
Dispersion of Gaussian Channels
Yury Polyanskiy

Dept. of Electrical Engineering
Princeton University

Princeton, NJ 08544, USA
Email: ypolyans@princeton.edu

H. Vincent Poor
Dept. of Electrical Engineering

Princeton University
Princeton, NJ 08544, USA
Email: poor@princeton.edu

Sergio Verdú
Dept. of Electrical Engineering

Princeton University
Princeton, NJ 08544, USA
Email: verdu@princeton.edu

Abstract—The minimum blocklength required to achieve a
given rate and error probability can be easily and tightly
approximated from two key channel parameters: the capacity
and the channel dispersion. The channel dispersion gauges the
variability of the channel relative to a deterministic bit pipe
with the same capacity. This paper finds the dispersion of the
additive white Gaussian noise (AWGN) channel, the parallel
AWGN channel, and the Gaussian channel with non-white noise
and intersymbol interference.

I. INTRODUCTION

The fundamental performance limit1 for a channel in the fi-
nite blocklength regime is M∗(n, ε), the maximum cardinality
of a codebook of blocklength n which can be decoded with
block error probability no greater than ε. Denoting the channel
capacity by C, the approximation

logM∗(n, ε)
n

≈ C (1)

is asymptotically tight for channels that satisfy the strong
converse. However for many channels, error rates and block-
length ranges of practical interest, (1) is too optimistic. It has
been shown in [1] that a much tighter approximation can be
obtained by defining a second parameter referred to as the
channel dispersion:

Definition 1: The dispersion V (measured in squared infor-
mation units per channel use) of a channel with capacity C is
equal to

V = lim
ε→0

lim sup
n→∞

1
n

(nC − logM∗(n, ε))2

2 ln 1
ε

. (2)

In conjunction with the channel capacity C, channel dispersion
emerges as a powerful analysis and design tool [1]. In order to
achieve a given fraction of capacity with a given error proba-
bility, the required blocklength is proportional to V/C2. More
specifically, [1] shows that for simple memoryless channels
the two-term expansion2

logM∗(n, ε) = nC −
√
nV Q−1(ε) +O(log n) . (3)

The research was supported by the National Science Foundation under
Grants CCF-06-35154 and CNS-06-25637.

1The companion paper [5] contains some common introductory material
for the sake of providing a self-contained presentation.

2As usual, Q(x) =
R∞
x

1√
2π
e−t

2/2 dt. The logarithms throughout this
paper are to the same arbitrary base.

gives an excellent approximation (unless the blocklength is
very small).

The expansion (3) first was proven for discrete memoryless
channel (DMC) in [2] using classical information theoretic
bounds. In [1] and [3] tighter bounds were proposed which
enabled the authors to demonstrate a remarkable tightness
of (3) in approximating logM∗(n, ε) and to improve the
bounds on O(log n) term. These new bounds are used in
this paper to prove (3) for the AWGN channel and various
important generalizations.

The outline of the paper follows. Section II reviews relevant
bounds from [1] and [3]. In Section III we prove (3) for the
AWGN channel. This result is extended in Sections IV and V
to the parallel AWGN channel and the Gaussian channel with
intersymbol interference (ISI), respectively. Finally, Section VI
discusses some implications of our results.

II. GENERAL ERROR BOUNDS

A. Notation

Consider an abstract channel defined by a triple: measurable
spaces of inputs A and outputs B and a conditional probability
measure PY |X : A 7→ B. We denote a codebook with M
codewords by {c1, . . . , cM} ⊂ A. A (possibly randomized)
decoder is a random transformation PZ|Y : B 7→ {0, 1, . . .M}
(where ‘0’ indicates that the decoder chooses “error”). The
maximal error probability is

ε = max
m∈{1,...M}

[
1− PZ|X(m|cm)

]
.

For an arbitrary input distribution PX define an (extended)
random variable

i(X;Y ) = log
dPY |X(Y |X)
dPY (Y )

, (4)

where PY =
∫
dPXPY |X=x.

The optimal performance of binary hypothesis testing (HT)
plays an important role in our development. Consider a ran-
dom variable W taking values in a set W which can take
probability measures P or Q. A randomized test between
those two distributions is defined by a random transformation
PZ|W : W 7→ {0, 1} where 0 indicates that the test chooses
Q. The best performance achievable among those randomized



tests is given by3

βα(P,Q) = min
∑
w∈W

Q(w)PZ|W (1|w) , (5)

where the minimum is over all probability distributions PZ|W
satisfying

PZ|W :
∑
w∈W

P (w)PZ|W (1|w) ≥ α . (6)

The minimum in (5) is guaranteed to be achieved by the
Neyman-Pearson lemma. Thus, βα(P,Q) gives the minimum
probability of error under hypothesis Q if the probability of
error under hypothesis P is not larger than 1 − α. It is easy
to show that (e.g. [4]) for any γ > 0

α ≤ P
[
dP

dQ
≥ γ

]
+ γβα(P,Q). (7)

On the other hand,

βα(P,Q) ≤ 1
γ0
, (8)

for any γ0 that satisfies

P
[
dP

dQ
≥ γ0

]
≥ α . (9)

Each per-codeword cost constraint can be defined by specify-
ing a subset F ⊂ A of permissible inputs. For an arbitrary
F ⊂ A, we define a related measure of performance for
the composite hypothesis test between QY and the collection
{PY |X=x}x∈F:

κτ (F, QY ) = inf
PZ|Y :
infx∈F PZ|X(1|x) ≥ τ

∑
y∈B

QY (y)PZ|Y (1|y) .

(10)
Typically we will take A and B as n-fold Cartesian products

of alphabets A and B. To emphasize dependence on n we will
write βnα and κnτ .

B. Achievabilit and Converse Bounds

Our main tool in showing the achievability part of (3) is the
following result (Theorem 4 of [3]):

Theorem 1 (κβ bound): For any 0 < ε < 1, there exists an
(M, ε) code with codewords chosen from F ⊂ A, satisfying

M ≥ sup
0<τ<ε

sup
QY

κτ (F, QY )
supx∈F β1−ε+τ (PY |X=x, QY )

. (11)

Virtually all known converse results for channel coding can
be shown to be applications of the following result (or its
variant for average probability of error [5]) by a judicious
choice of QY |X and a lower bound on β, see [1].

Theorem 2 (meta-converse, [1]): Consider two different
abstract channels PY |X and QY |X defined on the same input

3We write summations over alphabets for simplicity; however, all of our
general results hold for arbitrary probability spaces.

and output spaces. For a given code (possibly with a random-
ized decoder) with codewords belonging to F ⊂ A, let

ε = maximal error probability with PY |X

ε′ = maximal error probability with QY |X

Then,
inf
x∈F

β1−ε(PY |X=x, QY |X=x) ≤ 1− ε′ . (12)

III. THE AWGN CHANNEL

For the real-valued AWGN channel we set A = Rn, B =
Rn, PY n|Xn=xn = N (xn, In) and codewords are subject to
one of three types of power constraints:
• equal-power constraint: M∗e (n, ε, P ) denotes the max-

imal number of codewords, such that each codeword
ci ∈ Xn satisfies

||ci||2 = nP . (13)

• maximal power constraint: M∗m(n, ε, P ) denotes the max-
imal number of codewords, such that each codeword
ci ∈ Xn satisfies

||ci||2 ≤ nP . (14)

• average power constraint: M∗a (n, ε, P ) denotes the max-
imal size M of a codebook that satisfies

1
M

M∑
i=1

||ci||2 ≤ nP . (15)

Theorem 3: For the AWGN channel with SNR P , 0 < ε <
1 and under equal-power, maximal-power or average-power
constraints, we all have

logM∗(n, ε, P ) = nC1(P )−
√
nV1(P )Q−1(ε) + ρn , (16)

where

ρn = O(log n) , (17)

C1(P ) =
1
2

log (1 + P ) , (18)

V1(P ) =
P

2
P + 2

(P + 1)2
log2 e . (19)

More precisely, for equal-power and maximal-power con-
straints, the O(log n) term in (16) can be bounded by

O(1) ≤ ρn ≤
1
2

log n+O(1) , (20)

whereas for average-power constraint we have

O(1) ≤ ρn ≤
3
2

log n+O(1) . (21)

A proof of this result is sketched in the appendix. For full
details see [1]. It is interesting to note that in [1] we have
found that the ρn term is equal to 1/2 log n + O(1) for the
BSC and O(1) for the BEC.

Proceeding heuristically from the reliability function in [7],
the expansion in (16) was put forward in [6] with ρn =
o(n−1/2), for the case of per-codeword power constraint.



IV. THE PARALLEL AWGN CHANNEL

For the real-valued L-parallel AWGN channel we set A =
RL×n, B = RL×n and PY |X is defined by

Yi,j = Xi,j + σiZi,j , i = 1 . . . L, j = 1 . . . n , (22)

where Zi,j are independent N (0, 1) random variables. Also,
codewords c are subject to a (maximal) power constraint:

||c||2 =
n∑
j=1

L∑
i=1

|ci,j |2 ≤ nP . (23)

Theorem 4: For a parallel AWGN channel and ε ∈ (0, 1)
we have

logM∗(n, ε, P ) = nCL(P )−
√
nVL(P )Q−1(ε) +O(log n) ,

(24)
with

CL(P ) =
L∑
i=1

C1

(
Wi

σ2
i

)
, and (25)

VL(P ) =
L∑
i=1

V1

(
Wi

σ2
i

)
, (26)

where C1 and V1 are defined in (18) and (19) and {Wj} are
the usual waterfilling powers

Wi =
[
λ− σ2

i

]+
(27)

and λ is the solution of
L∑
i=1

Wi = P . (28)

The proof is outlined in the appendix.

V. THE GAUSSIAN CHANNEL WITH ISI
Consider the Gaussian channel with ISI:

Yj = (h ∗X)j + Zj , (29)

where h∗X denotes convolution with a deterministic sequence
h, whose Fourier transform is H(f) =

∑∞
k=−∞ hke

−2iπfk

and Zj are independent N (0, 1) random variables.
Theorem 5: For the Gaussian channel with ISI, the channel

dispersion is given by

VISI =
log2 e

2

∫ 1/2

−1/2

[
1− 1
|H(f)|4P 2ξ2

]+
df , (30)

where ξ is the solution of∫ 1/2

−1/2

[
ξ − 1

P |H(f)|2

]+
df = 1 . (31)

If the noise process, Zj , is not white, then we simply need to
replace |H(f)|2 by |H(f)|2/N(f), where N(f) is the power
spectral density of Zj .

We cannot include the proof of Theorem 5, but to partly
motivate the expression (30) one simply needs to notice
that (26) can be written as

VL(P ) =
(

log2 e

2

) L∑
i=1

[
1−

(
σ2
i

λ

)2
]+

. (32)
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VI. DISCUSSION

As shown in [1], the normal approximation

logM∗(n, ε, P ) ≈ nC −
√
nV Q−1(ε) + α log n (33)

is rather tight for the BSC (α = 1/2) and the BEC (α = 0).
Similarly, in [1], we computed various upper and lower bounds
on logM∗(n, ε, P ) for the AWGN channel and found that
for many practical scenarios (33) with α = 1/2 is valid to
within a few bits. An example of such comparison is given on
Fig. 1. The converse bound is obtained from Theorem 2 and
the tightest achievability in this case is the one found in [7]4.

A good analytical approximation to the maximal rate achiev-
able with a given blocklength and error probability opens a
range of practical applications. We now give some examples.

First, an interesting figure of merit for the AWGN is the
excess energy per bit, ∆Eb(n), over that predicted by channel
capacity incurred as a function of blocklength for a given
required bit rate and block error rate:

∆Eb(n) = 10 log10

P (n,R, ε)
exp(2R)− 1

, (34)

where, according to the normal approximation, P (n,R, ε) is
the solution to

C1(P )−
√
V1(P )
n

Q−1(ε) +
1

2n
log n = R . (35)

In [1] we evaluate ∆Eb(n) and compare it against the best
upper and lower bounds. Again, we find that (34) and (35)
yield good precision e.g., for n = 200, R = 1/2 and ε = 10−4

the difference between an approximate value of ∆Eb(n) and
the true upper bound is only 0.04 dB.

Second, we consider a basic automatic repeat request (ARQ)
transmission scheme in which a packet is retransmitted until
the receiver acknowledges successful decoding (which the
receiver determines using a variety of known highly reliable

4Note that while the κβ bound is more useful for proving Theorem 3,
numerically [7] is unsurpassed.



TABLE I
OPTIMAL BLOCK ERROR RATE FOR PACKET SIZE k = 1000 BITS

Channel Optimal ε∗(k) Optimal R/C Throughput
BEC(0.5) 8.1 · 10−3 0.95 0.94
BSC(0.11) 16.7 · 10−3 0.91 0.90
AWGN, SNR = 0dB 15.5 · 10−3 0.92 0.90
AWGN, SNR = 20dB 6.2 · 10−3 0.96 0.95

hashing methods). Typically, the size k of the information
packets is determined by the particular application, and both
the blocklength n and the block error probability ε are degrees
of freedom. A natural objective is to maximize the average
throughput (or, equivalently, minimize the average delivery
delay) given by

T (k) = max
n,ε

k

n
(1− ε) , (36)

assuming decoding errors are independent for different retrans-
missions. The maximization in (36) is over those (n, ε) such
that

log2M
∗(n, ε) = k . (37)

Note that the number of required retransmissions is geomet-
rically distributed, with mean equal to k

T (k) . In view of the
tightness of the approximation in (3), it is sensible to maximize

T̃ (k) = max
n

k

n

[
1−Q

(
nC − k√
nV

)]
, (38)

where C and V are the channel capacity and channel disper-
sion, respectively. Table I shows the results of the optimization
for the channel examples we have discussed above. Addition-
ally, some plots can be found in [1].

Of particular note is that, for 1000 information bits, the
optimum block error rate is as high as 10−2. In fact, this
optimum ε does not depend too much on either the channel
or the packet size. A tight approximation to it is given by

ε̃(k) =
(
kC

V
ln

kC

2πV

)−1/2
(

1− 1
ln kC

2πV

)
, (39)

which is obtained by retaining only the dominant terms in the
asymptotic solution as k →∞.
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APPENDIX

Proof of Theorem 3: Achievability: To analyze
logM∗e (n, ε) we plan to use Theorem 1 with Fn = {xn ∈
Rn : ||xn||2 = nP} and

QY n = N (0, (1 + P )In) . (40)

By the spherical symmetry we notice that
βnα(PY n|Xn=xn , QY n) does not depend on xn ∈ Fn. A
convenient choice of xn is

xn = (
√
P , . . .

√
P ) . (41)

Indeed, with this choice we can show that (an alternative
analysis of the distribution of i(Xn;Y n) is found in [8])

log
dPY n|Xn=xn

dQY n

=
n∑
j=1

Lj , (42)

where Lj are independent random variables distributed as

Lj =
1
2

log(1 + P ) +
log e

2
P

(1 + P )

(
1− Z2

i +
2√
P
Zi

)
(43)

with Zj ∼ N (0, 1). Notice that

E [Lj ] = C1(P ) and Var[Lj ] = V1(P ) . (44)

Therefore, an application of (7), (8) and the Berry-Esseen
inequality to (42) allows us to prove

log βnα = −nC1(P )+
√
nV1(P )Q−1(1−α)+O(log n) . (45)

To compute κτ (Fn, QY n), notice that by spherical symmetry
the optimal test in (10) will also by spherically symmetric.
But then the quantity

Sn =
n∑
j=1

|Yj |2 (46)

is a sufficient statistic for a composite HT problem (10). More-
over, the distribution of Sn is the same under all PY n|Xn=xn

provided that xn ∈ Fn. Then we conclude that

κτ (Fn, QY n) = βτ (PSn
, QSn

) , (47)

where

under PSn
: Sn ∼

n∑
j=1

(
√
P + Zj)2 , (48)

under QSn
: Sn ∼

n∑
j=1

(1 + P )(Zj)2 . (49)

An application of the (local) central limit theorem shows that
for some constants K1,K2 > 0 and all τ ∈ [0, 1] we have

κτ (Fn, QY n) ≥ K1τ +O
(
e−K2n

)
(50)



(the main reason for this type of behavior of κ is the equality
of expectations of (48) and (49)).

To conclude the proof of achievability we apply Theorem 1
with τn = 1√

n
and find that

logM∗e (n, ε) ≥ log κτn
(Fn, QY n)− log βn1−ε+τn

(51)

≥ nC1 −
√
nV1Q

−1 (ε− τn) + log κτn +O(log n)(52)

= nC1 −
√
nV1Q

−1 (ε) + log κ1/
√
n +O(log n) (53)

≥ nC1 −
√
nV1Q

−1 (ε) +O(log n) , (54)

where (52) is by (45), (53) is by Taylor’s theorem and because
τn = 1/

√
n, and (54) is by (50).

Converse: Take the code satisfying an equal-power con-
straint with the largest possible cardinality M∗e (n, ε). We apply
Theorem 2 to this code with QY n|Xn = QY n , where QY n is
defined in (40). Since under the Q-channel the input and output
are independent, we easily find

1− ε′ ≤ 1
M∗e (n, ε)

. (55)

Putting this into (12) we find

logM∗e (n, ε) ≤ − log(1− ε′) ≤ − log βn1−ε (56)

≤ nC1(P )−
√
nV1(P )Q−1(ε) +O(log n) , (57)

where (57) is by (45). We omit the proof of similar statements
about logM∗a (n, ε) and logM∗m(n, ε).

Proof of Theorem 4: Achievability: We choose

Fn = {x ∈ RL×n : ||xi,·||2 = nWi , i = 1, . . . L} (58)

and

QY =
n∏
j=1

L∏
i=1

N (0, σ2
i +Wi) . (59)

Again, by spherical symmetry we can see that
βα(PY|X=x, QY) does not depend on the choice of
x ∈ Fn and for convenience we choose

x : xi,j =
√
Wi , i = 1, L, j = 1, n . (60)

Then, by analyzing log dPY|X=x

dQY
and similar to (45) we obtain

log βnα = −nCL(P ) +
√
nVL(P )Q−1(1− α) +O(log n) .

(61)
Again, analogously to (50) it can be shown that for some
K1,K2 > 0

κτ (Fn, QY) ≥ K1τ +O
(
e−K2n

)
. (62)

The proof of achievability is concluded by following the
steps (51)-(54).

Converse: Proving the converse for the parallel AWGN is
not as simple as for the AWGN. The main obstacle is that
we can not apply (61) since it was derived under assumption
x ∈ Fn, whereas according to the power constraint codeword
x can belong to a larger set:

F′n = {x ∈ RL×n : ||x||2 ≤ nP} . (63)

To each codeword x ∈ F′n we associate a power allocation
vector

v(x) ∈ RL : vi(x) =
1
n
||xi,·||2 . (64)

We choose the following Q-channel in Theorem 2:

QY|X=x =
n∏
j=1

L∏
i=1

QYi,j |X=x , (65)

where
QYi,j |X=x = N

(
0, σ2

i + vi(x)
)
. (66)

Again, by spherical symmetry βnα(PY|X=x, QY|X=x) depends
on x only through v. Then, analogously to (45) and (61) we
find

log βnα(x) = −n
L∑
i=1

C1

(
vi(x)
σ2
i

)

+

√√√√n

L∑
i=1

V1

(
vi(x)
σ2
i

)
Q−1(1− α) +O(log n) .(67)

According to (12), we must take the infimum of (67) over all
codewords x ∈ F′n. Since the latter restriction is equivalent to
requiring

∑L
i=1 vi(x) ≤ P , there exists a unique minimizer

vi = Wi so that

inf
x∈F′n

log βnα(x) = −nCL+
√
nVL(P )Q−1(1−α)+O(log n) .

(68)
Finally, assume that we could establish the following converse
bound for the Q-channel:

Lemma 6: There exists a constant K3 > 0 such that for any
code with M codewords the maximum probability of error ε′

over a Q-channel satisfies

1− ε′ ≤ K3n
L/2

M
. (69)

The proof of the theorem then follows by the same argument
as (55)-(57) with (45) replaced by (68), and the nL/2 factor
affecting only the O(log n) term.

Proof of Lemma 6: According to (66) the output Y
depends only on V = v(X) and moreover U = v(Y) is
a sufficient statistic of Y for X. Therefore, an equivalent
channel QU|V is defined as

Ui = (σ2
i + Vi)

1
n

n∑
j=1

Z2
i,j , i = 1, L , (70)

where Zi,j ∼ N (0, 1). Note that V is required to belong to
a certain ball in RL, and that with overwhelming probability
U belongs to a slightly larger ball. Therefore, we can assume
that the output space has a bounded volume K4. Then at least
for one codeword v0 the decoding set D0 must have a volume
smaller than K4

M . But QU|V=v is a product of L copies of a
χ2-distribution and we can show that its density is bounded
everywhere by K5n

L/2. Hence, we have

1− ε′ ≤ QU|V=v0 [D0] ≤ K4K5n
L/2

M
. (71)


