal tos”) with Z; defined in (7). Using (53) we find

E [i(X™Y"S™)] = nCy . (54)

The next step is to computéar[i(X"; Y™S™)]. For convenience we write

he = =[h(61) + h(d2)] (55)

N =
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and

0, = logot". (56)
Therefore
o2 2 Var[i(X"; Y"S™)] (57)
n 2
= E (Z @]) — n2h? (58)
j=1
= Y E[0]+2) E[0;0,] —n’h] (59)
j=1 i<j
= nE|[©7] +2Z (n — k)E [0,014] — n*h? (60)
= n(E [@2] - )
+2Z (n — h(ds,)h (8s,,,) —h2] , (61)

where (60) follows by stationarity and (61) by conditioniag S™ and regrouping terms.

Before proceeding further we define ammixing coefficient of the processS;, Z;) as
a(n) = sup[P[A, B] - P[A]P[B][ (62)

where the supremum is over € ¢{S°_,Z°_} and B € 0{S>, Z>°}; by o{-- - } we denote a
o-algebra generated by a collection of random variablesaB®eS; is such a simple Markov

process it is easy to show that for amyb € {1,2} we have

1 1 1
5~ —|1 —27|" <P[S, —a|SO—b]<2+—\1—27|" (63)

[\

and, hence,

a(n) < |1 —27|". (64)

By Lemma 1.2 of [10] for any pair of bounded random variabdlesind IV measurable with

respect tor{S;,j < m} ando{S;,j > m + n}, respectively, we have

|[E[UV]—-E[UJE[V]| <16a(n)-ess sup |U|-ess sup |[V]. (65)
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Then we can conclude that singe(ds, ) | < log2 we have for some constai;

Zk:E (0s,) o (8s,,,) — h?]

< ZkE (|1 (9s,) b (3s,,,) — h2|] (66)
< Zl6ka log (67)
< Bgzk(l—%)k (68)
— 0. (69)

where (67) is by (65) and (68) is by (80). On the other hand,

n| Y E[h(bs)h(ds,,) — h2] (70)
k=n+1
< 16n Z a(k)log? 2 (71)
k=n+1
< 16Kn i (1 —27)"log®2 (72)
k=n-+1
= 0(1). (73)

Therefore, we have proved that

n

> (n—k)E [h(ds,) h (Js,,,) — h2] (74)
k=1
= nZE (0s,) h (3s,,,) — h2] +O(1) (75)
= nZE (0s,) h (8s,,,) — h2] +0O(1), (76)

A straightforward calculation reveals that

> E [h(5s) h (6s,,,) — b2] (77)
k=1
1 S 1
— - | -1] 78)
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Therefore, using (76) and (78) in (61), we obtain after sofgelaa that
o2 = Var[i(X™; Y"S™)] = nVy + O(1). (79)
By (53) we see that( X"; Y"S") is a sum over an-mixing process. For such sums the following
theorem of Tikhomirov [8] serves the same purpose in thigpap the Berry-Esseen inequality
does in [1] and [9].
Theorem 8:Suppose that a stationary zero-mean proéessys, . . . is a-mixing and for some

positive K, 5 and~ we have

alk) < Ke P, (80)
E [IX1|*] < oo (81)
on = 00, (82)

where

o2 =FE [(i)g)QI . (83)

Then, there is a constait, depending onk, 5 and~, such that

. Blogn
P X > ) < ) 84
sup [21: = xvon] Q)| < == (84)
Application of Theorem 8 ta(X"; Y™ S™) proves that
. Blogn
n. n on > 2 _ <
)P [Z(X LY™S™) > nCy + «/Unx} Q(x)‘ < S (85)
But then for arbitrary\ there exists some constaBt > B such that we have
‘IP’ [z’(X“; Y"S") > nCy + \/nle} - Q()\)‘ (86)
= [P [{(X™Y"S") > nCi+ /o2 Z—‘?)\ —Q(\) (87)
Blogn nVy
< _ ]
< S +em @(A O_)’ (88)
— BN o) -+ o(1/m) (89)
Blogn
<
< NG + O(1/n) (90)
Bylogn
<
< SO (91)
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where (88) is by (85), (89) is by (79) and (90) is by Taylor'sahem.
Now, we state an auxiliary lemma to be proved later.
Lemma 9:Let X, X5,... be a process satisfying the conditions of Theorem 8; therarfigr

constantA
j=1 J=1

where B is the constant in (84).

E

1
§2< oe 2310g"> ep{-4},  (92)

\/2mo? - Vn

Observe that there exists somkg > 0 such that

log 2 2Blogn B log 2 2Blogn
2( 2mg+ vn > - 2<\/27T(nV+O(1))+ vn > 53)
Bilogn
— 94
Nt (94)

whereo? is defined in (57) and (93) follows from (79). Therefore, fr¢@#) we conclude that

there exists a constarit; such that for anyA

E [exp{—i(X";Y"S") + A} - 1{i(X"; Y"S") > A}] < Blf—g Z, (95)
n
Finally, we set
log ? =nC —VnVQ (e,), (96)
where
enze_(Bl—}—Bg)lOgn. (97)

vn
Then, by Theorem 1 we know that there exists a code Witbodewords and average probability

of error p. bounded by

pe < E [exp {— [i(X"; Y"S") —log ?]JFH (98)
< P [z’(X”;Y"S”) < log ?} v % (99)
< ot B +5%) logn (100)
< e, (101)

where (99) is by (95) withA = log #—, (100) is by (91) and (96), and (101) is by (97).

Therefore, invoking Taylor's expansion ¢f~! in (96) we have
log M*(n,€) >log M > nC —VnVQ '(e) + O(logn) . (102)
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This proves the achievability bound with the average proibalof error criterion.

However, as explained in [1], the proof of Theorem 1 reliely@n pairwise independence
of the codewords in the ensemble of codes. Thereford/if= 2* for an integerk, a fully
random ensemble of/ equiprobable binary strings may be replaced with an ensemb*
codewords of a random linedk, n] code. But a maximum likelihood decoder for such a code
can be constructed so that the maximal probability of eroimades with the average probability
of error; see Appendix A of [1] for complete details. In thigsyy the above argument actually
applies to both average and maximal error criteria aftelampg log M by [log M |, which is

asymptotically immaterial.

Converse:In the converse part we will assume that the transmitter ltasss to the full
state sequence” and then generate§” based on both the input message &fid Take the
best such code witi/*(n, ¢) codewords and average probability of error no greater thakie
now propose to treat the paftX”, S™) as a combined input to the channel (but tfe part
is independent of the message) and the pEit, S") as a combined output, available to the
decoder. Note that in this situation, the encoder inducestaldition Py-s.» and is necessarily
randomized because the distribution$f is not controlled by the input message and is given
by the output of the Markov chain.

To apply Theorem 2 we choose the auxiliary channel whichgst8sunchanged and generates

Y™ equiprobably:

—n

Qynixngn(y", s"z") =2 for all =™, y", s™. (103)
Note that by the constraint on the encodgf, is independent of the messagé. Moreover,

under@-channel theY'™™ is also independent dfi” and we clearly have

1

'>1- .
€ > e

(104)

Therefore by Theorem 2 we obtain

1
/81—6 (PX’!LYYLSTL, QXnYnSn) <

< (105)
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To lower bounds;_. (Pxnyngn, Qxnyngn) Via (24) we notice that

Pxnyngn (2", y", s") Pynjxngn(y"[a", s") Pxngn (2", s")

lo = lo 106
& Qunynsn (a7, g, 5" ® Qunpxnsn (y']a™, 57)Qxnsn (a7, 57) (106)
Pyn ann( |ZE' Sn)
= log (207)
Qynixngn(y™|zm, s)
= i(a";y"s"), (108)

where (107) is becaus€xns» = Qxng» and (108) is simply by noting thaby s in the
definition (52) ofi(X™; Y™S") is also equiprobable and, hence, is equai)to. y»s». Now set

logy =nC — VnVQ e, , (109)
where this time
B Bylogn 1
€, = \/ﬁ + \/ﬁ (110)

By (24) we have fora = 1 — € that

1 Pxuyngn (X", Y™, 5"
B, > —(1—6—1P[10g xeyngn (X7 ’S)Zlog7}> (111)

Y Qxnyngn (X™, Y™, S")
= L e— PS> logn) (112)
~
1 By log n)
> —|l—€e—(1—¢,)— 113
> L(imem a2 113)
1
= —, 114
vny (1)
where (112) is by (108), (113) is by (91) and (114) is by (110).
Finally,
log M*(n,e) < log 51 (115)
1—e
< logvy + %logn (116)
= nC —VnVQ Ye,) + %logn (117)
= nC —vnVQ '(e) + O(logn), (118)

where (115) is just (105), (116) is by (114), (117) is by (1@ay (118) is by Taylor’s formula
applied toQ ! using (110) fore,,.
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Proof of Lemma 9:By Theorem 8 for any we have that

P[zﬁZXj<z+log2

j=1
(2+log2)/on

< / Le—ﬁ/?dt + 2Blogn . (119)
z/on V 27 \/ﬁ
log 2 2Blogn

S NG (120)

On the other hand,

E exp{—ZXj}-l{ZXj>A}
j=1 J=1
< > exp{—A—1log2}P|A+1log2 <> X; <A+ (I+1)log2| .  (121)
=0 Jj=1

Using (120) we get (92) after noting that

d 2t=2. (122)
=0

[ |
APPENDIX B

PROOFS OFTHEOREMS5 AND 6

For convenience, we begin by summarizing the definitions smihe of the well-known

properties of the processes used in this appendix:

R; = P[Sj1=1]7]], (123)
Q; = PZj=11Z]] = 6R; +6(1 - Ry), (124)
R: = P[Sj1 =1]2{,5)], (125)
G = —logP, (2|27 = —10g Q1% (126)
U; = P[S;, =172, (127)
Up = P[Zj1=121] = 09, +0,(1 - ), (128)
B = —lopy (4123 = —ostl%), 129
O; = logPys,(%]S;) =logs" | (130)
E, = Fi+06,. (131)
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With this notation, the entropy rate of the proce§sis given by

H = JLH(’)IO%H(Zn) (132)
= E[FR)] (133)
= E [h(Uy)] . (134)

Define two functionsly; : [0,1] — [, 1 — 7]

(I =7)(1=61) + (1 —2)7(1 = d2)
bl = i)+ (-0 -6) (135)
(1 =7)01 + (1 — z)709
zo; + (1 — x)dy

Applying Bayes formula to the conditional probabilities(i23), (125) and (127) yields

T1 (JI)

(136)

Riyn = Tz (R;),7>0, as. (137)
Ry = Ty, (R),5> -1, as. (138)
Vg = Ty, (Yy),j €Z, as. (139)
where we start?; and 2} as follows:
Ry = 1/2, (140)
R, = (1—7)1{So=1}+71{Sy=2}. (141)

In particular, R;, R}, Q);, V; andU; are Markov processes.

Because of (139) we have
min(r,1 —7) < ¥; <max(r,1 —7). (142)

For any pair of point$) < z,y < 1 denote their projective distance (as defined in [14]) by

x Yy
T =11 — ) 4
dp(z,y) nl . ln1 ) (143)

As shown in [14] operatord, andl; are contracting in this distance (see also Section V.A
of [15]):
dp(Ta(x), Taly)) < [1 —27(dp(z,y) . (144)

8Since all conditional expectations are defined only up tooatnsure equivalence, the qualifier “a.s.” will be omittedole

when dealing with such quantities.

October 14, 2010 DRAFT



28
Since the derivative ofn - is lower-bounded by 4 we also have
1
which implies for alla € {0,1} that
1
o) = Tuy)| < {11 = 2rldp(x,y) (146)

Applying (146) to (137)-(139) and in the view of (140) and 2} 4ve obtain

1 T
R —U.| < =
| 7 J| — 4

01— 0
Q- <

In

'\1—27|ﬂ'—1 j>1, (147)

1—71

In T
1—7

‘ 1—27P"t  j>1. (148)

Proof of Theorem 5: Achievabilityn this proof we demonstrate how a central-limit theorem
(CLT) result for the information density implies thg,/n) expansion. Otherwise, the proof is
a repetition of the proof of Theorem 4. In particular, witrugiyobablePx, the expression for

the information density(X™; Y") becomes

W(X™Y"™) = nlog2+log Py (Z"), (149)
= nlog2+zn:Gj. (150)
j=1
One of the main differences with the proof of Theorem 4 is thatprocess+; need not bex-
mixing. In fact, for a range of values éf, j, andr it can be shown that allZ;, G;), j=1...n
can be reconstructed by knowilg,. Consequentlyx-mixing coefficients ofG; are all equal to
1/4, henceG, is nota-mixing and Theorem 8 is not applicable. At the same tifjds mixing
and ergodic (and Markov) because the underlying time-sipiérator is Bernoulli.
Nevertheless, Theorem 2.6 in [10] provides a CLT extensidheoclassic Shannon-MacMillan-
Breiman theorem. Namely it proves that the proc%éog Pz (Z™) is asymptotically normal

with variancelj,. Or, in other words, for any € R we can write
P [z’(X”; Y™ > nCo + \/n%)\} ~ Q). (151)

Conditions of Theorem 2.6 in [10] are fulfilled because of)(éAd (148). Note that Appendix
I.A of [15] also establishes (151) but with an additionaluamptiond,, d, > 0.
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By Theorem 1 we know that there exists a code withcodewords and average probability

of error p. bounded as

p. < E {exp{—[i(X";Y")—log?rrH (152)
< E [exp{—[i(X";Y") —log M]"}] (153)

where (153) is by monotonicity ofxp{—[i(X";Y™) — a|T} with respect toa. Furthermore,

notice that for any random variablé anda,b € R we havé
E [exp {—[U —a]"}] < P[U < b] +exp{a—b}. (154)
Fix some¢e’ > 0 and set
log ¥ = nCo — \/nVoQ ' (e = €). (155)

Then continuing from (153) we obtain

pe < P(X™Y™) <logv,] + exp{log M — log~,} (156)
M
= e—e'+0(1)+7, (157)

where (156) follows by applying (154) and (157) is by (15I)wk setlog M = log~, — logn
then the right-hand side of (157) for sufficiently largealls belowe. Hence we conclude that

for n large enough we have

log M*(n,e) > log~y, —logn (158)
> nCy— /nVoQ (e —€) —logn, (159)

but sincee’ is arbitrary,

log M*(n,€) > nCo— /nVe@ ' (e) + o(v/n). (160)

ConverseTo apply Theorem 2 we choose the auxiliary char@del x» which simply outputs

an equiprobablé™ independent of the inpuk™:

Quopn(y"la™) = 277 (161)

This upper-bound reduces (152) to the usual Feinstein Lemma
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Similar to the proof of Theorem 4 we get

1
Bi-e (Pxnyn, Qxnyn) < W (162)

and also

PX"Y” (Xn, Yn)
lo = nlog2+log Py (2" 163
g QX’!LY’!L(X”, Yn) g g Z ( ) ( )

= (X" Y™, (164)
We choose&’ > 0 and set
log Y = nCo — /nVo@ (e + €) . (165)
By (24) we have, folx =1 — ¢,
fie = (1= e=Pl(X"5Y") > log ) (166)
= (o), (167)
where (167) is from (151). Finally, from (162) we obtain
log M*(n,e) < log 611_6 (168)
= logvy, —log(e' + o(1)) (169)
= nCo—/nVoQ e+ €)+0(1) (170)
= nCo—/nVoQ '(e) + o(v/n). (171)
[

Proof of Theorem 6: Without loss of generality, we assume everywhere througiios
remainder of the appendix

The bound (39) follows from Lemma 10: (40) follows from (17&}er observing that when
d2 > 0 the right-hand side of (176) i©(7) whent — 0. Finally, by (177) we have

By=0 (\/—Tln T) (173)
which implies that
B, —In¥*r
B O (T : (174)
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Substituting these into the definition & in Lemma 11, see (199), we obtain

( —1n? 7‘)
A=0 . (175)

asT — 0. Then (41) follows from Lemma 11 and (30).
Lemma 10:For any0 < 7 < 1 the differenceC; — Cj is lower bounded as

Cl - C(O 2 h(éleax + 62Tmin) - Tma:ch((sl) - Tmznh(62) ) (176)

wherer,,,, = max(r,1 —7) and,,, = min(r,1 — 7). Furthermore, whem — 0 we have

Ci—Cy<O (W) . 177)

Proof: First, notice that

Cl_COZH_H(Zl‘Sl> :E[51]7 (178)

where’H and =; were defined in (132) and (131), respectively. On the othedhae can see

that

E[=22,] = f(¥o), (179)

wheref is a non-negative, concave function 1], which attaing®) at the endpoints; explicitly,
f(z) = h(d1x + 62(1 — z)) — zh(61) — (1 — z)h(d) . (180)

Since we know thatl, almost surely belongs to the interval betweemand 1 — 7 we obtain

after trivial algebra

fa)z  min (1) = f(Foe) . Vo€ [ Tnae] (181)

Taking expectation in (179) and using (181) we prove (176).

On the other hand,
Ci—Co = H—H(Z1]5) (182)
= E [h(01Tg+ da(1 — Wg)) — h(011{S1 = 1} + 61{S; = 2})] . (183)
Becausey, > 0 we have

B = xrél[%?a %h(élx +02(1 —2x))| < 0. (184)
DRAFT
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So we have

E [Z]

IN

BE [|Wy — 1{51 = 1}] (185)

< BVE[(¥ - 1{S = 1})7, (186)

where (186) follows from the Lyapunov inequality. Noticatlior any estimatori of 1{S; =1}

based onz’ . we have
E[(¥o—1{S1 =1}’ <E[(A - 1{S =1})"], (187)

becausel, = E [1{S; = 1}|2°_ ] is a minimal mean square error estimate.
We now take the following estimator:
0
A, = 1{ > Zi> n5a} , (188)
j=—n+1
wheren is to be specified later angl, = % We then have the following upper bound on its

mean square error:

E[(A, - 1{S = 1})’] = P[I{S =1} # 4] (189)
< PA A S =1}8 = =5 4]
+1-P[S1 = =85 _pnt1] (190)

= %(1 —7)" (P[B(n,61) < néy| + P[B(n,d2) > nd,))
+1-(1-7)", (191)

where B(n, 0) denotes the binomially distributed random variable. UsGigernoff bounds we

can find that for somév; we have

P[B(n, d,) < nd,] + P[B(n, ) > nd,| < 21 (192)
Then we have
E[(A, —1{S; =1} <1—(1—71)"(1—e ). (193)
If we denote
f=—In(l-7). (194)
and choose
I
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we obtain that

E[(A, — {8 =1} <1—(1—7)-¢ &% (1 - Eﬁl) .

Whenrt — 0 we havef = 7 + o(7) and then it is not hard to show that

A 102 < g
E[(A, — 1{S1 =1})7] < E, In E, +o(rInT).

From (186), (187), and (197) we obtain (177).

Lemma 11:For any0 < 7 < 1 we have

Vo — Wil <2y VIA + A,

where A satisfies

BO 6Bl
A < By+ In ,
= U Ton-T—27)) B
d2(01]|62)
B CAN%2) 100 —
" T i) 10T
B By h(61) — h(d9)
B = \nTa (d(51||52) lnl—r' o —27] )
a 1—a
do(allb) = alogzg%—(l—a)log2 T30

andd(al[b) = alog ¢ + (1 — a) log 1=% is the binary divergence.

Proof: First denote

whereZ; was defined in (131); the finiteness Afis to be proved below.
By (131) we have

In Appendix A we have shown that
E[@j] = C]_ - IOgQ,
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(196)

(197)

(198)

(199)

(200)

(201)

(202)

(203)

(204)

(205)

(206)
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Essentially,=; is a correction term, compared to the case of state knowneateiteiver, which

we expect to vanish as — 0. By definition of 1, we have

1 n
= lim — F; 207
Vo = lim = Var ;:f J (207)
= lim Var L En @-+L En = (208)
n—oo \/ﬁ o J \/ﬁ P =y

Now (198) follows from (203), (206) and by an application bétCauchy-Schwartz inequality
to (208).
We are left to prove (199). First, notice that

A = Var[Zo] +2) _ cov(Zp,F;). (209)
j=1

The first term is bounded by Lemma 12

Var[Z;] <E[22] < B,. (210)
Next, set
N iy o In 5, 211
| Infl—27]| " (211)
We have then
> covEg, 5] < (N—1)By+ By Yy |1—2r)” (212)
j=1 j>N
In o B,
B 0
— L B+ ———— 213
ny/Jl—2r] © 1-+/1—27] (213)
BO 631

(214)

In ,
1—+/|1=27] Bo

where in (212) forj < N we used Cauchy-Schwarz inequality and (210), for N we used
Lemma 13; (213) follows by definition oV and (214) follows bylnz < z — 1. Finally, (199)
follows now by applying (210) and (214) to (209). [ ]

Lemma 12:Under the conditions of Lemma 11, we have

Var[Z;] <E[E2] < B,. (215)
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Proof: First notice that

E[=]2°,] = Wod(0:]|6:%0 + d2(1 — Wy))

+(1 — Wy)d(0a][61Wo + do(1 — Wy)), (216)
E[=H22,] = Woda(61][61Wo + da(1 — Py))

+(1 — Wo)da(0a][61 W + d2(1 — Wy)) . (217)

Below we adopt the following notation
T=1-—uz. (218)

Applying Lemma 14 twice (withu = 61 ,b = §1x + 67 and witha = 05 ,b = 612 + 02,T) we

obtain
$d2(51||51$ + 52!2’) -+ fd2(52||51x + 52!2’)
do(01]]6
d(61][02)
If we substituter = ¥, here, then by comparing (216) and (217) we obtain that
_ da(61]]02) - —
E[=2|7° | < 2WRIg = 170 1 220
[ 1‘ —oo]— d(61||52) [ 1| —oo] ( )
Averaging this we obtaff
- da(01]]02)
E[Z?] < ——=20(0y — Op) . 222
[ 1]— d(51||52)( 1 0) ( )
[ ]
Lemma 13:Under the conditions of Lemma 11, we have
cov[Zo, Z5] < By|1 — 2772, (223)
Proof: From the definition of=; we have that
E[5]5°., 270 = f(¥;_1, R;_y), (224)
where
f(z,y) = yd(61]|017 + 02(1 — 2)) + (1 — y)d(d2||017 + 62(1 — 7)) . (225)
1N\ote that it can also be shown that
=2 5 d2(82[|01)
E[=1] > (62101 (C1— Co), (221)

and therefore (222) cannot be improved significantly.
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Notice the following relationship:

%H()\Q + AP) = D(P||AQ + A\P) — D(Q||AQ + A\P) + H(P) — H(Q). (226)

This has two consequences. First it shows that the function

D(P||AQ + AP) — D(Q||\Q + \P) (227)

is monotonically decreasing with (since it is a derivative of a concave function). Second, we

have the following general relation for the excess of theogyt above its affine approximation:

d%\ CH(A=NQ+AP) ~ (1 -NH(Q) - AH(P)] = D(PIQ), (228)
di)\ HE=NQHAR) = (1= NHQ = AH(P)] = =D(@IIP).  (229)

Also it is clear that for all othep’s the derivative is in between these two extreme values.

Applying this to the binary case we have

df (zx,
max %j’)\ = A0 912+ 61— ) — (Bl + 51— )] (230)
= max(d(d1]|02), d(d2[|61)) (231)
_ dol6). (232)

where (231) follows because the function in the right sidé230) is decreasing and (232) is
because we are restricted fp< §; < % On the other hand, we see that

f(z,z) = h(01x + 02(1 — x)) — xh(d1) — (1 — 2)h(d2) > 0. (233)

Comparing with (228) and (229), we have
df (z, )

= d(6:1]|92) - (235)

By the properties off we have
W0, Ry ) = F(W50, 85 0) | <0 d(6]]69) | Ry, — W4 (236)
< Byl —27)7 1, (237)

where for convenience we denote

In

1
By = 5d(51||52) (238)

-
1—71
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Indeed, (236) is by (232) and (237) follows by observing that
\Ilj—l = TZj71 O--+0 TZ1 (\Ilo) y (239)
Rﬂf_l = TZj71 [CNe] TZ1 (RS) (240)

J

and applying (146). Consequently, we have shown
B (25192, Z75e) = F(U0, W50)| < Bl — 2771, (241)
or, after a trivial generalization,
IE[Z|8% o, 2720 — F(U;m1,0;1)| < Bofl — 27717, (242)

Notice that by comparing (233) with (216) we have

E[f(V_1,¥0)] =E[E]. (243)

Next we show that
E[5,]5° . 2°.) —E[S)]] < |1 —27|"% [2B; + Bs], (244)

where
_ h(61) — h(02)
Bs = =27 (245)
Denote

HWk, S) S BLF(0;0,050)|S" 28] (246)

Then because of (235) and sindg affects only the initial condition for;_; when written
as (239), we have for arbitrary, € [7,1 — 7],
|£(Uk, Sk) — (0, Sk)| < Bafl — 27 7*. (247)
On the other hand, as an averagef¢f, =) the functiont(z,, s) satisfies
0 < (0, Si) < mmax f(z,) < h(61) = h(8) (248)
From here and (63) we have

h(d1) = h(ds)

|E [t(w0, Sk)|S2 0 22 o] — E [t (0, Si)]| < 5

|1 —27|*, (249)

or, together with (247),

- h(01) — h(d2)

|E [t(Vh, Sk)]S° o Z2°.] — E [t(zo, Sk)]| < 5 11— 27| 4+ By|1 — 27 ~*1 . (250)
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This argument remains valid if we replagg with a random variablel,, which depends on
Sk but conditioned onS;, is independent of S° _, Z° ). Having made this replacement and
assumingPy, s, = Pu, s, We obtain

- h(01) — h(d2)

E [t(Vh, Si)]S° 20 ] — E[t(y, Sk)]| < 5

11— 27(F + By|1l — 2771 | (251)

Summing together (242), (243), (246), (247) and (251) weaiolthat for arbitrary) < £ < j—1

we have

h(01) — h(02)

IE[5515°,.2° ] —E[5)]] < 5 |1 —27|F +2By[1 — 277+ . (252)
Setting herek = [j — 1/2] we obtain (244).
Finally, we have
COV[E(), EJ] = E [E(]EJ] — E2[EQ] (253)
= E [SE[55]8%, 2°.]] — E?[=] (254)

< E[REE]+E |[5/@2B; + Byl — 207 | ~EZ]  (255)

= E[Zl)(2B: + Bs)|1 - 277 (256)
< /E[Z2(2B, + By)|1 — 27" (257)
— V/Bo(2B, + Bs)|1 — 277, (258)
where (255) is by (244), (257) is a Lyapunov’s inequality 4888) is Lemma 12. [ |

Lemma 14:Assume that;, > 6, > 0 andd, < a,b < d;; then

d(al[b)  d(64]|9)
da(al[b) ~ dx(d1]]02)

(259)

Proof: While inequality (259) can be easily checked numerically, rigorous proof is
somewhat lengthy. Since the base of the logarithm cancéR5®), we replacéog by In below.

Observe that the lemma is trivially implied by the followihgo statements:

Vo €10,1/2]: d(all9) is a non-increasing function af € [0,1/2]; (260)
da(al|9)
and
doub) e 4 non-decreasing function éfe [0, 4] . (261)
da(61]0)
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To prove (260) we show that the derivative % is non-negative. This is equivalent to
showing that
fa(0) <0, ifa<yd,

(262)
fa(0) >0, ifa>9,
where
£(8) = 2d(al|6) +ln% ‘In 1:3 (263)
It is easy to check that
fa(a) =0, fo(a) =0. (264)

So it is sufficient to prove that

convex 0<d<a,
fa(0) = (265)

concave a <0 <1/2.
Indeed, if (265) holds then an affine functigd) = 06 + 0 will be a lower bound forf,(d)
on [0,a] and an upper bound dn, 1/2], which is exactly (262). To prove (265) we analyze the
second derivative of,:

_ 20 1,0 2 1,06 (266)

//5__ _
O =g+s - ghi -5 =",

In the case) > a an application of the bounthz < x — 1 yields

2 2a 1 [¢ 2 1 /6
" . - 1) -—=——=(Z=1 267
Ja () 52 +52 52 <a ) 56 52 (a ) (267)

< 0. (268)

IN

Similarly, in the case < a an application of the bounthz > 1 — % yields
, 2¢ 2a 1 ay 2 1 a
> = - ) - = I
fa0) 2 02 * 62 02 (1 6) 00 62 (1 6) (269)
> 0. (270)

This proves (265) and, therefore, (260).
To prove (261) we take the derivative ‘ﬂ% with respect tob; requiring it to be non-

negative is equivalent to

Sgll

2(1 — 2b) (5 In g) (5111 —) + (6b + 0b) (5 In® % —§1n? %) >0. (271)

S
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It is convenient to introduce = b/J € [0, 1] and then we define

1—odx

fs(z) =2(1 —20z)d0 Inz - In 5 + (1 + x(1 —29)) <5ln2x S 1 —_5x

) . (272)
for which we must show
fs(z) > 0. (273)

If we think of A =1Inz and B = In % as independent variables, then (271) is equivalent to
solving

2vAB + aA* — fB* >0, (274)
which after some manipulation (and observation that weralijuhave a requirememt < 0 <
B) reduces to

Sl LFran (275)
After substituting the values fod, B, «, 3 and~ we get that (271) will be shown if we can

show for all0 < =z < 1 that

In 1 1 -2 3 125 \2 5\ 5\
W - Ty a(l-20)8 ((m) (5) - 5) - (276)
To show (276) we are allowed to upper-bound: and In 1‘5‘59”. We use the following upper
bounds forln x andIn 1‘5‘“, correspondingly:
nr < (z—-1)—(r—1)?%2+@x-1*/3—(x—1)"4+ (z-1)°/5, (277)
ny < (y—1)—(y—1?%/2+(y—-1)7/3, (278)

particularized toy = 1 — ‘% both bounds follow from the fact that the derivativelofr of the

corresponding order is always negative. Applying (277) éiB) to the left side of (276) and
after some tedious algebra, we find that (276) is implied &y th

5%(1—xz)3
where
Ps(z) = —(46* —1)(1—6)*/12

+ (1 —0)(4 — 50 + 46% — 240° + 246%)x /24

+ (8 — 206 + 156 + 208° — 1005 + 726°)2* /60

— (1 —0)%(11 — 280 + 126*)2° /20

+ (1 —0)3(1 — 26)%2* /5. (280)
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Assume thatPs(z,) < 0 for somezx,. For all0 < 6 < 1/2 we can easily check thd;(0) > 0
and Ps5(1) > 0. Therefore, there must be a raot of Ps in (0,2,) and a rootz, in (zg,1) by
continuity. It is also easily checked th&%(0) > 0 for all 6. But then we must have at least one
root of P{ in [0, ;) and at least one root df in (x5, 1].

Now, P{(x) is a cubic polynomial such thag(0) > 0. So it must have at least one root on
the negative real axis and two roots n1]. But since?;(0) > 0, it must be thatP’(z) also
has two roots ono, 1]. But P{(z) is a quadratic polynomial, so its roots are algebraic flomsi
of ¢, for which we can easily check that one of them is always latigan 1. So, P{(x) has at
most one root on0, 1]. And therefore we arrive at a contradiction afigd> 0 on [0, 1], which
proves (279). [ |

APPENDIX C

PROOF OFTHEOREM 7

We need the following auxiliary result:
Lemma 15:Define R,,,(n,€) as in (43). Assume&’; < C, ande ¢ {0,p;,1}. Then the

following holds:

Rua (n, e+ O(1/y/n)) = Rua(n,e) + O(1/n) . (281)

Proof: Denote
hR) 2 nQ (- my 5 ) +me (@3 (282)
Ry = Ru(ne) = f'(e). (283)

It is clear thatf,(R) is a monotonically increasing function, and that our goabishow that
o e+ 0(1/vn)) = Ry + O(1/n). (284)

Assumer < py; then for any0 < § < (Cy,—C1) we havef,, (C1+9) — p; and f,,(C1—0) — 0.
Therefore,
R,=Ci+o(1). (285)

This implies, in particular, that for large enoughwe have

OSMQQ@—Rm ﬁ)sia (286)
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Then, from the definition ofz,, we conclude that

€— % <pQ ((Cz - Rn)\/%) <e. (287)

After applying@~! to this inequality we get

Q' (pil) < (Cy— Rn)\/g2 <Q™! (E_;il/\/ﬁ) . (288)

By Taylor’s formula we conclude

€

) L o(/n). (289)
b1

Note that the same argument works fothat depends om, provided thate, < p; for all

R,=0C,— %Q_l (

sufficiently largen. This is indeed the case when = ¢ + O(1/y/n). Therefore, similarly

to (289), we can show

e onpm) = ci-y o (KA ) poam. e
o %Q‘l (pil)+o<1/n>, (291)
= R,+0(1/n), (292)

where (291) follows by applying Taylor's expansion and (R&@lows from (289). The case
€ > py Is treated similarly. [ |
We also quote the Berry-Esseen theorem in the following form
Theorem 16 (Berry-Esseenje.g. Theorem 2, Chapter XVI.5 in [13]) Let,, k =1,...,n

be independent with

pe = E[X], (293)

op = Var[Xy], (294)

te = E[Xy—ml], (295)

o? = iaz, (296)
k=1

T = itk (297)
k=1

Then for all —oo < A <

<5 (298)

o3

- Q)
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Proof of Theorem 7:First of all, notice thap; = 0 andp, = 1 are treated by Theorem 3.
So, everywhere below we assuies p; < 1.
Achievability: The proof of the achievability part closely follows the stepf the proof of
Theorem 3 [1, Theorem 52]. It is therefore convenient to &adbp notation and the results

of [1, Appendix K]. In particular, for all. and M there exists arin, M, p.) code with
n n '
pe <Y (k) (pr08 (1 — 61" + padk (1 — 62)"*) min {1, M S} | (299)
k=0

where S is

kA o-n  (n
Sk =2 ;(Z) (300)
(cf. [1, (580))).
Fix e ¢ {0,p1, 1} and for eachn selectK as a solution to
Q <g<—1n_515>> paQ (7[;(—1”_525)> —e— (301)
whereG > 0 is some constant. Application of the Berry-Esseen theot®mws that there exists

a choice ofGG such that for all sufficiently large we have

PW > K] <e, (302)
where
w=> 1{z;=1}. (303)

The distribution ofl¥ is a mixture of two Bernoulli distributions:
PW =w] = (Z) (107 (1 = 00)" ™" + pady' (1 — 62)" ) . (304)
Repeating the steps [1, (580)-(603)] we can now prove that -asoco we have
log M*(n,e) > —logSk (305)
> n—nh (g) +%logn+0(1), (306)

whereh is the binary entropy function. Thus we only need to analymeasymptotics ok (%)

First, notice that the definition di” as the solution to (301) is entirely analogous to the dediniti
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of nR,.(n,e). Assuming without loss of generalityy < ¢; (the case ob, = ¢; is treated in

Theorem 3), in parallel to (44) we have as— o

nd; + /noy (1 —61)Q" (ﬁ) +0(1), e<m

- (307)
nd + /81— 6)Q 7 (S2) +0(1). > pr.
From Taylor's expansion applied to(£) asn — co we get
nh(dy) + /nV(6)Q (<) +0(1), €e<p
. (5) k) + avEie () + o) 1 08
n nh(8s) + /nV (82)Q (;—p) +O(1), €>p.
Comparing (308) with (44) we notice that fer£ p; we have
K
n —nh (—) =nR,.(n,e) +O(1). (309)
n

Finally, after substituting (309) in (306) we obtain the ugqd lower-bound of the expansion:
1
log M*(n,€) > nRy.(n,€) + 3 logn + O(1). (310)

Before proceeding to the converse part we also need to gpebafnon-asymptotic bounds
that have been used to numerically compute the achiewabilitves in Fig. 5 and 6. For this
purpose we use Theorem 1 with equiprobaBle.. Without state knowledge at the receiver we

have
(XYY = ga(W), (311)
gn(w) = mnlog2+log (plcﬁ”(l —01)"TY 4 pady (1 — 62)"_w) , (312)

where WV is defined in (303). Theorem 1 guarantees that for ewdryhere exists a code with

(average) probability of errgp. satisfying

pe <E {exp {_ (o) —log ™ +H . (313)

In addition, by application of the random linear code methibeé same can be seen to be true
for maximal probability of error, provided thabg, M is an integer (see Appendix A in [1]).
Therefore, the numerical computation of the achievablidynds in Fig. 5 and 6 amounts to
finding the largest integér such that right-hand side of (313) wifld = 2* is still smaller than

a prescribed.
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With state knowledge at the receiver we can assume that tipeitoof the channel igY™", S;)
instead ofy™. Thus,i(X™; Y™) needs to be replaced byX™; Y, S;) and then expressions (311), (312)
and (304) become

i(Xn§ Yn51) = gn(W, 51) ) (314)

gn(w,s) = nlog2+ log (5;”(1 — 58)"_w) , (315)

PW =w,S; =s] = ps (")5;"(1 —0s)" " (316)
w

Again, in parallel to (313) Theorem 1 constructs a code withcodewords and probability of

error p. satisfying

p. <E [exp {— [gn(W, Sy) — log ?r}] . (317)

Converse:In the converse part we will assume that the transmitter ltassa to the state
realizationS; and then generate¥™ based on both the input message ahd Take the best
such code withM*(n,e) codewords and average probability of error no greater thawe
now propose to treat the paiX™,S;) as a combined input to the channel (but thepart is
independent of the input message) and the (#ir, S;) as a combined output, available to the
decoder. Note that in this situation, the encoder induceistaliltion Px~g, and is necessarily

randomized, because the distribution$fis not controlled by the input message and is given

by

PlSy =1 =p:1. (318)
To apply Theorem 2 we select the auxiliaprchannel as follows:
Qyns x»(y", s|z™) =P[S; = s]27" for all y",s, 2" . (319)

Then it is easy to see that under this channel, the oytpttS;) is independent o ™. Hence,

we have

l—d<—0 | (320)
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To computel;_(Pxnyng,, Qxnyns,) We need to find the likelihood ratio:
r(X"Y"s = lo ! 321
( 2 & Qxryns, (X, Y™, S)) (321)
PY"|X"Sl PXnSl

lo 322
® Qvrixns: Qxns, (822)
= nlog2 +log Pynxng, (Y"[X"S)) (323)

1—-96
= nlog2(1 — dg,) —WlogTsl, (324)

S1

where (322) is becaudéy.g, = Qxns, (we omitted the obvious arguments for simplicity), (323)
is by (319) and in (324) random variabl& is defined in (303) and its distribution is given
by (304).

Now, choose

By+1
Ry = Ry (neqDBitpBatly (325)
Vvn

Yo = nR,, (326)

where B, and B, are the Berry-Esseen constants for the sum of independamo@é(s,)

random variables. Then, we have

Plr(X™Y"51) < a5t = 1]

= P {n log2(1—4;) — Wlog (1 g o) < Yp|S1 = 1] (327)
1
Y — nCy By
> () - %29

—Q ((Ol - Rn>\/§l) - (329)

where (328) is by the Berry-Esseen theorem and (329) is Ipgsdéfinition ofy,,. Analogously,
we have

Plr(X™Y"S)) < 1S = 2 > O ((cz Ry %) - % . (330)

Together (329) and (330) imply

Plr(X™Y"S) < v,)

> 0@ (@R[ ) rme (@ m fi) BRI @ay

. (332)

1
Vi
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where (332) follows from (325). Then by using the bound (24) ebtain
1

Bie(Pxnyns,, Qxnyns,) > 7n exp{—n} - (333)
Finally, by Theorem 2 and (320) we obtain
. 1
log M*(n,e) < log 3 (334)
1—e
1
< Yot 5 logn (335)
B By +1 1
= nR, <n,e—|—p1 1+§% 2 )—i—élogn (336)
1
= nRu(n.€) + 5 logn+0(1), (337)
where (337) is by Lemma 15. [ |

As noted before, for = p; even the capacity term is unknown. However, application of
Theorem 2 withQy|x = BSC(maz) Whered,,,, = max(d1,ds), yields the following upper
bound:

Cp, <1—h(s"), (338)
wheres* is found as the solution of
d(s*[|62) = d(s™[|01) - (339)

To get (338), take any rat® > 1 — h(d,...) and apply a well-known above-the-capacity error
estimate for the&)-channel [16]:

1 —¢€ <exp(—nd(s||0maz)) (340)
wheres < ¢; satisfiesR =1 — h(s). Then it is not hard to obtain that

B1p, (Pyix; Qyix) ~ exp (—=nd(s"|[0maz)) - (341)

The upper bound (338) then follows from Theorem 2 immedyatidbte that the same upper-
bound was derived in [11] (and there it was also shown to W# tigthe special case ¢§; — J,|
being small enough), but the proof we have outlined abovedsergeneral since it also applies

to the average probability of error criterion and variousestavailability scenarios.
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