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Abstract

This paper investigates the maximal channel coding rate achievable at a given blocklength and error

probability. For general classes of channels new achievability and converse bounds are given, which are

tighter than existing bounds for wide ranges of parameters of interest, and lead to tight approximations

of the maximal achievable rate for blocklengths n as short as 100. It is also shown analytically that the

maximal rate achievable with error probability ε is closely approximated by C −
√

V
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C is the capacity, V is a characteristic of the channel referred to as channel dispersion, and Q is the

complementary Gaussian cumulative distribution function.
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I. INTRODUCTION

The proof of the channel coding theorem involves three stages:

• Converse: an upper bound on the size of any code with given arbitrary blocklength and

error probability.

• Achievability: a lower bound on the size of a code that can be guaranteed to exist with

given arbitrary blocklength and error probability.

• Asymptotics: the bounds on the log size of the code normalized by blocklength asymptot-

ically coincide as a result of the law of large numbers (memoryless channels) or another

ergodic theorem (for channels with memory).

As propounded in [1], it is pedagogically sound to separate clearly the third stage from the

derivation of the upper and lower bounds:

• The bounds need not impose assumptions on the channel such as memorylessness, station-

arity, and ergodicity.

• The key information theoretic arguments are used mainly in the converse and achievability

bounds.

• The bounds can be extremely useful in assessing the highest rate that can be achieved when

operating with a given blocklength and error probability.

The strong form of the coding theorem establishes that for a general class of channels that

behave ergodically [2], the channel capacity is the largest rate at which information can be

transmitted regardless of the desired error probability, provided that the blocklength is allowed

to grow without bound. In practice, it is of vital interest to assess the backoff from capacity

required to sustain the desired error probability at a given fixed finite blocklength. Unfortunately,

no guidance to answer that question is offered either by the strong version of the coding theorem,

or by the reliability function, which gives the asymptotic exponential decay of error probability

when transmitting at any given fraction of capacity.

In the non-asymptotic regime, there are no exact formulas for the maximal rate sustainable as

a function of blocklength and error probability. In this paper, we show several new achievability

and converse bounds which bound the fundamental limits tightly for blocklengths as short as

100. Together with normal approximations, the bounds also show that in the finite blocklength

regime, the backoff from channel capacity C is accurately and succinctly characterized by a
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parameter that we refer to as the channel dispersion V , which measures the stochastic variability

of the channel relative to a deterministic channel with the same capacity. Specifically, the finite

blocklength coding rate is approximated by1

1

n
logM∗(n, ε) ≈ C −

√
V

n
Q−1(ε) , (1)

where n is the blocklength and ε is the error probability.

Since Shannon established the convergence of optimal coding rate to capacity, there has been

some work devoted to the assessment of the penalty incurred by finite blocklength. Foremost,

Shannon [3] provided tight bounds for the additive white Gaussian noise (AWGN) channel

that were numerically studied by Slepian [4] (cf. also [5], [6]). Recently, with the advent of

sparse-graph codes, a number of works [8]–[11] have studied the SNR penalty as a function

of blocklength in order to improve the assessment of the suboptimality of a given code with

respect to the fundamental limit at that particular blocklength rather than the asymptotic limit

embodied in the channel capacity. Approximations of the type in (1) have been studied in [7],

[23], [29]–[31].

The major existing achievability and converse bounds are reviewed in Section II along with

refined asymptotic expansions of achievable rate. Section III gives our new lower and upper

bounds on the maximal rate achievable for a given blocklength and error probability. The

lower bounds are based on three different constructive approaches that lead, respectively, to

the RCU (random-coding union) bound, the DT (dependency testing) bound, and the κβ bound

based on the Neyman-Pearson lemma that uses an auxiliary output distribution. Unlike existing

achievability bounds, the RCU and DT bounds contain no parameters (other than the input

distribution) to be optimized. A general converse upper bound is given as a result of the

solution of a minimax problem on the set of input/output distributions. Section IV studies

the normal approximation to the maximal achievable rate for discrete memoryless channels

and for the additive white Gaussian noise channel, and shows that (1) holds up to a term of

O((log n)/n) except in rare cases. Throughout Sections III and IV, particular attention is given

to the binary erasure channel (BEC), the binary symmetric channel (BSC) and the AWGN

channel. Several coding schemes used in practice are compared against the non-asymptotic

1As usual, Q(x) =
R∞
x

1√
2π
e−t

2/2 dt .
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fundamental limits. The use of the normal approximation as a design tool is illustrated in the

context of the optimization of the maximal throughput of a simple automatic repeat request

(ARQ) retransmission strategy. Section V summarizes our main findings.

II. PREVIOUS WORK

Let us consider measurable spaces of inputs A and outputs B and a conditional probability

measure PY |X : A 7→ B. We denote a codebook with M codewords by (c1, . . . , cM) ∈ AM . A

(possibly randomized) decoder is a random transformation PZ|Y : B 7→ {0, 1, . . .M} (where ‘0’

indicates that the decoder chooses “error”). A codebook with M codewords and a decoder that

satisfies PZ|X(m|cm) ≥ 1−ε for m ∈ {1, . . .M} are called an (M, ε)-code (maximal probability

of error). If the messages are equiprobable, the average error probability is

1− 1

M

M∑
m=1

PZ|X(m|cm).

A codebook and a decoder whose average probability of error is smaller than ε are called an

(M, ε)-code (average probability of error). In the application of our results, we will take A and

B to be n-fold Cartesian products of alphabets A and B, and a channel to be a sequence of

conditional probabilities {PY n|Xn : An → Bn} [2]. An (M, ε) code for {An,Bn, PY n|Xn} is

called an (n,M, ε) code. The maximal code size achievable with a given error probability and

blocklength is denoted by

M∗(n, ε) = max{M : ∃ an (n,M, ε)-code} . (2)

For the statement and proof of the achievability and converse bounds, it is preferable not to

assume that A and B have any structure such as a Cartesian product. This has the advantage

of avoiding the notational clutter that results from explicitly showing the dimension (n) of the

random variables taking values on A and B.

A. Achievability Bounds without Codeword Constraints

For a joint distribution PXY on A× B we denote the information density by

i(x; y) = log
dPXY

d(PX × PY )
(x, y) (3)

= log
dPY |X=x

dPY
(y) , (4)
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with the understanding that if PY |X=x is not absolutely continuous with respect to PY we define

i(x; y) = +∞ for all y in the singular set, and we define i(x; y) = −∞ for any y such that
dPY |X=x

dPY
= 0.

Feinstein’s [13] achievability bound for maximal probability of error is given as follows.

Theorem 1 (Feinstein): For any distribution PX , and any β > 0, there exists an (M, ε) code

(maximal probability of error) such that2

M ≥ β (ε− P [i(X;Y ) ≤ log β ]) . (5)

Alternatively, Shannon’s achievability bound [14] is given as follows.

Theorem 2 (Shannon): For any distribution PX , and any β > 0, there exists an (M, ε) code

(average probability of error) such that

ε ≤ M − 1

β
+ P [i(X;Y ) ≤ log β] . (6)

It is easy to verify that Theorem 1 implies a slightly weakened version of Theorem 2 where

M − 1 is replaced by M ; conversely, Theorem 2 implies the weakened version of Theorem 1

where maximal is replaced by average error probability.

The following upper bound is a reformulation of Gallager’s random coding bound [15], in

terms of information density.

Theorem 3 (Gallager): For any PX and λ ∈ [0, 1], there exists an (M, ε) code (average

probability of error) such that

ε ≤Mλ E

[(
E
[
exp

i(X̄;Y )

1 + λ

∣∣∣∣Y ])1+λ
]

(7)

where PXY X̄(a, b, c) = PX(a)PY |X=a(b)PX(c).

For a memoryless channel (7) turns, after optimization over λ, into

ε ≤ exp{−nEr(R)} , (8)

where R = logM
n

and Er(R) is Gallager’s random coding exponent [16].

2PX , Q and PY |X=x denote distributions, whereas P is reserved for probability measure on the underlying probability space.
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B. Achievability Bounds with Linear Codes

For a linear code over the BSC, Poltyrev [17] proved the following upper-bound on the

probability of error.

Theorem 4 (Poltyrev): The maximal probability of error Pe under maximum likelihood decod-

ing of a linear code3 with weight distribution4 {Aw, w = 0, . . . n} over the BSC with crossover

probability δ satisfies

Pe ≤
n∑
`=0

δ`(1− δ)n−` min

{(
n

`

)
,

n∑
w=0

AwB(`, w, n)

}
, (9)

where

B(`, w, n) =
∑

w/2≤t≤min{`,w}

(
w

t

)(
n− w
`− t

)
. (10)

A [k, n] linear code is generated by a k × n binary matrix. We can average (9) over an

equiprobable ensemble of such matrices. Applying Jensen’s inequality to pass expectation inside

the minimum and noticing that E [Aw] = 2k−n
(
n
w

)
we obtain the following achievability bound.

Theorem 5: For a BSC with crossover probability δ there exists a [k, n] linear code such that

a maximum likelihood decoder has a maximal probability of error Pe satisfying

Pe ≤
n∑
`=0

δ`(1− δ)n−` min

{(
n

`

)
,

n∑
w=0

2k−n
(
n

w

)
B(`, w, n)

}
, (11)

where B(`, w, n) is given by (9).

A negligible improvement to (11) is possible if we average (9) over an ensemble of all full-rank

binary matrices instead. Another modification by expurgating low-weight codewords [18] leads

to a tightening of (11) when the rate is much lower than capacity.

For the BEC the results of [19, Theorem 9] can be used to compute the exact value of the

probability of error over an ensemble of all linear codes generated by full-rank k × n binary

matrices [20].

3At the expense of replacing maximal probability of error by average, the same bound can be shown for a non-linear code

by generalizing the notion of weight distribution.
4We define A0 to be the number of 0-weight codewords in the codebook minus 1. In particular, for a codebook with no

repeated codewords A0 = 0.
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Theorem 6 (Ashikhmin): Given a BEC with erasure probability δ, the average probability of

error over all binary k × n linear codes with full-rank generating matrices chosen equiprobably

is equal to

Pe =
n∑
i=0

(
n

i

)
δn−i(1− δ)i

min{k,i}∑
r=max{0,k−n+i}

i
r

n− i
k − r

n
k

−1

2r(n−i−k+r)
(
1− 2r−k

)
, (12)

where a
r

 4= r−1∏
j=0

2a − 2j

2r − 2j

is the number of r-dimensional subspaces of Fa2.

C. Achievability Bounds with Codeword Constraints

Suppose that all codewords are required to belong to some set F ⊂ A. For example, there

might be a cost c(x) associated with using a particular input vector x, in which case the set F

might be chosen as

F = {x : c(x) ≤ P} . (13)

A cost-constrained generalization of (5) due to Thomasian [21] (see also [22]) in which all the

codewords are constrained to belong to F is

M ≥ β (ε− P [i(X;Y ) ≤ log β]− PX [Fc]) . (14)

A cost-constrained version of (6) is

ε ≤ M − 1

β
+ P [i(X;Y ) ≤ log β] + PX [Fc] . (15)

It should be noted that in both (14), and (15), the auxiliary distribution PX is not constrained

to take values on F. Theorem 3 admits the following generalization to the setting with cost

constraints.

Theorem 7 (Gallager, with cost): Suppose PX is such that

E [c(X)] ≤ P (16)

and denote

µ(δ)
4
= P[P − δ ≤ c(X) ≤ P ] . (17)
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Then, for any δ ∈ [0, P ] such that µ(δ) > 0, λ ∈ [0, 1] and r ≥ 0 there exists an (M, ε)-code

(average probability of error) with codewords in F given by (13) and such that

ε ≤Mλ

(
exp(rδ)

µ(δ)

)1+λ

E

[(
E
[
exp

{
i(X̄;Y )

1 + λ
+ (c(X̄)− P )r

} ∣∣∣∣Y ])1+λ
]

(18)

where PXY X̄(a, b, c) = PX(a)PY |X=a(b)PX(c).

D. Converse Results

The simplest upper bound on the size of a code as a function of the average error probability

follows from Fano’s inequality:

Theorem 8: Every (M, ε)-code (average probability of error) for a random transformation

PY |X satisfies

logM ≤ 1

1− ε
sup
X
I(X;Y ) +

1

1− ε
h(ε) (19)

where h(x) = −x log x− (1− x) log(1− x) is the binary entropy function.

A significant improvement under the maximal error probability formalism is supplied by the

bound due to Wolfowitz [23].

Theorem 9 (Wolfowitz): Every (M, ε)-code (maximal probability of error) must satisfy

M ≤ inf
β>0

β

(
inf
x∈A

PY |X=x [i(x;Y ) < log β]− ε
)−1

(20)

provided that the right-hand side is not less than 1.

As shown in [24, Theorem 7.8.1], this bound leads to the strong converse theorem for the

discrete memoryless channel (DMC), even assuming noiseless feedback, namely,

logM∗(n, ε) ≤ nC + o(n) ∀ε ∈ (0, 1) . (21)

Theorem 9 can be further tightened by maximizing the probability therein with respect to the

choice of the unconditional output distribution in the definition of information density [25].

The following corollary to Theorem 9 gives another converse bound which also leads to (21),

but is too coarse for the purposes of analyzing the fundamental limits in the finite blocklength

regime.

Theorem 10 ([16, Theorem 5.8.5]): For an arbitrary discrete memoryless channel of capacity

C and any (n, exp{nR}, ε) code with rate R > C, we have

ε ≥ 1− 4A

n(R− C)2
− exp

{
−n(R− C)

2

}
, (22)
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where A > 0 is constant independent of n or R.

The dual of the Shannon-Feinstein bounds in Theorems 1 and 2 (in the unconstrained setting)

is given in [2].

Theorem 11 (Verdú-Han): Every (M, ε)-code (average error probability) satisfies

ε ≥ sup
β>0

{
inf
PX

P [i(X;Y ) ≤ log β]− β

M

}
. (23)

The challenge we face in using Theorem 11 or the generally tighter bound given in [26], to

compute finite blocklength converse bounds is the optimization with respect to the distribution

on the set of n-dimensional input vectors.

The Shannon-Gallager-Berlekamp sphere-packing bound [27] is given by the following result.

Theorem 12 (Shannon-Gallager-Berlekamp): Let PY |X : A 7→ B be a DMC. Then any (n,M, ε)

code (average probability of error) satisfies

ε ≥ exp{−n(Esp(R− o1) + o2)} , (24)

where

R =
logM

n
, (25)

Esp(R) = sup
ρ≥0

[E0(ρ)− ρR] , (26)

E0(ρ) = max
PX

E0(ρ, PX) , (27)

E0(ρ, PX) = − log
∑
y∈B

[∑
x∈A

PX(x)PY |X(y|x)1/(1+ρ)

]1+ρ

(28)

= − log

(
E
[
E
[
exp

i(X̄;Y )

1 + ρ

∣∣∣∣Y ]]1+ρ
)
, (29)

o1 =
log 4

n
+
|A| log n

n
, (30)

o2 =

√
8

n
log

e√
Pmin

+
log 8

n
, (31)

Pmin = min{PY |X(y|x) : PY |X(y|x) > 0} , (32)

where the maximization in (27) is over all probability distributions on A; and in (29), X̄ and Y

are independent:

PX̄Y (a, b) = PX(a)

(∑
x∈A

PY |X(b|x)PX(x)

)
. (33)
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While Theorem 12 is of paramount importance in the analysis of the reliability function for

sufficiently high rates, its usefulness in the finite-length regime is more limited because of its

slackness and slow speed of convergence of its normalized logarithm. For these reasons, [8] and

[11] have provided tightened versions of the sphere-packing converse bound, which also apply

to continuous-output channels.

E. AWGN bounds

For the AWGN channel, Shannon [3] gave the following result based on packing spherical

cones.

Theorem 13 (Shannon): Let

Yi = xi + Zi (34)

where Zi are independent and identically distributed (i.i.d.) standard normal random variables.

Assume that each codeword satisfies
n∑
i=1

x2
i = nP . (35)

Define for 0 ≤ θ ≤ π/2

qn(θ) = Q
(√

nP
)

+
n− 1√
π
e−nP/2

∫ π/2

θ

(sinφ)n−2 fn(
√
nP cosφ) dφ (36)

where

fn(x) =
1

Γ((n+ 1)/2)

∫ ∞
0

tn−1e−t
2+
√

2tx dt . (37)

Then, any (n,M, ε) code satisfies

qn(θ(M)) ≤ ε (38)

with θ(M) defined as

MΩn(θ(M)) = Ωn(π) (39)

with

Ωn(θ) =
2π(n−1)/2

Γ((n− 1)/2)

∫ θ

0

(sinφ)n−2 dφ , (40)
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which is equal to the area of the unit sphere in Rn cut out by a cone with semiangle θ.

Furthermore, there exists an (n,M, ε) code with

ε ≤ qn(θ(M))− M

Ωn(π)

∫ θ(M)

0

Ωn(φ)q̇n(φ) dφ (41)

=
Γ(n/2)M√
πΓ((n− 1)/2)

∫ θ(M)

0

qn(φ)(sinφ)n−2 dφ . (42)

Tackled in [4], [5], [6], [8], and [11], the accurate computation of the bounds in Theorem 13 is

challenging.

Applying Theorem 7 to the AWGN channel with PXn = N (0, P In) and optimizing over r

and λ, we obtain the following result (see [16], Theorem 7.4.4).

Theorem 14 (Gallager, AWGN): Consider the AWGN channel with unit noise power and input

power P , with capacity

C = 1
2

log(1 + P ) . (43)

For blocklength n, every 0 ≤ R ≤ C and every 0 < α ≤ 1, there exists an (exp(nR), n, ε) code

(maximal probability of error) with

ε ≤
(

2es(R)nαP

µ̄(α)

)2

e−nEr(R) , (44)

where

Er(R) =
P

4ξ

[
(ξ + 1)− (ξ − 1)

√
1 +

4ξ

P (ξ − 1)

]
+

1

2
loge

{
ξ − P (ξ − 1)

2

[√
1 +

4ξ

P (ξ − 1)
− 1

]}
for R ∈ [Rc, C] , (45)

Er(R) = 1− ξ +
P

2
+

1

2
loge

(
ξ − P

2

)
+

1

2
loge ξ −R loge 2 , for R ∈ [0, Rc] , (46)

ξ = exp(2 max{R,Rc}) , (47)

Rc =
1

2
log

(
1

2
+
P

4
+

1

2

√
1 +

P 2

4

)
, (48)

µ̄(α) = P
[
1− α ≤ 1

n
χ2
n ≤ 1

]
=

∫ n

n(1−α)

(y/2)n/2−1e−y/2

2Γ(n/2)
dy , (49)

s(R) =
ρP

2(1 + ρ)2ξ
, (50)
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ρ =
P

2ξ

[
1 +

√
1 +

4ξ

P (ξ − 1)

]
− 1 . (51)

Other bounds on reliability function have appeared recently, e.g. [12]. However, those bounds

provide an improvement only for rates well below capacity.

F. Normal Approximation

The importance of studying the asymptotics of the function M∗(n, ε) for given ε was already

made evident by Shannon in Theorem 12 of [28] which states that, regardless of ε ∈ (0, 1),

logM∗(n, ε) = nC + o(n) , (52)

where C is the channel capacity. Using Theorem 9, Wolfowitz [23] showed (52) for the DMC,

and improved the o(n) term to O(
√
n) in [24]. Weiss [29] showed that for the BSC with crossover

probability δ < 1
2
,

log2M
∗(n, ε) ≤ n(1− h(δ))−Q−1(ε)

√
n
√
δ − δ2 log2

1− δ
δ

+ o(
√
n) , (53)

where Q−1 denotes the functional inverse of the Q-function. Crediting M. Pinsker for raising

the question, a generalization of (53) was put forward without proof by Dobrushin [30], for

symmetric DMCs whose transition matrices are such that the rows are permutation of each

other and so are the columns. These results were significantly strengthened and generalized by

Strassen [31] who showed that for the DMC,

logM∗(n, ε) = nC −Q−1(ε)
√
nV +O(log n) , (54)

where V denotes the variance of the information density i(X;Y ) under the capacity achieving

distribution PX ; if such distribution is not unique, then, among those distributions that maximize

the average of i(X;Y ) we choose the one that minimizes the variance of i(X;Y ) (if ε < 1/2)

or that maximizes it (if ε ≥ 1/2). Strassen’s approach in [31] is not amenable to generalization

to channels with input constraints (most notably, the AWGN channel). In particular, Theorem 1

is not sufficient to prove the counterpart of (54) to the AWGN channel.
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III. NEW BOUNDS ON RATE

A. Achievability: Random-Coding

The upper bounds on the average probability of error considered in this paper are based on

random coding. The first result gives a general, exact analysis of the error probability of the

maximum-likelihood decoder averaged over all codes.

Theorem 15: (Random coding average error probability) Denote by ε(c1, . . . , cM) the er-

ror probability achieved by the maximum likelihood decoder with codebook (c1, . . . , cM). Let

X1, . . . , XM be independent with marginal distribution PX . Then,

E [ε(X1, . . . , XM)] = 1−
M−1∑
`=0

(
M − 1

`

)
1

`+ 1
E
[
W `ZM−1−`] (55)

where

W = P
[
i(X̄;Y ) = i(X;Y )

∣∣X, Y ] (56)

Z = P
[
i(X̄;Y ) < i(X;Y )

∣∣X, Y ] (57)

with

PXY X̄(a, b, c) = PX(a)PY |X(b|a)PX(c) . (58)

Proof: Since the M messages are equiprobable, upon receipt of the channel output y, the

maximum likelihood decoder chooses with equal probability among the members of the set

arg max
i=1,...,M

i(ci; y) .

Therefore, if the codebook is (c1, . . . , cM), and m = 1 is transmitted, the maximum likelihood

decoder will choose m̂ = 1 with probability 1
1+`

if

M∑
j=2

1{i(cj; y) = i(c1; y)} = ` (59)

M∑
j=2

1{i(cj; y) > i(c1; y)} = 0 , (60)

for ` = 0, . . .M − 1. If (60) is not satisfied an error will surely occur. Since the codewords are

chosen independently with identical distributions, given that the codeword assigned to message 1
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is c1 and given that the channel output is y ∈ B, the joint distribution of the remaining codewords

is PX × · · · × PX . Consequently, the conditional probability of correct decision is

M−1∑
`=0

(
M − 1

`

)
1

`+ 1

(
P
[
i(X̄; y) = i(c1; y)

])` (P [i(X̄; y) < i(c1; y)
])M−1−` (61)

where X̄ has the same distribution as X , but is independent of any other random variable arising

in this analysis. Averaging (61) with respect to (c1, y) jointly distributed as PXPY |X we obtain

the summation in (55). Had we conditioned on a message other than m = 1 we would have

obtained the same result. Therefore, the error probability averaged over messages and codebook

is given by (55).

Naturally, Theorem 15 leads to an achievability upper bound since there must exist an

(M,E [ε(X1, . . . , XM)]) (average error probability) code.

B. Achievability: Random-Coding Union Bound

One way to loosen (55) in order to obtain a simpler bound is via the following result.

Theorem 16: (RCU bound) For an arbitrary PX there exists an (M, ε) code (average proba-

bility of error) such that

ε ≤ E
[
min

{
1, (M−1)P

[
i(X̄;Y ) ≥ i(X;Y )

∣∣X, Y ]}] , (62)

where PXY X̄(a, b, c) = PX(a)PY |X(b|a)PX(c).

Proof: 5 The average probability of error attained by an arbitrary codebook (c1, . . . cM)

using a maximum likelihood decoder is upper bounded by

ε ≤ 1

M

M∑
m=1

P

[
M⋃

j=1;j 6=m

{i(cj;Y ) ≥ i(cm;Y )} |X = cm

]
, (63)

where we do not necessarily have equality since the maximum likelihood decoder resolves some

ties in favor of the correct codeword. Using Shannon’s random coding argument, the desired

result will follow if we can show that the expectation of the right side of (63) is upper bounded

5A short proof of Theorem 16 can be obtained as a corollary of Theorem 15 by keeping only the first term in the sum (55)

and then further upper-bounding 1 − ZM−1 by min{(M − 1)(1 − Z), 1}. The standalone proof we give here is useful in

Appendix A.
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by the right side of (62) when the codebook is chosen by independent drawings from PX . The

expectations of all of the M terms in (63) are identical and are equal to

P

[
M⋃
j=2

{i(Xj;Y ) ≥ i(X1;Y )}

]

= E

[
P

[
M⋃
j=2

{i(Xj;Y ) ≥ i(X1;Y )}

∣∣∣∣∣X1, Y

]]
(64)

≤ E [min{1, (M − 1)P [i(X2;Y ) ≥ i(X1;Y ) |X1, Y ]}] (65)

where (64) holds by conditioning and averaging, (65) holds by choosing the tighter bound

on probability between 1 and the union bound, and all probabilities are with respect to the

distribution

PY X1···XM (b, a1, . . . , aM) = PY |X(b|a1)
M∏
i=1

PXi(ai). (66)

The proof is now complete since the right side of (65) is equal to the right side of (62).

Gallager’s bound (7) can also be obtained by analyzing the average behavior of random

coding and maximum-likelihood decoding. In fact, it is easy to verify that we can weaken (62)

to recover (7) using max{0, x} ≤ x1/(1+λ) and min{x, 1} ≤ xλ. Furthermore Shannon’s bound

(6) can also be obtained by weakening (62) by splitting the expectation according to whether

or not i(X;Y ) ≤ log β and upper bounding min{x, 1} by 1 when i(X;Y ) ≤ log β and by x

otherwise.

In principle, without exploiting any symmetries, the brute-force computation of the bound (62)

has complexity O
(
n2(|A|−1)|B|) for a DMC with input/output alphabets A and B. Next we give

easier-to-compute upper bounds that do not sacrifice much tightness.

C. Achievability: Dependence Testing Bound

Theorem 17: (DT bound) For any distribution PX on A, there exists a code with M codewords

and average probability of error not exceeding

ε ≤ E
[
exp

{
−
[
i(X;Y )− log

M−1

2

]+
}]

. (67)

Proof: Consider the following obvious identity for arbitrary z ≥ 0 and γ > 0:

exp

{
−
[
log

z

γ

]+
}

= 1{z ≤ γ}+
γ

z
1{z > γ} (68)
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(for z = 0 we understand both sides to be equal to 1, which is the value attained for all

0 < z ≤ γ). If we let z = dPXY
d(PX×PY )

and we average both sides of (68) with respect to PXY we

obtain

E
[
exp

{
− [i(X;Y )− log γ]+

}]
= P[i(X, Y ) ≤ log γ] + γP[i(X; Ȳ ) > log γ] (69)

Letting γ = M−1

2
, we see that Theorem 17 is, in fact, equivalent to the following result.

Theorem 18: For any distribution PX on A, there exists a code with M codewords and average

probability of error not exceeding

ε ≤ P
[
i(X;Y ) ≤ log

M−1

2

]
+

M−1

2
P
[
i(X; Ȳ ) > log

M−1

2

]
(70)

where PXY Ȳ (a, b, c) = PX(a)PY |X(b|a)PY (c).

Proof: The proof combines Shannon’s random coding with Feinstein’s suboptimal decoder.

Fix PX . Let {Zx}x∈A : B 7→ {0, 1} be a collection of deterministic functions defined as

Zx(y) = 1
{
i(x; y) > log

M−1

2

}
. (71)

For a given codebook (c1, . . . cM), the decoder runs M likelihood ratio binary hypothesis tests

in parallel, the jth of which is between the true distribution PY |X=cj and “average noise” PY .

The decoder computes the values Zcj(y) for the received channel output y and returns the lowest

index j for which Zcj(y) = 1 (or declares an error if there is no such index). The conditional

error probability given that the jth message was sent is

P

[
{Zcj(Y ) = 0}

⋃
i<j

{Zci(Y ) = 1}

∣∣∣∣∣X = cj

]
≤ P[i(cj;Y ) ≤ log

M−1

2
|X = cj]

+
∑
i<j

P[i(ci;Y ) > log
M−1

2
|X = cj] , (72)

where we have used the union bound and the definition of Zx(y). Averaging (72) over codebooks

{ci} that are generated as (pairwise) independent random variables with distribution PX we obtain

P
[
i(X;Y ) ≤ log

M−1

2

]
+ (j − 1)P

[
i(X; Ȳ ) > log

M−1

2

]
where recall that Ȳ has the same distribution as Y , but unlike Y , it is independent of X .

Averaging further over equiprobable messages, and since

1

M

M∑
j=1

(j − 1) =
M − 1

2
(73)
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we obtain that the average error probability is upper bounded by (70), and therefore there must

exist a code whose average error probability is upper bounded by that expression.

We may wonder whether in the above proof a choice of threshold different from log M−1

2
may

lead to a tighter bound. In fact, it is readily seen that we can generalize Theorem 18 not just to

any other constant value of the threshold but to thresholds that are codeword dependent, leading

to the following result.

Lemma 19: For any distribution PX on A, and any measurable function γ : A 7→ [0,∞], there

exists an (M, ε) code (average probability of error) satisfying

ε ≤ P[i(X;Y ) ≤ log γ(X)] +
M−1

2
P[i(X; Ȳ ) > log γ(X)], (74)

where PXY Ȳ (a, b, c) = PX(a)PY |X(b|a)PY (c).

In order to optimize the choice of the function γ(·), we can view the right side of (74) as the

average with respect to PX of

PY |X=x[i(x;Y ) ≤ log γ(x)] +
M−1

2
PY [i(x;Y ) > γ(x)] , (75)

which is a weighted sum of two types of errors. Thus, for every x, (75) is equal to M+1
2

times

the average error probability in a Bayesian hypothesis testing problem between PY |X=x with a

priori probability 2
M+1

and PY with a priori probability M−1
M+1

. The average error probability is

then minimized by the test that compares the likelihood ratio between these two distributions to

the ratio of the two a priori probabilities. Thus, we obtain that the optimal threshold is, in fact,

codeword independent: γ(x) = M−1
2

; and Theorem 18 gives the tightest version of Lemma 19.

Remarks:

1) Unlike the existing bounds (5), (6), and (7), the bounds in Theorems 17 and 18 require

no selection of auxiliary constants.

2) Theorem 2 follows by taking γ(x) = β in Lemma 19 and weakening M−1

2
by a factor of

2.

3) The bound in [32] is provably weaker than Theorem 17 (originally published in [33]).

4) It can be easily seen from (67) that Theorem 17 can be used to prove the achievability

part of the most general known channel capacity formula [2].

5) We refer to the bound in Theorems 17 and 18 as the dependence testing bound because

the right side of (70) is equal to M+1

2
times the Bayesian minimal error probability of a
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binary hypothesis test of dependence:

H1 : PXY with probability 2

M+1

H0 : PXPY with probability M−1

M+1

6) An alternative expression for (67) is given by

ε ≤
∫ 1

0

P
[
i(X;Y ) ≤ log

M−1

2u

]
du . (76)

This follows from (67) and:

E [min{X, 1}] =

∫ 1

0

P[X ≥ u]du , (77)

which is valid for any non-negative X .

7) Yet another way to look at (67) is by defining a particular f -divergence [34] as follows:

DM(P ||Q) =

∫ [
dP

dQ
− M − 1

2

]+

dQ . (78)

Then (67) is equivalent to

1− ε ≥ DM (PXY ||PXPY ) . (79)

Since processing does not increase f -divergence, the lower bound (79) can be further

simplified by applying a suitable mapping of the space A× B into some other space.

Using Lemma 19 we can easily extend Theorem 18 to the case of input constraints.

Theorem 20: For any distribution PX on A there exists a code with M codewords in F and

average probability of error satisfying

ε ≤ P
[
i(X;Y ) ≤ log

M−1

2

]
+

M−1

2
P
[
i(X; Ȳ ) > log

M−1

2

]
+ PX [Fc] . (80)

Proof: Set γ(x) = M−1

2
for x ∈ F and γ(x) = +∞ for x ∈ Fc. Then by Lemma 19 we have

ε ≤ P
[{
i(X;Y ) ≤ log

M−1

2

}
∪
{
X ∈ Fc

}]
+

M−1

2
P
[
i(X; Ȳ ) > log

M−1

2
, X ∈ F

]
. (81)

Trivial upper bounding yields (80). Lemma 19 guarantees the existence of a codebook whose

average probability of error satisfies the required (80). However, we are not guaranteed that that

codebook is feasible since some of the codewords might fall outside the set F. If we modify the

codebook, replacing every infeasible codeword by an arbitrary c0 ∈ F, while not modifying the

decoder, the error probability (averaged over messages) does not change. The reason is that the
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decoding set corresponding to a message that has been assigned an infeasible codeword is empty

(because the corresponding threshold is +∞), and therefore, its conditional probability of error

is 1, and remains 1 after it has been replaced by c0 since the decoder has not been modified.

D. Achievability: Maximal Probability of Error

Any achievability bound on average error probability gives a bound on maximal error proba-

bility since the existence of an (M, ε) code in the average sense guarantees the existence of an

(M − Mε
ε′
, ε′) code in the maximal sense, for any ε < ε′ < 1. However, in this subsection we

give maximal error probability counterparts to some of the bounds in Section III-C.

1) Bounds fixing the input distribution: As we saw in the proof of Theorem 18, the random

coding method is such that only pairwise independent codewords are required. If A = An,

M = |A|k, and A is a finite field, then an interesting ensemble that satisfies that property (but

not total statistical independence) together with PX being equiprobable on A is that of a random

linear code: construct a random n× k matrix with independent coefficients equiprobable on A;

then the M codewords are generated as the products of the matrix and every vector in Ak. For

certain channels such as additive-noise discrete channels and erasure channels, the average error

probability and the maximal error probability coincide for linear codes (with an appropriately

defined randomized maximum likelihood (ML) decoder; see Appendix A). Therefore, for those

channels, the bound in Theorem 17 achieved with an equiprobable PX not only can be achieved

by a linear code but it is also an upper bound on maximal error probability.

The following bound on maximal error probability holds in general.

Theorem 21: For any input distribution PX and measurable γ : A → [0,∞], there exists a

code with M codewords such that the j-th codeword’s probability of error satisfies

εj ≤ P[i(X;Y ) ≤ log γ(X)] + (j − 1) sup
x

P[i(x;Y ) > log γ(x)] , (82)

where the first probability is with respect to PXY and the second is with respect to the uncon-

ditional distribution PY . In particular, the maximal probability of error satisfies

ε ≤ P[i(X;Y ) ≤ log γ(X)] + (M − 1) sup
x

P[i(x;Y ) > log γ(x)] . (83)

Proof: First, we specify the operation of the decoder given the codebook (c1, . . . cM). The

decoder simply computes i(cj; y) for the received channel output y and selects the first codeword

cj for which i(cj; y) > log γ(cj).
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Now, let us show that we can indeed choose M codewords so that their respective probabilities

of decoding error satisfy (82). For the first codeword, the conditional probability of error under

the specified decoding rule is independent of other codewords and is equal to

ε1(x) = P[i(x;Y ) ≤ log γ(x)|X = x] , (84)

if the first codeword is x ∈ A. There must exist at least one choice of x, which we call c1, such

that

ε1(c1) ≤ E [ε1(X)] (85)

= P[i(X;Y ) ≤ log γ(X)] . (86)

Now assume that j − 1 codewords {c`}j−1
`=1 have been chosen and we are to show that cj can

also be chosen so that (82) is satisfied. Denote

Dj−1 =

j−1⋃
`=1

{y : i(c`; y) > log γ(c`)} ⊆ B . (87)

If the j-th codeword is x, its conditional probability of error is

εj(c1, . . . , cj−1, x) = 1− P[{i(x;Y ) > log γ(x)} \Dj−1|X = x] . (88)

Thus,

E [εj(c1, . . . , cj−1, X)] = P[{i(X;Y ) ≤ log γ(X)} ∪D] (89)

≤ P[i(X;Y ) ≤ log γ(X)] + PY (D) (90)

≤ P[i(X;Y ) ≤ log γ(X)] + (j − 1) sup
x∈A

PY [i(x;Y ) > γ(x)] . (91)

Thus, there must exist a codeword cj such that εj(c1, . . . , cj−1, cj) satisfies (82).

By upper-bounding the second term in (83) via

P[i(x;Y ) ≥ log γ] ≤ 1

γ
(92)

we observe that Feinstein’s Theorem 1 is a corollary of Theorem 21.

The proof technique we used to show Theorem 21 might be called sequential random coding

because each codeword is chosen sequentially depending on the previous choices, and its exis-

tence is guaranteed by the fact that the average cannot be exceeded by every realization. Note

that there is no contradiction due to the non-ending nature of sequential random coding: sooner

or later the conditional probability of error of the next message becomes 1.
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Some symmetric channels and choices of PX (most notably the BEC and the BSC under

equiprobable PX) satisfy the sufficient condition in the next result.

Theorem 22: Fix an arbitrary input distribution PX . If the cumulative distribution function

P[i(x;Y ) ≤ α] does not depend on x for any α when Y is distributed according to PY , then

there exists an (M, ε) code with maximal probability of error satisfying

ε ≤ E
[
exp

{
− [i(X;Y )− log(M−1)]+

}]
. (93)

Proof: Under the stated conditions, (83) states that the maximal error probability is upper

bounded by the average with respect to x ∼ PX of

PY |X=x[i(x;Y ) ≤ log γ(x)] + (M − 1)PY [i(x;Y ) > log γ(x)] . (94)

Thus, γ(x) can be optimized similarly to (75).

2) Extension to input constraints: Theorem 21 can be extended to the case of input constraints

in the following way.

Theorem 23: For any input distribution PX and measurable γ : A → [0,∞], there exists a

code with M codewords in the set F such that the maximal probability of error ε satisfies

εPX [F] ≤ P[i(X;Y ) ≤ log γ(X)] + (M − 1) sup
x∈F

P[i(x;Y ) > log γ(x)] . (95)

Proof: The proof is the same as that of Theorem 21 with the modification that the selection

of each codeword belongs to F, and at each step we use the fact that for an arbitrary non-negative

function g : A 7→ R, there exists x ∈ F such that

g(x) ≤ E [g(X)]

PX [F]
(96)

since otherwise we would get the impossible E [g(X)] < E [1{X ∈ F}g(X)].

Comparing Theorem 23 with Theorem 20 we note that (95) is stronger than the bound

ε ≤ P[i(X;Y ) ≤ log γ(X)] + (M − 1) sup
x∈F

P[i(x;Y ) > log γ(x)] + PX [Fc] . (97)

Using the fact that

PY [i(x;Y ) ≥ log γ] ≤ 1

γ
, (98)

an immediate corollary of Theorem 23 is the following.
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Theorem 24: For any distribution PX and any γ > 0, there exists an (M, ε) code (maximal

probability of error) with codewords in the set F ⊂ A such that

M ≥ 1 + γ (εPX [F]− P [i(X;Y ) < log γ]) . (99)

Note that (99) is always stronger than the conventional input-constrained version of Feinstein’s

bound (14).

3) Bounds fixing the output distribution: All the previous achievability bounds fixed some

input distribution PX and then proved that a certain codebook exists. However, in some cases

(most notably, the AWGN channel) it is desirable to consider auxiliary distributions on the output

alphabet that are not necessarily induced by an input distribution.

The optimal performance of binary hypothesis testing plays an important role in our devel-

opment. Consider a random variable W defined on W which can take probability measures P

or Q. A randomized test between those two distributions is defined by a random transformation

PZ|W : W 7→ {0, 1} where 0 indicates that the test chooses Q. The best performance achievable

among those randomized tests is given by6

βα(P,Q) = min

PZ|W :∑
w∈W P (w)PZ|W (1|w) ≥ α

∑
w∈W

Q(w)PZ|W (1|w) , (100)

where the minimum is guaranteed to be achieved by the Neyman-Pearson lemma (Appendix B).

Thus, βα(P,Q) gives the minimum probability of error under hypothesis Q if the probability of

error under hypothesis P is not larger than 1−α. As a function of α, (100) is a piecewise-linear

convex function joining the points

βα = Q
[
dP

dQ
≥ γ

]
,

α = P
[
dP

dQ
≥ γ

] (101)

iterated over all γ > 0. It is easy to show that (e.g. [35]) for any γ > 0

α ≤ P
[
dP

dQ
≥ γ

]
+ γβα(P,Q). (102)

6We write summations over alphabets for simplicity; however, all of our general results hold for arbitrary probability spaces.
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On the other hand,

βα(P,Q) ≤ 1

γ0

, (103)

where γ0 satisfies

P
[
dP

dQ
≥ γ0

]
≥ α . (104)

Additional results on the behavior of βα(P,Q) in the case when P and Q are product distributions

are given in Appendix C.

Throughout most of our development, the binary hypothesis testing of interest is W = B,

P = PY |X=x and Q = QY , an auxiliary unconditional distribution. 7 In that case, for brevity and

with a slight abuse of notation we will denote

βα(x,QY ) = βα(PY |X=x, QY ) . (105)

As a consequence of (102) we have

βα(x,QY ) ≥ sup
γ>0

1

γ

(
α− PY |X=x

[
dPY |X=x

dQY

≥ γ

])
. (106)

Each per-codeword cost constraint can be defined by specifying a subset F ⊂ A of permissible

inputs. For an arbitrary F ⊂ A, we define a related measure of performance for the composite

hypothesis test between QY and the collection {PY |X=x}x∈F:

κτ (F, QY ) = inf

PZ|Y :

infx∈F PZ|X(1|x) ≥ τ

∑
y∈B

QY (y)PZ|Y (1|y) . (107)

Again, typically we will take A and B as n-fold Cartesian products of alphabets A and B.

To emphasize dependence on n we will write βnα(x,QY ) and κnτ (F, QY ). Since QY and F will

usually be fixed we will simply write κnτ . Also, in many cases βnα(x,QY ) will be the same for

all x ∈ F. In these cases we will write βnα.

Theorem 25 (Achievability, input constraints: κβ bound): For any 0 < ε < 1, there exists an

(M, ε) code with codewords chosen from F ⊂ A, satisfying

M ≥ sup
0<τ<ε

sup
QY

κτ (F, QY )

supx∈F β1−ε+τ (x,QY )
. (108)

7As we show later, it is sometimes advantageous to allow QY that cannot be generated by any input distribution.
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Note: It is possible8 that (108) will be of the form M ≥ α/0 with α > 0. In this case the

statement of the theorem should be understood as “(M, ε) codes with arbitrarily high M exist”.

Proof: Fix 0 < ε < 1, 0 < τ < ε, and QY . We construct the collection of random binary-

valued {Zx}x∈F conditionally independent given Y , and with marginal conditional distributions

given by PZx|Y , which denotes, for brevity, the conditional distribution that achieves the minimum

in (100) for α = 1− ε+ τ , QY , and x ∈ F.

We construct the codebook sequentially:

Step 1. Choose c1 ∈ F arbitrarily. Note that regardless of the choice of c1 we have from (100)

that

P[Zc1 = 1|X = c1] ≥ 1− ε+ τ . (109)

Step k. Assume c1, . . . ck−1 have been chosen. Choose ck ∈ F so that

P[Zc1 = 0, . . . , Zck−1
= 0, Zck = 1|X = ck]

=
∑
y∈B

PY |X(y|ck)PZck |Y (1|y)
k−1∏
i=1

PZci |Y (0|y)

> 1− ε . (110)

Unless such a choice is impossible, proceed to the next step.

Let M be the number of steps that this procedure takes before stopping. (In case it does not

stop, we let M =∞.)

The decoder simply applies the M independent random transformations P ∗Zc1 |Y , . . . , P
∗
ZcM |Y

to the data. If all M outputs are 0, the decoder outputs 0; otherwise, it outputs the smallest i

such that Zci = 1.

It follows from the encoder/decoder construction and (110) that the maximal error probability

of the code is indeed upper bounded by ε. Let

Z∗ = Zc1 OR · · · OR ZcM . (111)

8For an example of such a case, take A = B = [0, 1] with the Borel σ-algebra. Define PY |X=x(y) = δx(y), i.e. a point

measure at y = x, and take QY to be Lebesgue measure. Then, βα(x,QY ) = 0 for any x and α, and κτ (QY ) = 1 for any

τ > 0.
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For any x ∈ F, we have

PZ∗|X(0|x) = P[Z∗ = 0, Zx = 1|X = x]

+ P[Z∗ = 0, Zx = 0|X = x] (112)

≤ 1− ε+ P[Z∗ = 0, Zx = 0|X = x] (113)

≤ 1− ε+ P[Zx = 0|X = x] (114)

< 1− ε+ ε− τ (115)

where (113) follows because if x ∈ {c1, . . . , cM}, it is impossible that Z∗ = 0 and Zx = 1

simultaneously, while if x ∈ F− {c1, . . . , cM} we were not able to add x to the codebook, and

therefore P[Z∗ = 0, Zx = 1|X = x] ≤ 1− ε; and (115) follows by the construction of Zx from

(100).

From (115) we conclude that PZ∗|X is such that

inf
x∈F

PZ∗|X(1|x) ≥ τ . (116)

Accordingly,

κτ (F, QY ) ≤
∑
y∈B

QY (y)PZ∗|Y (1|y) (117)

≤
∑
y∈B

QY (y)
M∑
m=1

PZcm |Y (1|y) (118)

=
M∑
m=1

β1−ε+τ (cm, QY ) (119)

≤ M sup
x∈F

β1−ε+τ (x,QY ) (120)

where (117) follows from (116) and (107); (118) follows from (111); and (119) follows from the

fact that by definition of PZcm |Y , it achieves the minimum in (100) for x = cm and α = 1−ε+τ .

In (100) and (107) we have defined βα and κτ using randomized tests. Then, in Theorem 25 we

have constructed the coding scheme with a randomized decoder. Correspondingly, if we define

βα and κτ using non-randomized tests, then the analog of Theorem 25 for a non-randomized

decoder can be proved.
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As long as QY is the output distribution induced by an input distribution QX , the quantity

(107) satisfies the bounds

τQX [F] ≤ κτ (F, QY ) (121)

≤ τ . (122)

The bound (122) is achieved by choosing the test Z that is equal to 1 with probability τ regardless

of Y ; since κτ is achieved by the optimal test, it can only be better. To verify (121), note that

for any PZ|Y that satisfies the condition in (107), we have

∑
y∈B

QY (y)PZ|Y (1|y)

=
∑
x∈A

∑
y∈B

QX(x)PY |X(y|x)PZ|Y (1|y) (123)

≥
∑
x∈F

QX(x)
∑
y∈B

PY |X(y|x)PZ|Y (1|y) (124)

≥
∑
x∈F

QX(x)

inf
x∈F

∑
y∈B

PY |X(y|x)PZ|Y (1|y)

 (125)

≥ τQX [F] . (126)

Using (121) in Theorem 25 we obtain a weakened but useful bound:

M ≥ sup
0<τ<ε

sup
QX

τQX [F]

supx∈F β1−ε+τ (x,QY )
(127)

where the supremum is over all input distributions, and QY denotes the distribution induced by

QX on the output. By a judicious choice of γ(x) in Lemma 19 we can obtain a strengthened

version of the bound for average error probability with the supremum in the denominator of (127)

replaced by the average.

E. General Converse: Average Probability of Error

We give first a general result, which upon particularization leads to a new converse as well to

the recovery of previously known converses; see Section III-G. The statement of the result uses

the notation introduced in (100) particularized to W = A× B.
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Theorem 26: For a given code (possibly randomized encoder and decoder pair), let

ε = average error probability with PY |X ,

ε′ = average error probability with QY |X and

PX = QX = encoder output distribution with equiprobable codewords .

Then,

β1−ε(PXY , QXY ) ≤ 1− ε′ . (128)

Proof: The message is denoted by the random variable S, equiprobable on {1, . . . ,M}.

The encoder and decoder are the random transformations PX|S and PZ|Y . Consider the following

(suboptimal) test for deciding between PXY and QXY : denote the observed pair by (x, y); y is

fed to the decoder which selects z, and the test declares PXY with probability

PS|X(z|x) =
PX|S(x|z)

MPX(x)
. (129)

The probability that the test is correct if PXY is the actual distribution is∑
a∈A

∑
b∈B

M∑
z=1

PX(a)PY |X(b|a)PZ|Y (z|b)
PX|S(a|z)

MPX(a)

=
M∑
z=1

∑
a∈A

∑
b∈B

1

M
PX|S(a|z)PY |X(b|a)PZ|Y (z|b) (130)

= 1− ε (131)

where (131) is simply the definition of ε. Likewise, the probability that the test is incorrect if

QXY is the actual distribution is∑
a∈A

∑
b∈B

M∑
z=1

PX(a)QY |X(b|a)PZ|Y (z|b)
PX|S(a|z)

MPX(a)

=
M∑
z=1

∑
a∈A

∑
b∈B

1

M
PX|S(a|z)QY |X(b|a)PZ|Y (z|b) (132)

= 1− ε′ (133)

where (133) is simply the definition of ε′.

The optimal test that attains the minimum in (100) among all tests such that the probability

of corrected decision under PXY is not less than 1 − ε has a probability of incorrect decision

under QXY that cannot be larger than (133).
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Theorem 26 allows one to use any converse for channel QY |X to prove a converse for channel

PY |X . It has many interesting generalizations (for example, to list-decoding and channels with

feedback) and applications, whose study is outside the scope of this paper.

A simple application of Theorem 26 yields the following result.

Theorem 27 (Converse): Every (M, ε) code (average probability of error) with codewords

belonging to F satisfies

M ≤ sup
PX

inf
QY

1

β1−ε(PXY , PX ×QY )
, (134)

where PX ranges over all distributions on F, and QY ranges over all distributions on B.

Proof: Denote the distribution of the encoder output by P̄X and particularize Theorem 26

by choosing QY |X = QY for an arbitrary QY , in which case we obtain ε′ = 1− 1
M

. Therefore,

from (128) we obtain

1

M
≥ sup

QY

β1−ε(P̄XPY |X , P̄X ×QY ) (135)

≥ inf
PX

sup
QY

β1−ε(PXY , PX ×QY ). (136)

As we will see shortly in important special cases βα(x,QY ) is constant on F. In those cases

the following converse is particularly useful.

Theorem 28: Fix a probability measure QY on B. Suppose that βα(x,QY ) = βα(QY ) for

x ∈ F. Then every (M, ε)-code (average probability of error) satisfies

M ≤ 1

β1−ε(QY )
. (137)

Proof: The result follows from Theorem 27 and the following auxiliary result.

Lemma 29: Suppose that βα(PY |X=x, QY |X=x) = βα is independent of x ∈ F. Then, for any

PX supported on F we have

βα(PXPY |X , PXQY |X) = βα(PY |X=x, QY |X=x) . (138)

Proof: Take a collection of optimal tests Zx for each pair PY |X=x vs. QY |X=x, i.e.

PY |X=x[Zx = 1] ≥ 1− α , (139)

QY |X=x[Zx = 1] = β1−α . (140)
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Then take ZX as a test for PXY vs. QXY . In this way we get

βα(PXPY |X , PXQY |X) ≤ βα(PY |X=x, QY |X=x) . (141)

We now prove the reverse inequality. Consider an arbitrary test Z such that

PXY [Z = 1] =
∑
x∈A

PX(x)PY |X=x[Z = 1] ≥ α . (142)

Then observe that∑
x∈A

PX(x)QY |X=x[Z = 1] ≥
∑
x∈A

PX(x)βPY |X=x[Z=1](PY |X=x, QY |X=x) (143)

=
∑
x∈A

PX(x)βPY |X=x[Z=1] (144)

≥ βP [Z=1] (145)

≥ βα , (146)

where (144) follows from the assumption, (146) follows because βα is a non-decreasing function

of α, and (145) is by Jensen’s inequality which is applicable since βα is convex. Therefore,

from (146) we obtain that

βα(PXPY |X , PXQY |X) ≥ βα(PY |X=x, QY |X=x) (147)

and together with (141) this concludes the proof.

F. General Converse: Maximal Probability of Error

The minimax problem in (134) is generally hard to solve. A weaker bound is given by

Theorem 31 which is a corollary to the next analog of Theorem 26.

Theorem 30: For a given code (possibly with a randomized decoder) with codewords belong-

ing to F, let

ε = maximal error probability with PY |X ,

ε′ = maximal error probability with QY |X

Then,

inf
x∈F

β1−ε(PY |X=x, QY |X=x) ≤ 1− ε′ . (148)
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Proof: Consider an (M, ε)-code with codewords {cj ∈ F}Mj=1 and a randomized decoding

rule PZ|Y : B 7→ {0, . . . ,M}. We have for some j∗∑
b∈B

PZ|Y (j∗|b)QY |X(b|j∗) = 1− ε′ , (149)

and at the same time ∑
b∈B

PZ|Y (j∗|b)PY |X(b|j∗) ≥ 1− ε . (150)

Consider the hypothesis test between PY |X=j∗ and QY |X=j∗ that decides in favor of PY |X=j∗

only when the decoder output is j∗. By (150) the probability of correct decision under PY |X=j∗

is at least 1− ε, and therefore

1− ε′ ≥ β1−ε(PY |X=j∗ , QY |X=j∗) (151)

≥ inf
x∈F

β1−ε(PY |X=x, QY |X=x) . (152)

Theorem 31 (Converse): Every (M, ε) code (maximal probability of error) with codewords

belonging to F satisfies

M ≤ inf
QY

sup
x∈F

1

β1−ε(x,QY )
, (153)

where the infimum is over all distributions QY on B.

Proof: Repeat the argument of the proof of Theorem 27 replacing Theorem 26 by Theo-

rem 30.

G. Relation to Classical Converse Bounds

We illustrate how Theorems 26 and 30 can be used to prove all the converse results cited in

Section II:

• Fano’s inequality (Theorem 8): Particularize (135) to the case QY = PY , where PY is the

output distribution induced by the code and the channel PY |X . Note that any hypothesis

test is a (randomized) binary-output transformation and therefore, by the data-processing

inequality for divergence we have

d
(
1− ε

∣∣∣∣β1−ε(PXY , PX × PY )
)
≤ D(PXY ||PX × PY ) , (154)
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where the binary divergence function satisfies

d(a||b) = a log
a

b
+ (1− a) log

1− a
1− b

(155)

≥ −h(a) + a log
1

b
. (156)

Using (155) in (154) we obtain

log
1

β1−ε(PXY , PX × PY )
≤ I(X;Y ) + h(ε)

1− ε
. (157)

Fano’s inequality (19) follows from (157) and (135).

• Information spectrum converse (Theorem 11): Replace (157) with (102), which together

with (135) yields

1

M
≥ β1−ε(PXY , PX × PY ) (158)

≥ sup
γ>0

1

γ
(P[i(X;Y ) < log γ]− ε) . (159)

The bound (159) is equivalent to the converse bound (23). Similarly, by using a stronger

bound in place of (102) we can derive [26]. Furthermore, by keeping the freedom in choosing

QY in (135) we can prove a stronger version of the result.

• Wolfowitz’s strong converse (Theorem 9): To apply Theorem 31 we must compute a lower

bound on infx∈A βα(x,QY ); but this simply amounts to taking the infimum over x ∈ A

in (106). Thus

inf
x∈A

βα(x, PY ) ≥ sup
γ>0

1

γ

(
α− sup

x∈A
PY |X=x

[
dPY |X=x

dQY

≥ γ

])
. (160)

Now, suppose that QY = PY ; then using (4) we conclude that Theorem 31 implies Theo-

rem 9.

• Shannon-Gallager-Berlekamp (Theorem 12): Applying Theorem 31, we may first split the

input space A into regions Fi such that βα(x,QY ) is constant within Fi. For example, for

symmetric channels and QY equal to the capacity achieving output distribution, there is

no need to split A since βα(x,QY ) is identical for all x ∈ A. For a general DMC, we

apply Theorem 26 with QY |X chosen as follows. The distribution QY |X=xn only depends

on the type of xn and is chosen optimally for each type (and depending on the coding rate).

Over the Q-channel, the decoder can at most distinguish codewords belonging to different

types and therefore, we can estimate 1 − ε′ ≤ n|A|−1

M
. Using this estimate in (128), the
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proof of Theorem 12 follows along the same lines as the proof of [36, Theorem 19] by

weakening (128) using Chernoff-type estimates.

• Refinements to Theorem 12 in [8] and [11]: As we explained above, Theorem 12 is obtained

from Theorem 31 by choosing QY judiciously and by performing a large deviation analysis

of βα. Reference [8] improved Theorem 12 by extending the results to the case of infinite

|B| and by tightening the Chernoff-type estimates of [27]. A further improvement was

found in [11] for the special case of input-symmetric channels by directly lower-bounding

the average probability of error and avoiding the step of splitting a code into constant

composition subcodes. Theorem 28 is tighter than the bound in [11] because for symmetric

channels and relevant distributions QY the value of βα(x,QY ) does not depend on x and

therefore average probability of error is bounded directly.

H. BSC

This section illustrates the application of the finite-length upper and lower bounds to the BSC

with crossover probability δ < 1/2.

Particularizing Theorem 15 to equiprobable input distributions and the BSC we obtain (see

also [37]) the following result.

Theorem 32: For the BSC with crossover probability δ, we have

E [ε(X1, . . . XM)] =

= 1− 2n−nM
n∑
i=0

(
n

i

)
δi(1− δ)n−i

M−1∑
`=0

(
n

i

)`
1

1 + `

(
M − 1

`

)( n∑
j=i+1

(
n

j

))M−1−`

.(161)

Note that the exact evaluation of (161) poses considerable difficulties unless the blocklength is

small. The next result gives a slightly weaker, but much easier to compute, bound.

Theorem 33: For the BSC with crossover probability δ, there exists an (n,M, ε) code (average

probability of error) such that

ε ≤
n∑
t=0

(
n

t

)
δt(1− δ)n−t min

{
1, (M−1)

t∑
k=0

(
n

k

)
2−n

}
. (162)

If M is a power of 2, then the same bound holds for maximal probability of error.

Proof: We apply Theorem 16 (RCU bound), with A = B = {0, 1}n, and the equiprobable

input distribution. The information density is

i(xn; yn) = n log(2− 2δ) + t log
δ

1− δ
(163)
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where t is the Hamming weight of the difference between xn and yn. Accordingly, since X̄n is

equiprobable and independent of Xn we obtain

P
[
i(X̄n;Y n) ≥ i(Xn;Y n)

∣∣Xn = xn, Y n = yn
]

=
t∑

k=0

(
n

k

)
2−n . (164)

The statement about the maximal probability of error is explained in Appendix A.

It turns out that Poltyrev’s bound (11), derived using linear codes and weight spectra, is in

fact equal to (162) with M − 1 replaced by 2k. Indeed, notice that
n∑

w=0

(
n

w

) ∑
w/2≤t≤min{`,w}

(
w

t

)(
n− w
`− t

)
=

(
n

`

)∑̀
s=0

(
n

s

)
. (165)

This holds since on the left we have counted all the ways of choosing two binary n-vectors X

and Z such that wt(Z) = ` and Z overlaps at least a half of X . The last condition is equivalent

to requiring wt(X − Z) ≤ wt(Z). So we can choose Z in
(
n
`

)
ways and X in

∑`
s=0

(
n
s

)
ways,

which is the right-hand side of (165). Now applying (165) to (11) yields (162) with M − 1

replaced by 2k.

Theorem 34: For the BSC with crossover probability δ, there exists an (n,M, ε) code (average

probability of error) such that

ε ≤
n∑
t=0

(
n

t

)
min

{
δt(1− δ)n−t, (M−1)2−n−1

}
. (166)

If M is a power of 2, then the same bound holds for maximal probability of error.

Proof: Taking PXn to be equiprobable on {0, 1}n, the DT bound of Theorem 17 is equal to
M+1

2
times the minimal probability of error of an optimal binary hypothesis test between n fair

coin tosses (with prior probability M−1

M+1
) and n bias-δ coin tosses (with prior probability 2

M+1
).

The upper bound (67) on the average error probability becomes

ε ≤ E
[
2−[na−bZ−log M−1

2 ]
+]

, (167)

where

a = 1 + log2(1− δ), (168)

b = log2

1− δ
δ

, (169)

and Z ∼ B(n, δ) is a binomial random variable with parameters n and δ. Averaging over Z,

(167) becomes (166). The statement about the maximal probability of error is explained in

Appendix A.
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For comparison, Feinstein’s lemma (Theorem 1), with equiprobable input distribution yields

M∗(n, ε) ≥ sup
t>0

2nt (ε− P [Z ≥ n(a− t)/b]) , (170)

where Z ∼ B(n, δ).

Gallager’s random coding bound (7) also with equiprobable input distribution yields9

log2M
∗(n, ε) ≥ nE−1

r

(
1

n
log2

1

ε

)
, (171)

where [16, Theorem 5.6.2, Corollary 2 and Example 1 in Section 5.6.]

Er(1− h(s)) =

 d(s||δ) , s ∈ (δ, s∗] ,

h(s)− 2 log2 s1 , s > s∗ ,
(172)

and s∗ =
√
δ√

δ+
√

1−δ , s1 =
√
δ +
√

1− δ.

We now turn our attention to the computation of the converse bound of Theorem 28. Choosing

QY n equiprobable on {0, 1}n we recover the classical sphere packing bound (cf. [16, (5.8.19)]

for an alternative expression).

Theorem 35: For the BSC with crossover probability δ, the size of an (n,M, ε) code (average

error probability) must satisfy

M ≤ 1

βn1−ε
. (173)

where βnα is defined as

βnα = (1− λ)βL + λβL+1 (174)

with

β` =
∑̀
k=0

(
n

k

)
2−n , (175)

where 0 ≤ λ < 1 and the integer L are defined by

α = (1− λ)αL + λαL+1 (176)

9The inequality (171) holds for average probability of error. Fig. 1 and Fig. 2 show the corresponding bound on maximal

error probability where we drop the half of the codewords with worse error probability. This results in an additional term of -1

appended to the right-hand side of (171), while 1
ε

becomes 2
ε

therein.
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with

α` =
`−1∑
k=0

(
n

k

)
(1− δ)n−kδk . (177)

Proof: To streamline notation, we denote βnα = βα(xn, QY n) since it does not depend on

xn, and QY n is fixed. Then, the Hamming weight of the output word is a sufficient statistic for

discriminating between PY n|Xn=0 and QY n . Thus, the optimal randomized test is

PZ0|Y n(1|yn) =


0, |yn| > Lnα ,

λnα, |yn| = Lnα ,

1, |yn| < Lnα ,

(178)

where Lnα ∈ Z+ and λnα ∈ [0, 1) are uniquely determined by the condition∑
yn∈A

PY n|Xn(yn|0)PZ0|Y n(1|yn) = α . (179)

Then we find that

βnα = λnα

(
n

Lnα

)
2−n +

Lnα−1∑
k=0

(
n

k

)
2−n . (180)

Thus, by Theorem 28

M∗(n, ε) ≤ 1

βn1−ε
. (181)

The numerical evaluation of (162), (166) and (173) is shown in Fig. 1 and Fig. 2, along with

the bounds by Feinstein (170) and Gallager (171). As we anticipated analytically, the DT bound

is always tighter than Feinstein’s bound. For δ = 0.11 and ε = 0.001, we can see in Fig. 1 that

for blocklengths greater than about 150, Theorem 17 gives better results than Gallager’s bound.

In fact, for large n the gap to the converse upper bound of the new lower bound is less than half

that of Gallager’s bound. The RCU achievability bound (162) is uniformly better than all other

bounds. In fact for all n ≥ 20 the difference between (162) and the converse is within 3− 4 bits

in log2M . This tendency remains for other choices of δ and ε, although, for smaller ε and/or δ,

Gallager’s bound (originally devised to analyze the regime of exponentially small ε) is tighter

for a larger range of blocklengths, see Fig. 2. A similar relationship between the three bounds

holds, qualitatively, in the case of the additive white Gaussian noise channel (Section III-J).
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I. BEC

Next we illustrate the application of the achievability bounds in Theorems 15, 16, 17 and 22

to the special case of the binary erasure channel. Using Theorem 15 we obtain the next bound.

Theorem 36: For the BEC with erasure probability δ, we have

E [ε(X1, . . . XM)] =

1−
M−1∑
`=0

(
M − 1

`

)
1

`+ 1

n∑
j=0

(
n

j

)
δn−j(1− δ)j2−j`

(
1− 2−j

)M−1−`
. (182)

Easier to evaluate is the DT bound (Theorem 17), which particularizes to

Theorem 37: For the BEC with erasure probability δ, there exists an (n,M, ε) code (average

probability of error) such that

ε ≤
n∑
t=0

(
n

t

)
δt(1− δ)n−t2−[n−t−log2(M−1

2
)]

+

. (183)

If M is a power of 2, then the same bound holds for maximal probability of error. In any case

there exists an (n,M, ε) code (maximal probability of error) such that

ε ≤
n∑
t=0

(
n

t

)
δt(1− δ)n−t2−[n−t−log2(M−1)]+ . (184)

Proof: Using Theorem 17 with A = {0, 1}n, B = {0, e, 1}n and the equiprobable input

distribution, it follows that if yn contains t erasures and coincides with xn in all the non-erased

bits, then

i(xn; yn) = n− t , (185)

and otherwise, i(xn; yn) = −∞. Then (67) implies (183) since t erasures happen with probability(
n
t

)
δt(1 − δ)n−t. If M is a power of 2 then the same bound holds for maximal probability of

error by using linear codes (see Appendix A). Bound (184) is obtained by exactly the same

argument, except that Theorem 22 must be used in lieu of Theorem 17.

Application of Theorem 16 yields exactly (184) but only for average probability of error.

Since Theorem 16 is always stronger than Gallager’s bound, we conclude that Theorem 37 is

also stronger than Gallager’s bound for the BEC and therefore achieves the random coding

exponent. Similarly Theorem 21 (and hence Theorem 22) is always stronger than Feinstein’s

bound, see (92). Therefore, Theorem 37 is also stronger than Feinstein’s bound for the BEC.

The average block erasure probability for a random ensemble of linear codes is given in [38]; it
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can be shown that it is sandwiched between (183) and (184), which are also considerably easier

to compute.

Upper bounds on error probability can be converted easily into lower bounds on M∗(n, ε).

For example, Theorem 37 for the maximal probability of error formalism implies10

M∗(n, ε) ≥ max

{
2k : E

[
2−[Z−log2

2k−1
2

]+
]
≤ ε

}
, (186)

where Z ∼ B(n, δ) is a binomial random variable with parameters n and δ.

The upper bound on code size given by Theorem 31 (with capacity achieving output distri-

bution) is improved by the following result,11 which is stronger than related bounds such as in

[39].

Theorem 38: For the BEC with erasure probability δ, the average error probability of an

(n,M, ε) code satisfies

ε ≥
n∑

`=bn−log2Mc+1

(
n

`

)
δ`(1− δ)n−`

(
1− 2n−`

M

)
, (187)

even if the encoder knows the location of the erasures noncausally.

Proof: It is easy to show that the probability of correct decoding in an M -ary equiprobable

hypothesis testing problem where the observable takes one out of J values is upper bounded by

J/M , even if stochastic decision rules are allowed. Indeed, suppose that the true hypothesis is

a (random variable) A, the observable output is B and the decision is C; then

P[C = A] =
M∑
a=1

J∑
b=1

PA(a)PB|A(b|a)PC|B(a|b) (188)

=
J∑
b=1

1

M

M∑
a=1

PC|B(a|b)PB|A(b|a) (189)

≤
J∑
b=1

1

M

M∑
a=1

PC|B(a|b) (190)

≤ J

M
. (191)

10For numerical purposes we can safely weaken (186) by replacing log2
2k−1

2
with (k − 1).

11For a q-ary erasure channel, Theorem 38 holds replacing 2n−l−k by qn−l−k and log2 by logq . In fact this q-ary analog

of (187) is achievable by q-ary maximum distance separable (MDS) codes.
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Now suppose that the location of the erasures is known to the encoder, and there are z ∈

{0, . . . n} erasures. Then, regardless of the code (possibly dependent on the erasure pattern)

chosen by the encoder, the decoder faces an M -ary equiprobable hypothesis testing problem

where the observable takes one out of 2n−z values. Therefore the probability of error is lower

bounded by
[
1− 2n−z

M

]+

. Since each pattern of z erasures occurs with probability (1− δ)n−zδz

and there are
(
n
z

)
of them, (187) follows.

Figs. 3 and 4 show that, as expected, (183) is quite a bit tighter than the Gallager and Feinstein

bounds. In fact, the gap between (183) and (187) is below 3 bits in log2M , uniformly across the

blocklengths shown on the plot. Fig. 5 compares the DT bound (183) with the BEC achievability

bound (12); they are within one bit of each other, the winner depending on a particular value

of n. The zigzagging of the plot of (12) is a behavior common to all bounds that are restricted

to integer values of log2M . The complexity of the computation of (12) is O(n3), compared to

O(n) for the DT bound (183).

J. The AWGN Channel

1) The Channel and Power Constraints: For the real-valued additive-noise white Gaussian

channel we have the following specific definitions:

• A = Rn,

• B = Rn and

• PY n|Xn=xn = N (xn, In).

Additionally, codewords are subject to one of three types of power constraints:

• equal-power constraint: M∗
e (n, ε, P ) denotes the maximal number of codewords, such that

each codeword ci ∈ Xn satisfies

||ci||2 = nP . (192)

• maximal power constraint: M∗
m(n, ε, P ) denotes the maximal number of codewords, such

that each codeword ci ∈ Xn satisfies

||ci||2 ≤ nP . (193)

• average power constraint: M∗
a (n, ε, P ) denotes the maximal size M of a codebook that
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satisfies

1

M

M∑
i=1

||ci||2 ≤ nP . (194)

It is easiest to analyze M∗
e , but M∗

m and M∗
a are more interesting from the practical viewpoint.

Following Shannon [3] we will make use of simple inequalities relating all three quantities,

summarized in the following

Lemma 39: For any 0 < P < P ′ the inequalities

M∗
e (n, ε, P ) ≤M∗

m(n, ε, P ) ≤M∗
e (n+ 1, ε, P ) (195)

and

M∗
m(n, ε, P ) ≤M∗

a (n, ε, P ) ≤ 1

1− P/P ′
M∗

m(n, ε, P ′) (196)

hold.

Proof: The left-hand bounds are obvious. The right-hand bound in (195) follows from the

fact that we can always take the M∗
m-code and add an (n+1)-th coordinate to each codeword to

equalize the total power to nP . The right-hand bound in (196) is a consequence of the Chebyshev

inequality on the probability of finding a codeword with power greater than nP ′ in the M∗
a -code.

The particularization of the exact error probability achieved by random coding in Theorem

15 leads to (41) which turns out to be the tightest of all the bounds for the AWGN channel.

However the particularization of the κβ-bound to the AWGN channel is of paramount importance

in Section IV.

2) Evaluation of βnα: We will now apply Theorems 25 and 28 to the AWGN channel with

equal-power constraint (192). For each n, the set Fn of permissible inputs is

Fn
4
= {xn : ||xn||2 = nP} ⊂ Rn . (197)

To use Theorems 25 and 28 we must also choose the auxiliary distribution PY n over Bn. A

particularly convenient choice is

PY n = N (0, σ2
Y In) . (198)

with σ2
Y to be specified later. Due to the spherical symmetry of both Fn and (198), for all x ∈ Fn

βnα(x,N (0, σ2
Y In)) = βnα (199)
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To simplify calculations, we choose x = x0 = (
√
P ,
√
P , . . . ,

√
P ). The information density is

given by

i(x0; yn) =
n

2
log σ2

Y +
log e

2

n∑
i=1

[
y2
i

σ2
Y

− (yi −
√
P )2

]
. (200)

It is convenient to define independent standard Gaussian variables Zi ∼ N (0, 1), i = 1, . . . , n.

Then, under PY n and under PY n|Xn=x0 , the information density i(x0;Y n) has the same distribu-

tion as

Gn = n log σY − n
P

2
log e+

1

2
log e

n∑
i=1

(
(1− σ2

Y )Z2
i + 2

√
PσYZi

)
(201)

and

Hn = n log σY + n
P

2σ2
Y

log e+
1

2σ2
Y

log e
n∑
i=1

(
(1− σ2

Y )Z2
i + 2

√
PZi

)
, (202)

respectively. A judicious choice is

σ2
Y = 1 + P (203)

since it maximizes D(PY n|Xn=x0 ||PY n) = E [Hn], and PY n coincides with the capacity-achieving

output distribution for the AWGN channel. With this choice of σ2
Y , (201) and (202) become

Gn =
n

2
log(1 + P )− P

2

n∑
i=1

(
1 + Z2

i − 2

√
1 +

1

P
Zi

)
log e (204)

and

Hn =
n

2
log(1 + P ) +

1

2

P

(1 + P )

n∑
i=1

(
1− Z2

i +
2√
P
Zi

)
log e . (205)

Finally, using the Neyman-Pearson lemma (Appendix B), we obtain the following result.

Theorem 40: For the additive white Gaussian noise channel and all x ∈ Fn,

βnα = βnα(x,N (0, σ2
Y In)) = P[Gn ≥ γ] , (206)

where γ satisfies

P[Hn ≥ γ] = α. (207)

Applying Theorems 28, 40 and Lemma 39 we obtain the following converse bound.
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Theorem 41: For the AWGN channel and for any n and ε (average probability of error) we

have

M∗
m(n− 1, ε, P ) ≤M∗

e (n, ε, P ) ≤ 1

P[Gn ≥ γn]
, (208)

where γn satisfies

P[Hn ≥ γn] = 1− ε , (209)

and Gn and Hn are defined in (204) and (205).

The distributions of Gn and Hn are non-central χ2. However, the value of P[Gn ≥ γ] decreases

exponentially, and for large n, traditional series expansions of the non-central χ2 distribution do

not work very well; a number of other techniques must be used to evaluate these probabilities,

including Chernoff bounding as well as (106) and (103).

3) Evaluation of κnτ : Although we are free to chose any PY n , it is convenient to use (198).

Theorem 42: For the chosen PY n , Fn and for any τ ∈ [0, 1] and n ≥ 1, we have

κnτ (Fn, PY n) = P0

[
p1(r)

p0(r)
≥ γ

]
, (210)

where γ satisfies

P1

[
p1(r)

p0(r)
≥ γ

]
= τ (211)

with p0 and p1 being probability density functions (PDFs) of P0 and P1, defined as

p0(r) =
rn/2−1e−r/(2+2P )

(2 + 2P )n/2Γ(n/2)
, (212)

p1(r) =
1

2
e−(r+nP )/2

( r

nP

)n/4−1/2

In/2−1(
√
nPr) , (213)

where Ia(y) is a modified Bessel function of a first kind:

Ia(y) = (y/2)a
∞∑
j=0

(y2/4)j

j!Γ(a+ j + 1)
. (214)

The proof is given in Appendix D.

A straightforward application of a (local) central limit theorem yields the following result.

Lemma 43: Under the conditions of Theorem 42,

lim
n→∞

κnτ = κ∞τ = 1− 2Q(r∗τ ) (215)
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where

r∗τ =

√
1 + 2P

1 + P
Q−1

(
1− τ

2

)
. (216)

Experimentally we have observed that the convergence in (215) is very fast. For example, for

P = 1, n = 10 and τ ∈ [10−6, 10−1], we find that

|κnτ − κ∞τ | ≤ 5 · 10−3κn(τ) . (217)

Summarizing, we have particularized Theorems 25 and 31 to the AWGN channel to show

κnτ
βn1−ε+τ

≤M∗
m(n, ε, P ) ≤ 1

βn+1
1−ε

(218)

where βnα and κnτ determined by Theorems 40 and 42.

4) Numerical Evaluation: In this section our goal is to compare various achievability bounds.

To emphasize the quality of the bounds we also compare them against the converse, Theorem 41.

As usual, we plot the converse bounds for the average probability of error formalism and

achievability bounds for the maximal probability of error formalism. The power constraint is the

maximal one, i.e. we are plotting bounds on M∗
m(n, ε).

The results are found on Figs. 6 and 7. Let us first explain how each bound was computed:

1) The converse bound is Theorem 41. Note that in [3] Shannon gives another converse

bound (38). However, in this case both bounds numerically coincide almost exactly and

for this reason only the bound in Theorem 41 is plotted.

2) Feinstein’s bound is Theorem 24 with

F =
{
xn : ||xn||2 ≤ nP

}
(219)

and PXn = N (0, P In).

3) Gallager’s bound is Theorem 14, where we optimize the choice of δ for each R, and then

select the largest R that still keeps the bound (44) below the required ε.

4) The κβ bound is an application of Theorem 25 with βα and κτ given by Theorems 40

and 42. As discussed earlier, the convergence in (215) is very fast and κnτ affects rate only

as log κnτ
n

; thus we can safely replace the κnτ with κ∞τ . In this way, for each n we need to

compute only βn1−ε.
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5) Shannon’s bound12: The bound in (41) is on average probability of error. For the BSC and

BEC we transformed from average to maximal probability of error using the random linear

code method. Unfortunately, for the AWGN channel we could not find anything equivalent;

instead we need to recourse to traditional “purging”. Namely, if we have an (M, τε)-code

for average probability then there must exist a (τM, ε)-subcode for maximal probability.

Consequently, if MS(n, ε) is the maximal cardinality of the codebook guaranteed by the

Shannon bound, then instead we plot

Mmax
S (n, ε) = max

τ∈[0,1)
(1− τ)MS(n, τε) . (220)

Shannon’s achievability bound is the clear winner on both Figs. 6 and 7. It comes very close

to the converse; for example, on Fig. 6 in terms of log2M the difference between the Shannon

bound and the converse is less than 6 bits uniformly across the range of blocklengths depicted

on the graph. This illustrates that random codes are not only optimal asymptotically, but also

almost optimal even for rather small blocklengths.

The drawback of the Shannon bound is that it is harder to compute and analyze than the κβ

bound and requires a “purging” procedure to guarantee a small maximal probability of error.

Section IV-B invokes the κβ bound to analyze the asymptotic expansion of logM∗
m(n, ε). In

Figs. 6 and 7 we can see that the κβ bound is also quite competitive for finite n.

Comparing the κβ bound and the classical bounds of Feinstein and Gallager, we see that, as

expected, the κβ bound is uniformly better than Feinstein’s bound. In the setup of Fig. 6 the κβ

bound is a significant improvement over Gallager’s bound, coming very close to the Shannon

bound as well as the converse. In Fig. 7 both the κβ and Gallager bounds are again very close

to the Shannon bound but this time Gallager’s bound is better for small n. There are two reasons

for this. First, recall that we have analyzed a suboptimal decoder based on hypothesis testing,

whereas Gallager used the maximum likelihood decoder. It seems that for small n it is important

to use optimal decoding. Moreover, Gallager’s analysis is targeted at very small ε. Indeed, as

we go from 10−3 to 10−6, the tightness of Gallager’s bound improves significantly. In general

we observe that Gallager’s bound improves as the channel becomes better and as ε gets smaller.

On the other hand, the κβ bound is much more uniform over both SNR and ε. In Section IV,

12We use expression (42) and the representation of qn(φ) as a noncentral t-distribution given by [3, (17)]. Note that to improve

numerical stability of the integration in (42) it is convenient to multiply the integrand by (sin θ(M))−(n−2).
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the κβ bound, in contrast to Gallager’s bound, yields the correct
√
n term in the asymptotic

expansion of logM∗
m(n, ε).

Comparing the RCU bound and the DT bound (and its relative, the κβ bound), the DT bound

is very handy theoretically and does not lose much non-asymptotically compared to the RCU

bound. In fact, for the BEC the DT bound is tighter than the RCU bound. Also, the DT bound

(in the form of Theorems 22 and 25) and the κβ bound are directly applicable to the maximal

probability of error, whereas the RCU bound requires further manipulation (e.g. Appendix A).

IV. NORMAL APPROXIMATION

We turn to the asymptotic analysis of the maximum achievable rate for a given blocklength.

In this section, our goal is to show a normal-approximation refinement of the coding theorem.

To that end, we introduce the following definition.

Definition 1: The channel dispersion V (measured in squared information units per channel

use) of a channel with capacity C is equal to

V = lim
ε→0

lim sup
n→∞

1

n

(
nC − logM∗(n, ε)

Q−1(ε)

)2

(221)

= lim
ε→0

lim sup
n→∞

1

n

(nC − logM∗(n, ε))2

2 ln 1
ε

. (222)

In fact, we show that for both discrete memoryless channels and Gaussian channels,

logM∗(n, ε) = nC −
√
nV Q−1(ε) +O(log n) . (223)

The asymptotic behavior in (223) is particularly useful in conjunction with the non-asymptotic

upper and lower bounds developed in Section III, as (223) turns out to be an accurate and succinct

approximation to the fundamental finite blocklength limit for even rather short blocklengths and

rates well below capacity. Thus, an excellent approximation to the rate penalty incurred for

operating at blocklength n and error probability ε is

logM∗(n, ε)

n
≈ C − A(n, ε) (224)

where A(n, ε) is the A required for the probability of error of the binary equiprobable hypothesis

test

H0 : Zi = A+Ni i = 1, . . . n (225)

H1 : Zi = −A+Ni i = 1, . . . n (226)
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to be ε if {Ni} are independent and Gaussian with variances V . This implies that if the target

is to transmit at a given fraction of capacity 0 < η < 1 and at a given error probability ε, the

required blocklength scales linearly with the channel dispersion:

n∗(η, ε) ≈ V

C2

(
Q−1(ε)

1− η

)2

. (227)

An important tool in this section is the following non-asymptotic result.

Theorem 44 (Berry-Esseen): (e.g. Theorem 2, Chapter XVI.5 in [40]) Let Xk, k = 1, . . . , n

be independent with

µk = E [Xk] , (228)

σ2
k = Var[Xk] , (229)

tk = E [|Xk − µk|3] , (230)

σ2 =
n∑
k=1

σ2
k , (231)

T =
n∑
k=1

tk . (232)

Then for any 13 −∞ < λ <∞∣∣∣∣∣P
[

n∑
k=1

(Xk − µk) ≥ λσ

]
−Q(λ)

∣∣∣∣∣ ≤ 6T

σ3
. (233)

A. DMC

The DMC has finite input alphabet A, finite output alphabet B, and conditional probabilities

PY n|Xn(yn|xn) =
n∏
i=1

W (yi|xi) , (234)

where W (·|x) is a conditional probability mass function on B for all x ∈ A, which is abbreviated

as Wx when notationally convenient. We denote the simplex of probability distributions on A,

by P . It is useful to partition P into n-types:

Pn = {P ∈ P : nP (x) ∈ Z+ ∀x ∈ A} . (235)

13Note that for i.i.d. Xk it is known [41] that the factor of 6 in (233) can be replaced by 0.7975. In this paper, the exact

value of the constant does not affect the results and so we take the conservative value of 6 even in the i.i.d. case.
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We denote by M∗(n, ε) (resp. M∗
avg(n, ε)) the cardinality of the largest codebook with maximal

(resp. average) probability of error below ε.

We use the following notation and terminology:

• divergence variance

V (P ||Q) =
∑
x∈A

P (x)

[
log

P (x)

Q(x)

]2

−D(P ||Q)2 . (236)

• conditional divergence variance

V (W ||Q|P ) =
∑
x∈A

P (x)V (Wx||Q) . (237)

• output distribution PW as PW (y) =
∑

x∈A P (x)W (y|x) .

• mutual information

I(P,W ) = E [i(X;Y )] =
∑
x∈A

∑
y∈B

P (x)W (y|x) log
W (y|x)

PW (y)
. (238)

• unconditional information variance

U(P,W ) = Var(i(X;Y )) (239)

=
∑
x∈A

∑
y∈B

P (x)W (y|x) log2 W (y|x)

PW (y)
− [I(P,W )]2 (240)

= V (P ×W ||P × PW ) (241)

• conditional information variance

V (P,W ) = E [Var(i(X;Y ) |X)] (242)

=
∑
x∈A

P (x)

{∑
y∈B

W (y|x) log2 W (y|x)

PW (y)
− [D(Wx||PW )]2

}
(243)

= V (W ||PW |P ) (244)

• third absolute moment of the information density

T (P,W ) =
∑
x∈A

∑
y∈B

P (x)W (y|x)

∣∣∣∣log
W (y|x)

PW (y)
−D(Wx||PW )

∣∣∣∣3 . (245)

Note that V (W ||Q|P ) is defined only provided that Wx � Q for P -almost all x, and the

divergence variance is defined only if P � Q. Continuity of U(P,W ), V (P,W ) and T (P,W )

is established by Lemma 62 in Appendix E.
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The compact subset of capacity-achieving distributions Π is

Π
4
= {P ∈ P : I(P,W ) = C} . (246)

where

C = max
P∈P

I(P,W ). (247)

1) Achievability Bound:

Theorem 45: For any P ∈ P , we have

logM∗
avg(n, ε) ≥ nI(P,W )−

√
nU(P,W )Q−1(ε) +O(1) , (248)

logM∗(n, ε) ≥ nI(P,W )−
√
nU(P,W )Q−1(ε)− 1

2
log n+O(1) , (249)

if U(P,W ) > 0 and

logM∗(n, ε) ≥ nI(P,W ) + log ε , (250)

if U(P,W ) = 0. Finally, if V (Wx||PW ) > 0 whenever P (x) > 0 then

logM∗(n, ε) ≥ nI(P,W )−
√
nU(P,W )Q−1(ε) +O(1) . (251)

Proof: Select P ∈ P . Let A = An, and choose the product measure P n as the distribution

of Xn. Passing this distribution through W n induces a joint probability distribution on (Xn, Y n),

and the information density is the sum of independent identically distributed Zk:

i(Xn;Y n) =
n∑
k=1

log
W (Yk|Xk)

PW (Yk)
=

n∑
k=1

Zk . (252)

The random variable Zk has the distribution of i(X;Y ) when (X, Y ) is distributed according to

P ×W . Accordingly, it has mean I(P,W ) and variance U(P,W ), and its third absolute moment

is bounded according to the following auxiliary result whose proof is in Appendix F.

Lemma 46:

E
[
|i(X;Y )− I(X;Y )|3

]
≤
((
|A|1/3 + |B|1/3

)
3e−1 log e+ log min{|A|, |B|}

)3
. (253)

Suppose that U(P,W ) = 0, and therefore i(Xn;Y n) = nI(P,W ). Taking log β = nI(P,W )−

δ for an arbitrary δ > 0 in Theorem 1 we get (250).

Now, assume that U(P,W ) > 0 and denote

B
4
=

6κ

U(P,W )3/2
, (254)
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where κ is the right side of (253).

To use the DT bound (67) we need to prove that for some γ the following inequality holds:

ε ≥ E
[
exp

{
− [i(Xn;Y n)− log γ]+

}]
(255)

= P[i(Xn;Y n) ≤ log γ] (256)

+γE
[
exp {−i(Xn;Y n)} 1{i(Xn;Y n)>log γ}

]
(257)

Denote for arbitrary τ

log γ = nI(P,W )− τ
√
nU(P,W ) . (258)

According to Theorem 44, we have

|P [i(Xn;Y n) ≤ log γ]−Q(τ)| ≤ B√
n
. (259)

For sufficiently large n, let

τ = Q−1

(
ε−

(
2 log 2√

2π
+ 5B

)
1√
n

)
. (260)

Then, from (259) we obtain

P [i(Xn;Y n) ≤ log γ] ≤ ε− 2

(
log 2√

2π
+ 2B

)
1√
n
. (261)

We now bound the second term (257) by the following technical result proved in Appendix G.

Lemma 47: Let Z1, Z2, . . . , Zn be independent random variables, σ2 =
∑n

j=1 VarZj be non-

zero and T =
∑n

j=1 E [|Zj − EZj|3] <∞; then for any A

E

[
exp

{
−

n∑
j=1

Zj

}
1{Pn

j=1 Zj>A}

]
≤ 2

(
log 2√

2π
+

12T

σ2

)
1

σ
exp{−A} . (262)

Therefore, we have

γ E
[
exp {−i(Xn;Y n)} 1{i(Xn;Y n)>log γ}

]
≤ 2

(
log 2√

2π
+ 2B

)
1√
n
. (263)

Summing (261) and (263) we prove inequality (255). Hence, by Theorem 17 we get

logM∗(n, ε) ≥ log γ (264)

= nI − τ
√
nU (265)

= nI −
√
nU(P,W )Q−1(ε) +O(1) , (266)
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because according to (260) and the differentiability of Q−1 we have

τ = Q−1(ε) +O

(
1√
n

)
. (267)

Note that (248) implies (249) after applying

M∗(n, ε) ≥ (1− τn)M∗
avg(n, ετn) (268)

with τn = 1− 1√
n

.

Finally, the proof of (251) repeats the proof of (248) step-by-step with the only change that

Theorem 21 is used instead of Theorem 17 and in (254) we replace U(P,W ) by minx V (Wx||PW ).

Note that by using the Feinstein bound (5) we could only prove (249), not the stronger (248)

or (251). This suboptimality in the log n term is an analytical expression of the fact that we

have already observed in Section III: namely, that the Feinstein bound is not tight enough for

the refined analysis of logM∗(n, ε).

As another remark, we recall that by using the DT bound, Theorem 17, we proved that with

input distribution P we can select exp{nI(P,W ) −
√
nU(P,W )Q−1(ε)} messages which are

distinguishable with probability of error ε. It is not hard to see that by using the κβ bound,

Theorem 25, we could select 14 exp{nI(P,W ) −
√
nV (P,W )Q−1(ε)}, which is the same for

a capacity achieving P (see Lemma 62) and is larger otherwise. While in the unconstrained

case we used the DT bound, in the cost constrained cases we resort to the κβ bound (as in the

AWGN case treated in Section IV-B).

2) Converse Theorem for DMC: We need to define a few new quantities in order to state the

converse counterpart to Theorem 45.

• Define maximal and minimal conditional variances (they exist since V (P,W ) is continuous)

as

Vmax = max
P∈Π

V (P,W ) = max
P∈Π

U(P,W ) , (269)

and

Vmin = min
P∈Π

V (P,W ) = min
P∈Π

U(P,W ) . (270)

14Theorem 25 is applied with QY = (PW )n and F = TnP , a P -type in the input space An. The analysis of β is the same

as in the proof of Theorem 48, Section IV-A2; for κ it is sufficient to use the lower bound (121).
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• Define the (unique) capacity achieving output distribution P ∗Y by P ∗Y = P ∗W , where P ∗ is

any capacity achieving input distribution.

• W is an exotic DMC if Vmax = 0 and there exists an input letter x0 such that: a) for any

capacity achieving P : P (x0) = 0, b) D(Wx0||P ∗Y ) = C, and c) V (Wx0||P ∗Y ) > 0. (See

Appendix H for an example of an exotic DMC.)

• For any P0 ∈ Pn denote a type of elements xn ∈ An by

T nP0

4
= {xn : ∀a ∈ A :

n∑
i=1

1{xi=a} = P0(a)} . (271)

• For any n and P0 ∈ Pn denote by M∗
P0

(n, ε) the maximal cardinality of the codebook with

codewords in T nP0
and maximal probability of error below ε.

Theorem 48: Fix a DMC W .

• If 0 < ε ≤ 1
2
, then there exists a constant F > 0 such that for all P0 ∈ Pn and all sufficiently

large n

logM∗
P0

(n, ε) ≤ nC −
√
nVminQ

−1(ε) +
1

2
log n+ F . (272)

• If 1
2
< ε < 1 and the DMC is not exotic, then there exists a constant F > 0 such that for

all P0 ∈ Pn and all sufficiently large n

logM∗
P0

(n, ε) ≤ nC −
√
nVmaxQ

−1(ε) +
1

2
log n+ F . (273)

• If 1
2
< ε < 1 and the DMC is exotic, then there exists a constant G > 0 such that for all

P0 ∈ Pn and all sufficiently large n

logM∗
P0

(n, ε) ≤ nC +Gn1/3 . (274)

Proof: See Appendix I

3) DMC dispersion: The following result is a refinement of [31].

Theorem 49: For a DMC and 0 < ε ≤ 1/2 we have

logM∗(n, ε) = nC −
√
nVminQ

−1(ε) +O(log n) , (275)

where C is the capacity and Vmin is the minimal variance of the information density over all

capacity achieving distributions (cf. (270)). In addition, if there exists a capacity achieving input

distribution P ∗ such that V (Wx||P ∗W ) > 0 whenever P ∗(x) > 0 then

logM∗(n, ε) ≥ nC −
√
nVminQ

−1(ε) +O(1) . (276)
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Proof: Theorem 45 yields, by taking P ∈ P to be a distribution that achieves capacity and

minimizes U(P,W ) (or V (P,W ) since they coincide on Π by Lemma 62),

logM∗(n, ε) ≥ nC −
√
nVminQ

−1(ε) +O(log n) . (277)

For the lower bound, take n ≥ N0 for N0 from Theorem 48. Then any (n,M, ε) is composed

of subcodes over types T nP0
for P0 ∈ Pn. If we remove all codewords except those in T nP0

and

leave the decoding regions untouched, then we obtain an (n,M ′
P0
, ε) code over T nP0

. But then

Theorem 48 states that

logM ′
P0
≤ logM∗

P0
(n, ε) ≤ nC −

√
nVminQ

−1(ε) +
1

2
log n+ F . (278)

Since M is a sum of M ′
P0

over all P0 ∈ Pn and the cardinality of Pn is no more than (n+1)|A|−1,

we conclude

logM∗(n, ε) ≤ nC −
√
nVminQ

−1(ε) +

(
|A| − 1

2

)
log n+ F ′ . (279)

This completes the proof of (275) and (276) follows from (251).

It is useful to introduce the following definition.

Definition 2: For a channel with ε-capacity Cε, the ε-dispersion is defined for ε ∈ (0, 1)−{1
2
}

as

Vε = lim sup
n→∞

1

n

(
nCε − logM∗(n, ε)

Q−1(ε)

)2

. (280)

Note that for ε < 1
2
, approximating 1

n
logM∗(n, ε) by Cε is optimistic and smaller dispersion is

preferable, while for ε > 1
2
, it is pessimistic and larger dispersion is more favorable. Since

Q−1(1
2
) = 0, it is immaterial how to define V 1

2
as far the normal approximation (223) is

concerned.

Invoking the strong converse, we can show that the ε-dispersion of a DMC is

Vε =

Vmin , ε < 1/2 ,

Vmax , ε > 1/2 .
(281)

Because of the importance of channel dispersion, we note the following upper-bound (see

also [16, Exercise 5.23]).

Theorem 50: For the DMC with min{|A|, |B|} > 2 we have

V ≤ 2 log2 min{|A|, |B|} − C2 . (282)
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For the DMC with min{|A|, |B|} = 2 we have

V ≤ 1.2 log2 e− C2 . (283)

Proof: This is a simple consequence of Lemma 62 in Appendix E.

Since the typical blocklength needed to achieve capacity is governed by V/C2, it is natural to

ask whether for very small capacities the upper-bound in (282) can be improved to prevent the

divergence of V
C2 . Such a bound is not possible over all W with fixed alphabet sizes, since such

a collection of DMCs always includes all of the BSCs for which we know that V
C2 → ∞ as

C → 0.

We briefly consider the normal approximation in the case of average error probability. Recall

that M∗
avg(n, ε) stands for the maximal cardinality of a codebook with average probability of

error below ε. Then, dropping all codewords whose probabilities of error are above τε, τ > 1

(see the comment at the beginning of Section III-D), we obtain

M∗(n, ε) ≤M∗
avg(n, ε) ≤

τ

τ − 1
M∗(n, τε) . (284)

Carefully following the proof of the converse we can conclude that the O(log n) term in the

upper bound on logM∗ does not have any singularities in a neighborhood of any ε ∈ (0, 1). So

we can claim that, for τ sufficiently close to 1, the expansion

logM∗(n, τε) = nC −
√
nVminQ

−1(τε) +O(log n) (285)

holds uniformly in τ . Now, setting τn = 1 + 1√
n

, we obtain

logM∗
avg(n, ε) ≤ nC −

√
nVminQ

−1

(
ε+

ε√
n

)
+O(log n) . (286)

Expanding Q−1 by Taylor’s formula and using the lower bound on M∗
avg in (284) we obtain the

following result.

Corollary 51: For a DMC, if 0 < ε ≤ 1/2, we have

logM∗
avg(n, ε) = nC −

√
nVminQ

−1(ε) +O(log n) , (287)

logM∗
avg(n, ε) ≥ nC −

√
nVminQ

−1(ε) +O(1) . (288)

We note the following differences with Strassen’s treatment of the normal approximation for

DMCs in [31]. First, the DT bound allows us to prove that the log n term cannot be negative15.

15This estimate of the logn term cannot be improved without additional assumptions, because the BEC has zero logn term;

see Theorem 53.
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Second, we streamline the proof in the case ε < 1/2 by using Lemma 64 to obtain the expansion.

In contrast, an expansion up to the order o(
√
n) can be obtained with considerably less effort by

using Lemma 63. Third, [31] argues that the case ε > 1/2 can be treated similarly, whereas we

demonstrate that this is only true for non-exotic channels as a result of the difference between

using Lemma 63 and Lemma 64. (See the counter-example after the proof of Lemma 63 in

Appendix J and also the discussion of exotic channels in Appendix H.) Fourth, we prove the

expansion for logM∗
avg (i.e., for the average probability of error formalism).

4) Application to the BSC and the BEC: For the BSC and BEC we can improve upon the

O(log n) term given by Theorem 49.

Theorem 52: For the BSC with crossover probability δ, such that δ 6∈ {0, 1
2
, 1}, we have

log2M
∗(n, ε) = n(1− h(δ))−

√
nδ(1− δ) log2

1− δ
δ

Q−1(ε) +
1

2
log2 n+O(1) , (289)

regardless of whether ε is maximal or average probability of error.

Proof: Appendix K.

Interestingly, Gallager’s bound does not yield a correct
√
n term in (54); the Feinstein, DT

and RCU bounds all yield the correct
√
n term for the BSC; Feinstein’s bound has worse log n

term than the DT bound. Finally, only the RCU bound (162) achieves the optimal log n term.

Theorem 53: For the BEC with erasure probability δ, we have

log2M
∗(n, ε) = n(1− δ)−

√
nδ(1− δ)Q−1(ε) +O(1) , (290)

regardless of whether ε is maximal or average probability of error.

Proof: Appendix K.

For the BEC, Gallager’s bound does not achieve the correct lower-order terms in (54); Feinstein’s

bound yields the correct
√
n term but a suboptimal log n term; both DT bounds (Theorems 17

and 22) and the RCU bound achieve the optimal log n term.

B. The AWGN Channel

Theorem 54: For the AWGN channel with SNR P , 0 < ε < 1 and for equal-power, maximal-

power and average-power constraints,

logM∗(n, ε, P ) = nC −
√
nV Q−1(ε) +O(log n) (291)
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where

C =
1

2
log(1 + P ) , (292)

V =
P

2

P + 2

(P + 1)2
log2 e . (293)

More precisely, for equal-power and maximal-power constraints, the O(log n) term in (291) can

be bounded by

O(1) ≤ logM∗
e,m(n, ε, P )−

[
nC −

√
nV Q−1(ε)

]
≤ 1

2
log n+O(1) , (294)

whereas for average-power constraint we have

O(1) ≤ logM∗
a (n, ε, P )−

[
nC −

√
nV Q−1(ε)

]
≤ 3

2
log n+O(1) . (295)

Proof: Appendix L.

The approximation in Theorem 54 (up to o(
√
n)) is attributed in [7] to Shannon [3] for the

case of equi-power codewords.16 However, in Theorem 54 the rate is changing with n, while

expressions (9) and (73) in [3] are not directly applicable here because they are asymptotic

equivalence relations for fixed rate. Similarly, an asymptotic expansion up to the o(
√
n) term is

put forward in [47] based on a heuristic appeal to the central-limit theorem and fine quantization

of the input/output alphabets.

C. Normal Approximation vs. Finite Blocklength Bounds

In Figs. 8, 9, 10 and 11 we compare the normal approximation (289) and (290) against the tight

bounds, computed in Section III-H (BSC) and Section III-I (BEC), correspondingly. Similarly,

Fig. 12 and Fig. 13 depict the normal approximation (291) for logM∗
m(n, ε) (maximal power

constraint) along with the bounds (208) and (220) for the AWGN channel. In view of (294) and

the empirical evidence, we have chosen the following as a normal approximation for the AWGN

channel:

logM∗(n, ε) ≈ nC −
√
nV Q−1(ε) +

1

2
log n . (296)

Although generally pessimistic, the normal approximation is excellent for blocklengths higher

than 200 (BSC(0.11) and BEC(0.5) with ε = 10−3 and AWGN, SNR=20dB with ε = 10−6)

16A different 1√
n

term is claimed in [7] for the case of codebook-averaged power which is not compatible with Theorem 54.
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TABLE I

BOUNDS ON THE MINIMAL BLOCKLENGTH n NEEDED TO ACHIEVE R = 0.9C

Channel Converse RCU DT or κβ Error-exponent Normal Approx.

BEC(0.5), ε = 10−3 n ≥ 899 n ≤ 1021 n ≤ 991 n ≈ 1380 n ≈ 955

BSC(0.11), ε = 10−3 n ≥ 2985 n ≤ 3106 n ≤ 3548 n ≈ 4730 n ≈ 3150

AWGN, SNR = 0dB, ε = 10−3 n ≥ 2550 n ≤ 2814 n ≤ 3400 n ≈ 4120 n ≈ 2750

AWGN, SNR = 20dB, ε = 10−6 n ≥ 147 n ≤ 188 n ≤ 296 n ≈ 220 n ≈ 190

and 800 (AWGN, SNR=0dB, ε = 10−3 and BSC(0.11), ε = 10−6). The conclusion from these

figures is that the normal approximation is quite accurate when transmitting at a large fraction

(say > 0.8) of channel capacity. For example, in the Table I we show the numerical results

for the blocklength required by the converse, guaranteed by the achievability and predicted by

error-exponents and normal approximation17 for achieving rate R = 0.9C.

An interesting figure of merit for the AWGN channel is the excess energy per bit, ∆Eb(n),

over that predicted by channel capacity incurred as a function of blocklength for a given required

bit rate and block error rate:

∆Eb(n) = 10 log10

P (n,R, ε)

exp(2R)− 1
, (297)

where, according to the normal approximation, P (n,R, ε) is the solution to

C −
√
V

n
Q−1(ε) +

1

2n
log n = R , (298)

and C and V are as in Theorem 54.

Figure 14 gives a representative computation of (297)–(298) along with the corresponding

lower18 and upper bounds obtained from (208) and (220) respectively. We note a good precision

of the simple approximation (297), e.g., for k = 100 bits the gap to the achievability bound is

only 0.04 dB. A similar comparison (without the normal approximation, of course) for rate 2/3

is presented in [48, Fig. 8].

17For the BSC and the AWGN channel we use the approximation formula (289) which has an additional 1
2

logn term. For

the AWGN channel the DT bound is replaced by the κβ bound. The error-exponent approximation is N ≈ − 1
E(R)

log ε, where

E(R) is known since the rate is above critical.
18Another lower bound is given in [5, Fig. 3] which shows [3, (15)].

October 14, 2010 DRAFT



56 SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY

D. Application: performance of practical codes

How does the state-of-the-art compare against the finite blocklength fundamental limits?

One such comparison is given in Fig. 12 where the lower curve depicts the performance of

a certain family of multi-edge low-density parity-check (ME-LDPC) codes decoded via a low-

complexity belief-propagation decoder [49]. We notice that in the absence of the non-asymptotic

finite-blocklength curves, one has to compare the performance against the capacity alone. Such

comparison leads to an incorrect conclusion that a given family of codes becomes closer to

optimal with increasing blocklength. In reality we see that the relative gap to the finite blocklength

fundamental limit is approximately constant. In other words, the fraction logMLDPC(n,ε,P )
logM∗(n,ε,P )

seems

to be largely blocklength independent.

This observation leads us to a natural way of comparing two different codes over a given

channel. Over the AWGN channel the codes have traditionally been compared in terms of Eb/N0.

Such comparison, although justified for a low-rate codes, unfairly penalizes higher rate codes.

Instead, we define a normalized rate of a code with M codewords as (this can be extended to

discrete channels parametrized by a scalar in a natural way)

Rnorm(ε) =
logM

logM∗(n, ε, γmin(ε))
, (299)

where γmin(ε) is the smallest SNR at which the code still admits decoding with probability

of error below ε. The value logM∗(n, ε, γmin(ε)) can be safely replaced by an approximate

value (296) with virtually no loss of precision for blocklength as low as 100.

The evolution of the coding schemes from 1980s (Voyager) to 2009 in terms of the normalized

rate Rnorm(10−4) is presented on Fig. 15. ME-LDPC is the same family as in Fig. 12 [49] and

the rest of the data is taken from [5]. A comparison of certain turbo codes to Feinstein’s bound

and Shannon’s converse can be found on Fig. 6 and 7 of [48].

E. Application: maximization of ARQ throughput

A good analytical approximation to the maximal rate achievable with a given blocklength and

error probability opens a variety of practical applications. In this subsection we consider a basic

ARQ transmission scheme in which a packet is retransmitted until the receiver acknowledges

successful decoding (which the receiver determines using a variety of known highly reliable

hashing methods). Typically, the size k of the information packets is determined by the particular
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TABLE II

OPTIMAL BLOCK ERROR RATE FOR PACKET SIZE k = 1000 BITS

Channel Optimal ε∗(k) Optimal R/C Optimal throughput

BEC(0.5) 8.1 · 10−3 0.95 0.94

BSC(0.11) 16.7 · 10−3 0.91 0.90

AWGN, SNR = 0dB 15.5 · 10−3 0.92 0.90

AWGN, SNR = 20dB 6.2 · 10−3 0.96 0.95

application, and both the blocklength n and the block error probability ε are degrees of freedom.

A natural objective is to maximize the average throughput (or, equivalently, minimize the average

delivery delay) given by

T (k) = max
n,ε

k

n
(1− ε) , (300)

assuming decoding errors are independent for different retransmissions. The maximization in

(300) is over those (n, ε) such that

log2M
∗(n, ε) = k . (301)

Note that the number of required retransmissions is geometrically distributed, with mean equal

to k
T (k)

. In view of the tightness of the approximation in (223), it is sensible to maximize

T̃ (k) = max
n

k

n

[
1−Q

(
nC − k√

nV

)]
, (302)

where C and V are the channel capacity and channel dispersion, respectively. For the AWGN

channel with SNR = 0 dB we show the results of the optimization in (302) in Fig. 16, where

the optimal block error rate, ε∗(k) is shown, and Fig. 17, where the optimal coding rate k
n∗(k)

is shown. Table II shows the results of the optimization for the channel examples we have used

throughout the paper. Of particular note is that for 1000 information bits, and a capacity-1/2

BSC, the optimal block error rate is as high as 0.0167.

The tight approximation to the optimal error probability as a function of k in Figure 16 is the

function

ε̃(k) =

(
kC

V
ln

kC

2πV

)−1/2
(

1− 1

ln kC
2πV

)
(303)

obtained by retaining only the dominant terms in the asymptotic solution as k →∞.
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V. SUMMARY OF RESULTS

The main new non-asymptotic results shown in this paper are the following.

1) An exact expression (Theorem 15) for the error probability averaged over random codes

which applies in full generality. In particular, it does not put any restrictions on the

dependence of symbols within a codeword.

2) An upper bound (the RCU bound, Theorem 16) on the achievable average error probability

for randomly chosen codes of a given size, which involves no bounding beyond the simple

union bound. Loosening of the bound leads to the Shannon and Gallager bounds. When

applied to a random ensemble, Poltyrev’s BSC linear-code bound reduces to the RCU

bound.

3) A simpler easier-to-compute bound (the DT bound, Theorem 17), which unlike previous

achievability bounds contains no parameters to be optimized beyond the input distribution.

The DT bound is tighter than the Shannon and Feinstein bounds, and, unlike the Gallager

bound, it can be used to obtain the
√
n term in the normal approximation. For the BEC,

the DT bound is generally tighter than the RCU bound. For channels with memory, in

general the DT bound is easier to work with than any other new bounds in this paper;

see [50].

4) A maximal error probability counterpart (Theorem 22) to the DT bound, obtained using

the technique of sequential random coding.

5) The κβ bound (Theorem 25) which is a maximal error probability achievability bound

based on the Neyman-Pearson lemma that uses an auxiliary output distribution. The κβ

bound is particularly useful in the setting of analog channels with cost constraints, and

plays a key role in the normal approximation for the AWGN channel.

6) An auxiliary result (Theorem 26) which leads to a number of converse results, the most

general of which is Theorem 27 which includes as simple corollaries the Fano inequality,

the Wolfowitz converse and the Verdú-Han converse. Another corollary is Theorem 31

which can be viewed as a distillation of the essentials of the sphere-packing converse.

7) A tighter easy-to-compute converse bound (Theorem 38) for the BEC that holds even with

noncausal feedback.
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The tightness of the achievability bounds obtained by random coding is evidence that random-

like codes (such as those arising in modern coding theory) not only achieve capacity but also

do not sacrifice much performance for all but very short blocklengths. Numerical results with

state-of-the-art codes show that about one half of the gap to capacity is due to the fundamental

backoff due to finite blocklength; the other half of the gap is bridgeable with future advances in

coding theory.

We have further shown the normal approximation to the maximal rate in the blocklength

regime up to a term of O( logn
n

) for both general discrete memoryless channels and additive

white Gaussian noise channels, and up to O( 1
n
) for both the BSC and the BEC. While for

DMCs, the approach is a refinement of Strassen’s [31], the Gaussian channel requires a different

approach. The tightness of the approximation has been illustrated by comparison to the fixed-

length bounds in Section III. It motivates the use of the channel dispersion V (variance of

the information density achieved by a capacity-achieving distribution), in conjunction with the

channel capacity C, as a powerful analysis and design tool. In order to achieve a given fraction

of capacity with a given error probability, the required blocklength is proportional to V/C2.

The large deviations approach (reliability function) and the central-limit-theorem approach

(dispersion) give a more refined analysis than that using only channel capacity. We note the

following relationships and contrasts between both approaches:

• For rates near capacity, the reliability function behaves parabolically as

E(R) ≈ (C −R)2

2V
(304)

a fact that was known to Shannon as the unpublished, undated, unfinished manuscript [51]

reproduced in Fig. 18 shows. Therefore, channel dispersion can be obtained by taking the

second derivative of the reliability function at capacity. Since the reliability function is quite

cumbersome to obtain for most channels, channel dispersion is far easier to obtain directly.

• According to the reliability function approximation, the blocklength required to sustain rate

R = ηC is inversely proportional to the reliability function evaluated at R, while according

to the normal approximation it is proportional to

V

C2

1

(1− η)2
.

Unless η is very close to 1 (in which case the factors are similar because of (304)) the

October 14, 2010 DRAFT



60 SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY

normal approximation is substantially more accurate. In fact, even for rates substantially

below capacity, the normal approximation remains accurate.

• Inherently, the large deviations approach does not capture the subexponential behavior (i.e.

the “constant” factor in front of the exponential), which, for error probabilities and rates of

practical interest, is more relevant than the inaccuracy of the approximation in (304).

• The reliability function approach predicts that the blocklength required to sustain ε and a

given desired rate scales with log 1
ε
, while the dispersion approach predicts that the scaling

is (Q−1(ε))2, which is equivalent for small ε and rather more accurate otherwise.

• Often, the regime of very low ε (the natural habitat of the reliability function), is not the

desired one. Indeed, in many applications the error correcting code does not carry the whole

burden of providing reliable communication; instead a protocol (such as ARQ) bootstraps

a moderately low block error probability into very reliable communication (see Table II).

• For very low ε neither approximation is accurate unless the blocklength is so high that the

backoff from capacity is miniscule.

APPENDIX A

BOUNDS VIA LINEAR CODES

The goal of this appendix is to illustrate how Theorems 16 and 17, which give an upper

bound on average probability of error, can also be used to derive an upper bound on maximal

probability of error. To that end, we first notice that in both proofs we relied only on pairwise

independence between randomly chosen codewords. So, the average probability of error for any

other ensemble of codebooks with this property and whose marginals are identical and equal

to PX will still satisfy bounds of Theorems 16 and 17. In particular, for the BSC and the

BEC we can generate an ensemble with equiprobable PX by using a linear code with entries

in its generating matrix chosen equiprobably on {0, 1}. Then, Theorems 16 and 17 guarantee

the existence of the codebook, whose probability of error under ML decoding is small. Note

that this is only possible if M = 2k for some integer k. A question arises: for these structured

codebooks are there randomized ML decoders whose maximal probability of error coincides

with the average? This question is answered by the following result.

Theorem 55: Suppose that A is a group and suppose that there is a collection of measurable
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mappings Tx : B 7→ B for each x ∈ A such that

PY |X=x′◦x = PY |X=x′ ◦ (Tx)
−1 , ∀x′ ∈ A . (305)

Then any code C that is a subgroup of A has a maximum likelihood decoder whose maximal

probability of error coincides with the average probability of error.

Note that condition (305) can be reformulated as

E [g(Y ) |X = x′ ◦ x] = E [g(Tx(Y )) |X = x′] (306)

for all bounded measurable g : B 7→ B and all x′ ∈ A.

Proof: Define PX to be a measure induced by the codebook C:

PX(E) =
1

M
|E ∩ C| . (307)

Note that in this case PY induced by this PX dominates all of PY |X=x for x ∈ C:

PY |X=x � PY , ∀x ∈ C . (308)

Thus, we can introduce densities

fY |X(y|x)
4
=
dPY |X=x

dPY
. (309)

Observe that for any bounded measurable g we have

E [g(Y )] = E [g(Tx(Y ))] , ∀x ∈ C . (310)

Indeed,

E [g(Tx(Y ))] =
∑
x′∈C

1

M
E [g(Tx(Y ) |X = x′] (311)

=
∑
x′∈C

1

M
E [g(Y ) |X = x′ ◦ x] (312)

= E [g(Y )] , (313)

where (312) follows from (306). Also for any x, x′ ∈ C we have

fY |X(y|x′) = fY |X(Tx(y)|x′ ◦ x) PY -a.s. . (314)

Indeed, denote

E1 = {y : fY |X(y|x′) < fY |X(Tx(y)|x′ ◦ x)} (315)
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and assume that PY (E1) = PY (T−1
x E1) > 0. Then, on one hand

PY |X [T−1
x E1 |x′] =

∫
B
PY (dy)1{Tx(y)∈E1}fY |X(y|x′) (316)

<

∫
PY (dy)1{Tx(y)∈E1}fY |X(Tx(y)|x′ ◦ x) (317)

=

∫
PY (dy)1{y∈E1}fY |X(y|x′ ◦ x) (318)

= PY |X [E1|x′ ◦ x] , (319)

where (318) follows from (310). But (319) contradicts (305) and hence PY (E1) = 0 and (314)

is proved.

We proceed to define a decoder by the following rule: upon reception of y compute fY |X(y|x)

for each x ∈ C; choose equiprobably among all the codewords that achieve the maximal

fY |X(y|x). Obviously, such decoder is maximum likelihood. We now analyze the conditional

probability of error given that the true codeword is x. Define two collections of functions of y,

parameterized by x ∈ C:

Ax(y) = min

{
1,
∑
x′∈C

1{fY |X(y|x′) > fY |X(y|x)}

}
(320)

Nx(y) =
∑
x′∈C

1{fY |X(y|x′) = fY |X(y|x)} . (321)

It is easy to see that

εx
4
= P[error |X = x] (322)

= E
[
Ax(Y ) + 1{Ax(Y ) = 0}Nx(Y )− 1

Nx(Y )

∣∣∣∣X = x

]
. (323)

If we denote the unit element of X by x0, then by (314) it is clear that

Ax ◦ Tx = Ax0 (324)

Nx ◦ Tx = Nx0 . (325)
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But then, by (323) we have

εx = E
[
Ax(Y ) + 1{Ax(Y ) = 0}Nx(Y )− 1

Nx(Y )

∣∣∣∣X = x0 ◦ x
]

(326)

= E
[
Ax(Tx(Y )) + 1{Ax(Tx(Y )) = 0}Nx(Tx(Y ))− 1

Nx(Tx(Y ))

∣∣∣∣X = x0

]
(327)

= E
[
Ax0(Y ) + 1{Ax0(Y ) = 0}Nx0(Y )− 1

Nx0(Y )

∣∣∣∣X = x0

]
(328)

= εx0 , (329)

where (326) follows because x0 is a unit of A, (327) is by (306), and (328) is by (324) and (325).

The construction of Tx required in Theorem 55 is feasible for a large class of channels. For

example, for an L-ary phase-shift-keying (PSK) modulated complex AWGN channel with soft

decisions, we can assume that the input alphabet is {ej 2πk
L , k = 0, L− 1}; then

Tx(y) = yx (330)

satisfies the requirements because PY |X(y|x′) depends only on |y−x′| and |yx−x′x| = |y−x′|.

We give a general result for constructing Tx.

Theorem 56: Suppose that B is a monoid, A ⊂ B is a group (in particular A consists of only

invertible elements of B) and the channel is

Y = N ◦X (331)

with N ∈ B being independent of X ∈ A. If each Tx(y) = y ◦ x is measurable, then this family

satisfies the conditions of Theorem 55.

Proof: Indeed, for any E ⊂ B we have

T−1
x E = E ◦ x−1 . (332)

Then, on the one hand

PY |X=x′◦x[E] = PN [E ◦ (x′ ◦ x)−1] , (333)

but on the other hand,

PY |X=x′ [T
−1
x E] = PY |X=x′ [E ◦ x−1] (334)

= PN [E ◦ x−1 ◦ x′−1] . (335)
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It is easy to see that if we take A = Z2 and A = An then the BSC (even if the noise

has memory) satisfies the conditions of Theorem 56. For the BEC we take A = {−1, 1} and

B = {−1, 0, 1}, and the usual multiplication of reals converts B to a monoid; taking the usual

product – A = An and B = Bn – we see that the BEC (even with memory) also satisfies the

conditions of Theorem 56. Similar generalizations are possible for any additive noise channel

with erasures.

APPENDIX B

NEYMAN-PEARSON LEMMA

Lemma 57: (E.g., see [42]). Consider a space W and probability measures P and Q. Then

for any α ∈ [0, 1] there exist γ > 0 and τ ∈ [0, 1) such that

βα(P,Q) = Q[Z∗α = 1] , (336)

and where19 the conditional probability PZ∗|W is defined via

Z∗α(W ) = 1

{
dP

dQ
> γ

}
+ Zτ1

{
dP

dQ
= γ

}
, (337)

where Zτ ∈ {0, 1} equals 1 with probability τ independent of W . The constants γ and τ are

uniquely determined by solving the equation

P [Z∗α = 1] = α . (338)

Moreover, any other test Z satisfying P [Z = 1] ≥ α either differs from Z∗α only on the set{
dP
dQ

= γ
}

or is strictly larger with respect to Q: Q[Z = 1] > βα(P,Q).

APPENDIX C

BINARY HYPOTHESIS TESTING: NORMAL APPROXIMATIONS

The next pair of results help us determine the asymptotic behavior of the optimal binary

hypothesis tests with independent observations.

19In the case in which P is not absolutely continuous with respect to Q, we can define dP
dQ

to be equal to +∞ on the singular

set and hence to be automatically included in every optimal test.
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Lemma 58: Let A be a measurable space with measures Qi and Pi, with Qi � Pi defined

on it for i = 1, . . . , n. Define two measures on An: Q =
∏n

i=1 Qi and P =
∏n

i=1 Pi. Denote by

βα the performance of the best randomized hypothesis test discriminating between Q and P :

βα = inf
PZ|Y n :Q[Z=1]≥α

P[Z = 1] . (339)

Define

Dn =
1

n

n∑
i=1

D(Qi||Pi) , (340)

Vn =
1

n

n∑
i=1

V (Qi||Pi) =
1

n

n∑
i=1

∫ (
log

dQi

dPi

)2

dQi −D(Qi||Pi)2 , (341)

Tn =
1

n

n∑
i=1

∫ ∣∣∣∣log
dQi

dPi
−D(Qi||Pi)

∣∣∣∣3 dQi , (342)

Bn = 6
Tn

V
3/2
n

. (343)

Assume that all quantities are finite and Vn > 0. Then, for any ∆ > 0

log βα ≥ −nDn −
√
nVnQ

−1

(
α− Bn + ∆√

n

)
+ log ∆− 1

2
log n , (344)

log βα ≤ −nDn −
√
nVnQ

−1

(
α +

Bn√
n

)
. (345)

Each bound holds provided that the argument of Q−1 lies in (0, 1).

Proof of Lemma 58: We will simply apply the Berry-Esseen Theorem 44 twice. We start

from the lower bound. Observe that a logarithm of the Radon-Nikodym derivative log dQ
dP

is a

sum of independent random variables by construction:

log
dQ

dP
=

n∑
i=1

log
dQi

dPi
. (346)

Then applying (102), we have

βα ≥
1

γn

(
α−Q

[
log

dQ

dP
≥ log γn

])
(347)

for γn > 0. Now set

αn = α− Bn + ∆√
n

(348)

which is positive since the argument of Q−1 in (344) is positive. Therefore, we let

log γn = nDn +
√
nVnQ

−1(αn) . (349)
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Then since log dQ
dP

is a sum of independent random variables, Theorem 44 applies and∣∣∣∣Q [log
dQ

dP
≥ log γn

]
− αn

∣∣∣∣ ≤ Bn√
n
. (350)

Consequently,

Q

[
log

dQ

dP
≥ log γn

]
≤ α− ∆√

n
. (351)

Substituting this bound into (347) we obtain (344).

For an upper bound, we use (103) which states that

βnα ≤
1

γn
(352)

whenever γn is such that

Q

[
log

dQ

dP
≥ log γn

]
≥ α . (353)

Again, set

αn = α +
Bn√
n
. (354)

which is strictly less than 1 since the argument of Q−1 in (345) is below 1. Similarly to (349)

we choose

log γn = nD +
√
nV Q−1(αn) . (355)

From the Berry-Esseen bound, we have∣∣∣∣Q [log
dQ

dP
≥ log γn

]
− αn

∣∣∣∣ ≤ Bn√
n
. (356)

Consequently,

Q

[
log

dQ

dP
≥ log γn

]
≥ α . (357)

Thus, this choice of γn is valid for (352), and (345) follows.

Note that lower bound (344) holds only for n sufficiently large. A nonasymptotic bound is

provided by the following result.

Lemma 59: In the notation of Lemma 58, we have

log βα ≥ −nDn −
√

2nVn
α

+ log
α

2
. (358)
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Proof: Just as in the above argument, we start by writing

βnα ≥
1

γn

(
α−Q

[
log

dQ

dP
≥ log γn

])
. (359)

We notice that

nDn = EQ

[
log

dQ

dP

]
, (360)

nVn = EQ

[(
log

dQ

dP
− nDn

)2
]
. (361)

Thus, if we set

log γn = nDn +

√
2nVn
α

, (362)

then

Q

[
log

dQ

dP
≥ log γn

]
= Q

[
log

dQ

dP
− nDn ≥

√
2nVn
α

]
(363)

≤ Q

[(
log

dQ

dP
− nDn

)2

≥ 2nVn
α

]
(364)

≤ α

2
(365)

where (365) is by the Chebyshev inequality. Putting this into (359) we obtain the required

result.

APPENDIX D

EVALUATION OF κn FOR THE AWGN CHANNEL

Proof of Theorem 42: According to Definition (107), we need to find the distribution P ∗Z|Y n

that, for every x ∈ Fn, satisfies∫
B
P ∗Z|Y n(1|y)PY n|Xn=x(dy) ≥ τ (366)

and that attains the smallest possible value of∫
B
P ∗Z|Y n(1|y)PY n(dy) . (367)

While, in general, this is a complex problem, the symmetry of the present case greatly

simplifies the solution; we establish rigorously the spherical symmetry of the optimum attaining

κnτ , and also suggest how to find symmetries in other (non-AWGN) problems of interest. We
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start by noting that any distribution PZ|Y n is completely determined by defining a function

f : B 7→ [0, 1], namely,

f(y) = PZ|Y n(1|y) . (368)

We define the following class of functions on B = Bn:

Fτ =

f :
f : B 7→ [0, 1] ,

∀x ∈ An :
∫
Bn fdPY n|Xn=x ≥ τ

 , (369)

so that

κn(τ) = inf
f∈Fτ

∫
Bn
fdPY n . (370)

Now we define another class, the sub-class of spherically symmetric functions:

F symτ =
{
φ ∈ Fτ : φ(y) = φr

(
||y||2

)
for some φr

}
. (371)

We can then state the following.

Lemma 60: For the chosen PY n and Fn, and for every τ ∈ [0, 1] we have

κnτ (Fn, PY n) = inf
φ∈Fsymτ

∫
φdPY n . (372)

Proof of Lemma 60: The proof of Lemma 60 first defines a group G of transformations

of B (an orthogonal group On in this case) that permutes elements of the family of measures

{PY n|Xn=x, x ∈ Fn} and that fixes P n
Y . Then the optimum in the definition of κnτ can be sought

as a function B 7→ [0, 1] that is constant on the orbits of G (this is the class F symτ ).

Since F symτ ⊆ Fτ , the inequality

κnτ ≤ inf
φ∈Fsymτ

∫
φdPY n (373)

is obvious. It remains to be shown that

κnτ ≥ inf
φ∈Fsymτ

∫
φdPY n . (374)

We will show that for every f ∈ Fτ there is a function φ ∈ F symτ with
∫
f dPY n =

∫
φ dPY n .

The claim (374) then follows trivially.

Define G to be the isometry group of a unit sphere Sn−1. Then G = O(n), the orthogonal

group. Define a function on G×G by

d(g, g′) = sup
y∈Sn−1

||g(y)− g′(y)|| . (375)
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Since Sn−1 is compact, d(g, g′) is finite. Moreover, it defines a distance on G and makes G a

topological group. The group action H : G× Rn 7→ Rn defined as

H(g, y) = g(y) (376)

is continuous in the product topology on G × Rn. Also, G is a separable metric space. Thus,

as a topological space, it has a countable basis. Consequently, the Borel σ-algebra on G × Rn

coincides with the product of Borel σ-algebras on G and Rn:

B(G× Rn) = B(G)× B(Rn) . (377)

Finally, H(g, y) is continuous and hence is measurable with respect to B(G × Rn) and thus is

also a measurable mapping with respect to a product σ-algebra.

It is also known that G is compact. On a compact topological group there exists a unique

(right Haar) probability measure µ compatible with the Borel σ-algebra B(G), and such that

µ(Ag) = µ(A) , ∀g ∈ G,A ∈ B(G) . (378)

Now take any f ∈ Fτ and define an averaged function φ(y) as

φ(y)
4
=

∫
G

(f ◦H)(g, y)µ(dg) . (379)

Note that as shown above f ◦H is a positive measurable mapping G × B 7→ R+ with respect

to corresponding Borel σ-algebras. Then by Fubini’s theorem, the function φ : B 7→ R+ is also

positive measurable. Moreover,

0 ≤ φ(y) ≤
∫
G

1µ(dg) = 1 . (380)

Define for convenience

Qx
Y

4
= PY n|Xn=x . (381)

Then ∫
B
φ(y)Qx

Y (dy) =

∫
B
Qx
Y (dy)

∫
G

(f ◦H)(g, y)µ(dg) (382)

=

∫
G

µ(dg)

∫
B
(f ◦H)(g, y)Qx

Y (dy) . (383)
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Change of the order is possible by Fubini’s theorem because f ◦H is a bounded function. By

the change of variable formula,∫
G

µ(dg)

∫
B
(f ◦ g)(y)Qx

Y (dy) =

∫
G

µ(dg)

∫
B
f
(
Qx
Y ◦ g−1

)
(dy) . (384)

By the definition of Qx
Y we have, for every measurable set E, Qx

Y [E] = Q0
Y [E − x] and the

measure Q0
Y is fixed under all isometries of Rn:

∀g ∈ G : Q0
Y [F ] = Q0

Y [g(F )] . (385)

But then (
Qx
Y ◦ g−1

)
[E]

4
= Qx

Y

[
g−1(E)

]
(386)

= Q0
Y

[
g−1(E)− x

]
(387)

= Q0
Y

[
g−1[E − g(x)]

]
(388)

= Q
g(x)
Y [E] . (389)

This proves that

Qx
Y ◦ g−1 = Q

g(x)
Y . (390)

It is important that x ∈ Fn implies g(x) ∈ Fn. In general terms, without AWGN channel specifics,

the above argument shows that in the space of all measures on B the subset {Qx
Y , x ∈ Fn} is

invariant under the action of G.

But f ∈ Fτ and thus
∫
f dQx

Y ≥ τ for every x ∈ Fn. So, from (384) and (390) we conclude∫
B
φ dQx

Y ≥
∫
G

τ µ(dg) = τ . (391)

Together with (380) this establishes that φ ∈ Fτ . Now, the PY n measure is also fixed under any

g ∈ G:

PY n ◦ g−1 = PY n . (392)

Then replacing Qx
Y with PY n in (384) we obtain∫

B
φ dPY n =

∫
G

µ(dg)

∫
B
f(y)

(
PY n ◦ g−1

)
(dy) (393)

=

∫
B
f dPY n . (394)
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It remains to show that φ ∈ F symτ ; but, this is a simple consequence of the choice of µ. Indeed

for any g′ ∈ G,

(φ ◦ g′)(y) =

∫
G

(f ◦H)(g, g′(y))µ(dg) (395)

=

∫
G

(f ◦H)(gg′, y)µ(dg) (396)

=

∫
G

(f ◦H)(g′′, y)µ(dg′′) (397)

= φ(y) . (398)

In the last equality we used a change of measure and the invariance of µ under right translations.

Thus, φ must be constant on the orbits of G and hence, depends only on the norm of y. To

summarize, we have shown that φ belongs to F symτ and∫
φ dPY n =

∫
f dPY n . (399)

Proof of Theorem 42 (continued): By Lemma 60 we obtain a value of κnτ by optimizing over

spherically symmetric functions. First, we will simplify the constraints on the functions in F symτ .

Define Qx
Y and G as in the proof of Lemma 60. As we saw in that proof, each transformation

g ∈ G carries one measure Qx
Y into another Qx′

Y . Also x′ = g(x) in this particular case, but this

is not important. What is important, however, is that if x ∈ Fn then x′ ∈ Fn. If we define

Q = {Qx
Y , x ∈ Fn} (400)

then, additionally, the action of G on Q is transitive. This opens the possibility that the system

of constraints on φ ∈ F symτ might be overdetermined. Indeed, suppose that φ satisfies∫
B
φ dQ0 ≥ τ (401)

for some Q0 ∈ Q. Then for any measure Q ∈ Q there is a transformation g ∈ G such that

Q = Q0 ◦ g−1 . (402)

But then ∫
B
φ dQ =

∫
B
φ ◦ g dQ0 =

∫
B
φ dQ0 . (403)
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Here the last equality follows from the fact that all members of F symτ are spherically symmetric

functions and as such are fixed under G: φ ◦ g = φ. That is, once a symmetric φ satisfies∫
B
φ dPY n|Xn=x0 ≥ τ (404)

for one x0 ∈ Fn, it automatically satisfies the same inequality for all x ∈ Fn. So we are free

to check (404) at one arbitrary x0 and then conclude that φ ∈ F symτ . For convenience we will

choose x0 to be

x0 =
(√

P ,
√
P , . . . ,

√
P
)
. (405)

Since all functions in F symτ are spherically symmetric we will work with their radial parts:

φ(y) = φr
(
||y||2

)
. (406)

Note that PY n induces a certain distribution on R = ||Y n||2, namely,

P0 ∼
n∑
i=1

(1 + P )Z2
i (407)

(as previously the Zi’s denote i.i.d. standard Gaussian random variables). Similarly, PY n|Xn=x0

induces a distribution on R = ||Y n||2, namely,

P1 ∼
n∑
i=1

(
Zi +

√
P
)2

. (408)

Finally, we see that κnτ is

κnτ = inf
{φr:

R
φrdP1≥τ}

∫
φr dP0 (409)

–a randomized binary hypothesis testing problem with P1(decide P1) ≥ τ .

Finally, we are left to note that the existence of a unique optimal solution φ∗r is guaranteed

by the Neyman-Pearson lemma (Appendix B). To conclude the proof we must show that the

solution of (211) exists and thus that φ∗r is an indicator function (i.e., there is no “randomization

on the boundary” of a likelihood ratio test). To that end, we need to show that for any γ the set

Aγ =

{
p1(r)

p0(r)
= γ

}
(410)

satisfies P1 [Aγ] = 0. To show this, we will first show that each set {Aγ ∩ [0, K]} is finite; then,

its Lebesgue measure is zero, and since P1 is absolutely continuous with respect to Lebesgue

measure we conclude from the monotone convergence theorem that

P1 [Aγ] = lim
K→∞

P1 [Aγ ∪ [0, K]] = 0. (411)
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Note that the distribution P0 is a scaled χ2-distribution with n degrees of freedom; thus

(e.g., [43, (26.4.1)]) the PDF of P0 is indeed given by (212). The distribution P1 is the non-

central χ2-distribution with n degrees of freedom and noncentrality parameter, λ, equal to nP .

Thus (see [43, (26.4.25)]) we can write the PDF of P1 as expressed in (213). Using these

expressions we obtain

f(r)
4
=
p1(r)

p0(r)
= e−µr

∞∑
i=0

air
i . (412)

The coefficients ai are such that the series converges for any r <∞. Thus, we can extend f(r)

to be an analytic function F (z) over the entire complex plane. Now fix a K ∈ (0,∞) and denote

S = Aγ ∩ [0, K] = f−1{γ} ∩ [0, K] . (413)

By the continuity of f the set S is closed. Thus, S is compact. Suppose that S is infinite; then

there is sequence rk ∈ S converging to some r∗ ∈ S. But then from the uniqueness theorem of

complex analysis, we conclude that F (z) = γ over the entire disk |z| ≤ K. Since f(r) cannot

be constant, we conclude that S is finite.

To enable non-AWGN applications of the κβ bound, let us summarize the general ideas

used to prove Lemma 60 and Theorem 42. The proof of Lemma 60 first defines a group G of

transformations of B (an orthogonal group On in this case) that permutes elements of the family

of measures {PY n|Xn=x, x ∈ Fn} and that fixes PY n . Then the optimum in the definition of κnτ
can be sought as a function B 7→ [0, 1] that is constant on the orbits of G (this is the class

F symτ ). Carrying this idea forward, in the proof of Theorem 42 we note that the action of G on

{PY n|Xn=x, x ∈ Fn} is transitive and thus a set of conditions on φ ∈ F symτ can be replaced by

just one: ∫
φ dPY n|Xn=x0 ≥ τ (414)

for any x0. If x0 is conveniently chosen, then computation of κnτ is a matter of solving a single

randomized binary hypothesis testing problem between two memoryless distributions.

Lemma 61: For every P > 0 there are constants C1 > 0 and C2 > 0 such that for all

sufficiently large n and all τ ∈ [0, 1],

κnτ ≥
1

C1

(
τ − e−C2n

)
. (415)
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Proof: Recall that κnτ is determined by a binary hypothesis testing problem between P
(n)
0

and P
(n)
1 , as defined by (407) and (408). We will omit indices (n) where it does not cause

confusion. Also in this proof all exp exponents are to the base e. The argument consists of two

steps.

Step 1. There is a δ > 0 such that for all n ≥ 1 the Radon-Nikodym derivative dP
(n)
1

dP
(n)
0

(r) is

upper bounded by a constant C1 on the set

r ∈ Rn
4
= [n(1 + P − δ), n(1 + P + δ)] . (416)

Step 2. Since the measures P (n)
1 have mean n(1+P ), by the Chernoff bound there is a constant

C2 such that

P
(n)
1 [ {Rn}c ] ≤ e−C2n . (417)

Now choose any set A such that P1[A] ≥ τ . Then

P1[A ∩Rn] ≥ P1[A]− P1 [ {Rn}c ] (418)

≥ τ − e−C2n . (419)

But then

P0[A] ≥ P0[A ∩Rn] (420)

=

∫
R+

1A∩Rn dP0 (421)

=

∫
A∩Rn

dP0

dP1

dP1 (422)

≥ 1

C1

∫
A∩Rn

dP1 (423)

≥ 1

C1

(
τ − e−C2n

)
. (424)

This establishes the required inequality. The rest is devoted to proving Step 1, namely,

fn(r)
4
=
dP1

dP0

≤ C1 on Rn ∀n . (425)

We have already discussed some properties of fn(r) in (412). Here, however, we will need a

precise expression for it, easily obtainable via (212) and (213):

fn(r) = (1 + P )n/2 exp

{
−nP

2
− r P

2P + 2

}
×

× (nPr)−n/4+1/2 2n/2Γ
(n

2

)
In/2−1

(√
nPr

)
, (426)
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where In/2−1(x) is the modified Bessel function of the first kind.

We will consider only the case in which n is even. This is possible because in [44] it is shown

that

µ > ν ≥ 0 =⇒ Iµ(x) < Iν(x) , (427)

for all x > 0. Thus, if n is odd then an upper bound is obtained by replacing In/2−1 with

In/2−3/2. Now for integer index k = n/2− 1 the following bound is shown in [45]:

Ik(z) ≤
√
π

8
ez

1√
z

(
1 +

k2

z2

)−1/4

exp

{
−k sinh−1 k

z
+ z

(√
1 +

k2

z2
− 1

)}
. (428)

Note that we need to establish the bound only for r’s that are of the same order as n, r = O(n).

Thus, we will change the variable

r = nt (429)

and seek an upper bound on fn(nt) for all t inside some interval containing (1 + P ).

Using (428) and the expression

ln Γ
(n

2

)
=
n− 1

2
ln
n

2
− n

2
+O(1), (430)

fn(r) in (426) can be upper bounded, after some algebra, as

fn(nt) ≤ exp
{
−n

2
K(t, P ) +O(1)

}
. (431)

Here the O(1) term is uniform in t for all t on any finite interval not containing zero, and

K(t, P ) = − ln
{

1 +
√

1 + 4Pt
}

+
√

1 + 4Pt + ln(1 + P ) − P − Pt

P + 1
− 1 + ln 2 . (432)

A straightforward excercise shows that a maximum of K(t, P ) is attained at t∗ = 1 + P and

Kmax = K(t∗, P ) = 0 . (433)

Thus,

fn(nt) ≤ O(1) , t ∈ [a, b] , a > 0 . (434)

In particular (425) holds if we take, for example, a = (1 + P )− 1 and b = (1 + P ) + 1.

In fact, the Radon-Nikodym derivative is bounded for all r, not only r ∈ Rn and, hence

κnτ ≥
1

C1

τ (435)

instead of the weaker (415). But showing that this holds for all r complicates the proof unnec-

essarily.
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APPENDIX E

CONTINUITY ON THE SIMPLEX

Our first results are concerned with properties of U(P,W ) and V (P,W ).

Lemma 62: The functions U(P,W ), V (P,W ) and T (P,W ) are continuous on P . Functions

U(P,W ) and V (P,W ) coincide on Π. The following inequality holds:

V (P,W ) ≤ U(P,W ) ≤ 2g(min{|A|, |B|})− [I(P,W )]2 , (436)

where

g(n) =

0.6 log2 e , n = 2 ,

log2 n , n ≥ 3 .
(437)

Proof: First, note that U(P,W ), V (P,W ) and T (P,W ) are well-defined and finite. Indeed,

each one is a sum of finitely many terms. We must show that every term is well-defined. This

is true since, whenever W (y|x) = 0 or PW (y) = 0 or P (x) = 0, we have P (x)W (y|x) = 0

and thus

P (x)W (y|x)

[
log

W (y|x)

PW (y)

]2

and

P (x)W (y|x)

∣∣∣∣log
W (y|x)

PW (y)
−D(Wx||PW )

∣∣∣∣3
are both equal to zero by convention. On the other hand, if P (x) > 0 then Wx � PW and thus

D(Wx||PW ) is a well-defined finite quantity. Second, take a sequence Pn → P . Then we want

to prove that each term in U(P,W ) is continuous, i. e.,

Pn(x)W (y|x)

[
log

W (y|x)

PnW (y)

]2

→ P (x)W (y|x)

[
log

W (y|x)

PW (y)

]2

. (438)

If W (y|x) = 0 then this is obvious. If Pn(x) 6→ 0 then this is also true since the argument of

the logarithm is bounded away from 0 and +∞. So, we assume Pn(x)→ 0 and we must show

that then the complete quantity also tends to 0. For Pn(x) > 0 we notice that

log(Pn(x)W (y|x)) ≤ logPnW (y) ≤ 0 . (439)

Thus,

| logW (y|x)− logPnW (y)|2 ≤ 2(log2W (y|x) + log2{Pn(x)W (y|x)}) . (440)
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But then,

0 ≤ Pn(x)W (y|x)

[
log

W (y|x)

PnW (y)

]2

(441)

≤ 2Pn(x)W (y|x)(log2W (y|x) + log2{Pn(x)W (y|x)}) . (442)

This is also true for Pn(x) = 0 assuming the convention 0 log2 0 = 0. Now continuity follows

from the fact that x log2{αx} is continuous for x ∈ [0, 1] when defined as 0 for x = 0. Thus,

continuity of U(P,W ) is established.

To establish continuity of V (P,W ) we are left to prove that∑
x

P (x)D(Wx||PW )2

is continuous in P . Let us expand a single term here:

P (x)

[∑
y∈B

W (y|x) log
W (y|x)

PW (y)

]2

.

First notice that if Pn(x) 6→ 0 then continuity of this term follows from the fact that the argument

of the logarithm is bounded away from 0 and +∞ for all y with W (y|x) > 0. So we are left

with the case Pn(x)→ 0. To that end let us prove the inequality for P (x) > 0:

D(Wx||PW ) ≤ 2H(Wx) + log
1

P (x)
. (443)

From here continuity follows as we can see that Pn(x)D(Wx||PnW )2 → 0 because x log x and

x log2 x are continuous at zero.

We now prove inequality (443). From (439) we see that∣∣∣∣log
W (y|x)

PW (y)

∣∣∣∣ ≤ log
1

W (y|x)
+ log

1

P (x)W (y|x)
(444)

= 2 log
1

W (y|x)
+ log

1

P (x)
. (445)

Then,

D(Wx||PW ) ≤
∑
x∈A

W (y|x)

∣∣∣∣log
W (y|x)

PW (y)

∣∣∣∣ (446)

≤ 2H(Wx) + log
1

P (x)
. (447)

Thus, V (P,W ) is continuous in P .
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To establish continuity of T (P,W ), we again consider a single term:

P (x)W (y|x)

∣∣∣∣log
W (y|x)

PW (y)
−D(Wx||PW )

∣∣∣∣3 . (448)

If W (y|x) = 0 then this term is equal to zero regardless of P , and thus is continuous in P .

Assume W (y|x) > 0. Take Pn → P . If P (x) 6= 0 then PnW (y) is bounded away from 0 and

thus log W (y|x)
PnW (y)

tends to log W (y|x)
PW (y)

. Similarly, for any y′ such that W (y′|x) > 0 we have that

PnW (y′) is also bounded away from 0. Thus, D(Wx||PnW ) tends to D(Wx||PW ).

We now assume that Pn(x) → 0 and must prove that (448) tends to 0. Using the inequality

|a+ b|3 ≤ 4(|a|3 + |b|3), we obtain

Pn(x)W (y|x)

∣∣∣∣log
W (y|x)

PnW (y)
−D(Wx||PnW )

∣∣∣∣3 ≤ (449)

4Pn(x)W (y|x)

∣∣∣∣log
W (y|x)

PnW (y)

∣∣∣∣3 + 4Pn(x)W (y|x)D3(Wx||PnW ) . (450)

Application of (443) immediately proves that the second term in the last inequality tends to zero.

Continuity of the first term is established exactly like (438) with (440) replaced by

| logW (y|x)− logPnW (y)|3 ≤ −4(log3W (y|x) + log3(Pn(x)W (y|x))) . (451)

This proves continuity of T (P,W ).

Finally, V (P,W ) and U(P,W ) coincide on Π for the reason that, under any capacity-achieving

distribution it is known that

D(Wx||PW ) = E [i(X;Y ) |X = x] = C P -a.s. . (452)

Indeed, then

U(P,W )
4
= E

[
(i− E i)2

]
(453)

= E
[
(i− C)2

]
(454)

= E
[
(i− E [i |X])2

]
(455)

= V (P,W ) . (456)
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To prove (436) consider the following chain of inequalities:

U(P,W ) + [I(P,W )]2
4
=

∑
x∈A

∑
y∈B

P (x)W (y|x)

[
log2W (y|x) + log2 PW (y) (457)

− 2 logW (y|x) · logPW (y)

]
(458)

≤
∑
x∈A

∑
y∈B

P (x)W (y|x)
[
log2W (y|x) + log2 PW (y)

]
(459)

=
∑
x∈A

P (x)

[∑
y∈B

W (y|x) log2W (y|x)

]
(460)

+

[∑
y∈B

PW (y) log2 PW (y)

]
(461)

≤
∑
x∈A

P (x)g(|B|) + g(|B|) (462)

= 2g(|B|) , (463)

where (459) is because 2 logW (y|x) · logPW (y) is always non-negative, and (462) follows

because each term in square-brackets can be upper-bounded using the following optimization

problem:

g(n)
4
= sup

aj≥0:
Pn
j=1 aj=1

n∑
j=1

aj log2 aj . (464)

Since the x log2 x has unbounded derivative at the origin, the solution of (464) is always in

the interior of [0, 1]n. Then it is straightforward to show that for n > e the solution is actually

aj = 1
n

. For n = 2 it can be found directly that g(2) = 0.5629 < 0.6. Finally, because of the

symmetry, a similar argument can be made with |B| replaced by |A| and hence in (436) we are

free to choose the best bound.

APPENDIX F

PROOF OF LEMMA 46

Proof: Using Minkowski’s inequality and the notation ||Z||p = (E [|Z|p])1/p, we have

||i(X;Y )− I(X;Y )||3 ≤ ||i(X;Y )||3 + I(X;Y ) (465)

≤ || logW (Y |X)− logPY (Y )||3 + I(X;Y ) (466)

≤ || log
1

W (Y |X)
||3 + || log

1

PY (Y )
||3 + I(X;Y ) (467)
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≤
(
|B|27e−3 log3 e

)1/3
+
(
|A|27e−3 log3 e

)1/3
+ I(X;Y ) (468)

≤
(
|A|1/3 + |B|1/3

)
3e−1 log e+ log min{|A|, |B|} (469)

where (467) follows from x log3 1
x
≤ (3e−1 log e)3.

APPENDIX G

Proof of Lemma 47: By Theorem 44 we have for any x and δ

P

[
x ≤

n∑
j=1

(Zj − EZj) < x+ δ

]
(470)

≤
∫ (x+δ)/σ

x/σ

1√
2π
e−t

2/2dt+
12T

σ3
(471)

≤
(

δ√
2π

+
12T

σ2

)
1

σ
. (472)

On the other hand,

E

[
exp

{
−

n∑
j=1

Zj

}
1{Pn

j=1 Zj>A}

]
(473)

≤
∞∑
l=0

exp{−A− lδ}P

[
A+ lδ ≤

n∑
j=1

Zj < A+ (l + 1)δ

]
. (474)

Using (472) and δ = log 2 we get (262) since
∞∑
l=0

2−l = 2 . (475)

APPENDIX H

AN EXOTIC DMC

Let

W ′ =



1/3 0 0 1/3 2/13

0 1/3 0 1/3 2/13

0 0 1/3 1/3 2/13

1/3 1/3 1/3 0 3/13

1/3 1/3 1/3 0 4/13


. (476)
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Now denote by x∗ the unique negative root of the equation

(x− 1)

(
log

137

2833
− 7 log(1− x)

)
+ (6 + 7x) log

6 + 7x

39
= −13 log 3 . (477)

Then, replace the last column of W ′ with the column (only two decimals shown)

W ′[0 0 0 x∗ 1− x∗]T = [0.04 0.04 0.04 0.38 0.50]T . (478)

The resulting channel matrix is

W =



1/3 0 0 1/3 0.04

0 1/3 0 1/3 0.04

0 0 1/3 1/3 0.04

1/3 1/3 1/3 0 0.38

1/3 1/3 1/3 0 0.50


. (479)

This matrix has full rank and so the capacity achieving distribution is unique. A simple obser-

vation shows that equiprobable P ∗Y is achievable by taking P ∗X = [1, 1, 1, 2, 0]/5. Finally, the

conditional entropies H(Y |X = x) are all equal to log 3 as a consequence of the choice of

x∗. It follows that P ∗X is the unique capacity achieving distribution. One can also check that

V (P ∗X ,W ) = 0 and V (W5||P ∗Y ) > 0. So W is indeed an exotic channel. In fact, it can be shown

that there is a sequence of distributions P (n)
X such that Feinstein’s lower bound for this channel

exhibits nC + Fn1/3 behavior. Note that for an exotic channel and ε > 1/2 it is not optimal to

choose P that achieves I(P,W ) = C and U(P,W ) = 0 in Theorem 45, rather the optimal P

will depend on n. The intuition behind this is that for small n it might be beneficial to choose

P such that I(P,W ) < C but U(P,W ) > 0 because for ε > 1/2 the
√
n term is positive and

proportional to
√
U(P,W ).

This example has illustrated that the conditions for exotic channels are quite hard to satisfy

(especially, making D(Wx||P ∗Y ) = C but so that x does not participate in capacity achieving

distributions); hence the name exotic.

APPENDIX I

PROOF OF THEOREM 48

We must consider four cases separately:

1) ε ≤ 1/2 and Vmin > 0.
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2) ε ≤ 1/2 and Vmin = 0.

3) ε > 1/2 and Vmax > 0.

4) ε > 1/2 and Vmax = 0.

Compared to Strassen [31] we streamline the treatment of case 1 by using Lemma 64 and add

the proofs for cases 3 and 4. The main idea for solving case 2 is due to Strassen.

The aim is to use Theorem 31 with Fn = T nP0
. To do so we need to select a distribution PY n

on An and compute infxn∈TnP0
βn1−ε(x

n, PY n). Notice that the theorem is concerned only with

codebooks over some fixed type. So, if PY n is a product distribution then βn1−ε(x
n, PY n) does

not depend on xn ∈ T nP0
and thus

βn1−ε(x
n, PY n) = βn1−ε(PY n) . (480)

For this reason we will simply write βn1−ε(PY n), and even βn1−ε, since the distribution PY n will

be apparent.

Case 1. Denote the closed δ-neighborhood of the set of capacity-achieving distributions, Π,

as

Πδ
4
= {P ∈ P : d(P,Π) ≤ δ} . (481)

Here d(·, ·) denotes Euclidean distance between vectors of R|A|.

We fix some δ > 0 to be determined. First, we find δ1 small enough so that everywhere on

Πδ1 we have V (P,W ) ≥ Vmin/2. This is possible by the continuity of V (P,W ); see Lemma 62

in Appendix E. Without loss of generality, we can assume that B does not have inaccessible

outputs, i.e. for every y0 ∈ B there is an x0 ∈ A such that W (y0|x0) > 0. Then, it is well

known that for any P1, P2 ∈ Π the output distributions coincide, i.e. P1W = P2W = P ∗Y , and

also that this unique P ∗Y dominates all W (·|x). Since all outputs are accessible, this implies that

P ∗Y (y) > 0, y ∈ B. Now for each y, the function PW (y) is linear in the input distribution P ,

and thus there is some δ2 > 0 such that in the closed δ2-neighborhood of Π we have PW (y) > 0

for all y ∈ B. Set δ = min{δ1, δ2}. Fix n and P0 ∈ Pn. Choose the distribution PY n = (P0W )n,

i.e.

PY n(yn) =
n∏
k=1

∑
a∈A

P0(a)W (yk|a) . (482)

Then by Theorem 31 and the argument above we have

logM∗
P0

(n, ε) ≤ − log βn1−ε(x
n, PY n) (483)
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where xn is any element of T nP0
. The idea for lower bounding βn1−ε is to apply Lemma 58

if P0 ∈ Πδ and Lemma 59 (both in Appendix C) otherwise. In both cases, Qi = PY |X=xi

and Pi = P0W . Note that there are nP0(1) occurrences of PY |X=1 among the Qi’s, nP0(2)

occurrences of PY |X=2, etc. Thus, the quantities defined in Lemma 58 become

Dn = I(P0,W ) (484)

Vn = V (P0,W ) . (485)

Suppose that P0 ∈ Pn \ Πδ; then, applying Lemma 59 we obtain

logM∗
P0

(n, ε) ≤ − log βn1−ε (486)

≤ nI(P0,W ) +

√
2nV (P0,W )

1− ε
+ log

1− ε
2

(487)

≤ nC ′ +

√
2MV

1− ε
√
n+ log

1− ε
2

, (488)

where

C ′ = sup
P∈P\Πδ

I(P,W ) < C , (489)

MV = max
P∈P

V (P,W ) <∞ . (490)

Since C ′ < C we can see that, even with F = 0, there exists N1 such that for all n ≥ N1

the right-hand side of (488) is below the right-hand side of (272). So this proves (272) for

P0 ∈ Pn \ Πδ. Now, consider P0 ∈ Πδ. Recall that Tn in Lemma 58 is in fact

Tn =
∑
x∈A

∑
y∈B

P0(x)W (y|x)

∣∣∣∣log
W (y|x)

P0W (y)
−D(Wx||P0W )

∣∣∣∣3 = T (P0,W ) (491)

which, as shown in Lemma 62, is continuous on the compact set P and thus has a finite upper

bound:

Tn ≤MT <∞ . (492)

On the other hand, over Πδ we have V (P0,W ) ≥ Vmin/2 > 0. In summary, we can upper bound

Bn in Lemma 58 as

Bn = 6
Tn

V
3/2
n

≤MB
4
=

6 · 23/2MT

V
3/2
min

. (493)
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Thus, we are ready to apply Lemma 58, namely to use (344) with ∆ = MB −Bn + 1 ≥ 1 and

to conclude that, for n sufficiently large,

logM∗
P0

(n, ε) ≤ nI(P0,W ) +
√
nV (P0,W )Q−1

(
1− ε− MB + 1√

n

)
+

1

2
log n . (494)

For n large, depending on MB, we can expand Q−1 using Taylor’s formula. In this way, we can

conclude that there is a constant F1 such that

Q−1

(
1− ε− MB + 1√

n

)
≤ Q−1(1− ε) +

F1√
n
. (495)

Then for such n and a constant F2 (recall (490)) we have

logM∗
P0

(n, ε) ≤ nI(P0,W ) +
√
nV (P0,W )Q−1(1− ε) +

1

2
log n+ F2 . (496)

To conclude the proof we must maximize the right-hand side over P0 ∈ Πδ. Note that this

is the case treated in Lemmas 63 and 64. We want to use the latter one and need to check its

conditions. From the definitions of I(P,W ) and V (P,W ) we can see that they are infinitely

differentiable functions on Πδ. This is because all terms log W (y|x)
PW (y)

have arguments bounded

away from 0 and +∞ by the choice of Πδ. Consequently, the conditions of Lemma 64 on g are

automatically satisfied. We must now check the conditions on f . To that end, we can think of

I(P,W ) as a function of P , and write ∇I(P ) and H(P ) for the gradient vector and Hessian

matrix correspondingly. To check the conditions on f in Lemma 64 it is sufficient to prove that

for any P ∗ ∈ Π:

1) kerH(P ∗) = kerW , which is the set of all |A|-vectors v such that
∑

x∈A v(x)W (y|x) = 0;

2) the largest non-zero eigenvalue of H(P ∗) is negative and bounded away from zero uni-

formly in the choice of P ∗ ∈ Π.

We first show why these two conditions are sufficient. It is known that Π consists of all

distributions P that satisfy two conditions: 1) PW = P ∗Y ; and 2) P (x) > 0 only when

D(Wx||P ∗Y ) = C. Now take some P ′ 6∈ Π and denote by P ∗ the projection of P ′ onto a

compact Π. Then write

P ′ = P ∗ + v = P ∗ + v0 + v⊥ , (497)

where v0 is projection of v = (P ′ − P ∗) onto kerW and v⊥ is orthogonal to kerW . Note that

d(P ′,Π) = ||v|| ≤ δ. By Taylor’s expansion we have

I(P ′) = I(P ∗) + (v0 + v⊥)T∇I(P ∗) +
1

2
vT⊥H(P ∗)v⊥ + o(||v||2) . (498)
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Here we have used the fact that vT0H(P ∗)v0 = 0. Since v0 ∈ kerW but P ∗+λv0 is not in Π for

any λ > 0, we conclude that shifting along v0 must involve inputs with D(Wx||P ∗Y ) < C. But

then I(P,W ) decays linearly along this direction, i.e. there is some constant Γ1 > 0 such that

I(P ∗ + v0)− I(P ∗) = vT0∇I(P ∗) (499)

≤ −Γ1||v0|| ≤ −Γ1||v0||2 (500)

((500) assumes δ ≤ 1). Then, substituting (500) into expansion for I(P ′) and upper bounding

vT⊥∇I by zero we obtain

I(P ′)− I(P ∗) ≤ −Γ1||v0||2 −
1

2
λ||v⊥||2 + o(||v||2) , (501)

where λ is the absolute value of the maximal non-zero eigenvalue of H(P ∗). We will show that

λ is uniformly bounded away from zero for any P ∗ ∈ Π. So we see that indeed I(P,W ) decays

not slower than quadratically in d(P,Π).

Now we need to prove the assumed facts about the Hessian H(P ). The differentiation can be

performed without complications since on Πδ we always have PW (y) > 0. After some algebra

we get

Hij
4
=

∂2I(P )

∂P (i)∂P (j)
= −

∑
y∈B

W (y|i)W (y|j)
PW (y)

. (502)

Thus, for any vector v we have

vTHv =
∑
i,j

viHijvj (503)

= −
∑
y∈B

(
∑

i viW (y|i))2

PW (y)
(504)

≤ − ||vW ||
2

(PW )max
, (505)

where we have denoted formally vW =
∑

x∈A v(x)W (y|x), which is a vector of dimension |B|.

From (505) we can see that indeed vTHv = 0 if and only if vW = 0. In addition, the maximal

non-zero eigenvalue of H(P ) is always smaller than λmin+(WWT )
(PW )max

for all P ∈ Π. Consequently,

Lemma 64 applies to (496), and thus

logM∗
P0

(n, ε) ≤ nC +
√
nVminQ

−1(1− ε) +
1

2
log n+O(1) . (506)

This implies (272) if we note that Q−1(1− ε) = −Q−1(ε).
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Case 2. The idea is to apply Theorem 31, but this time we fix the output distribution to be

PY n = (P ∗Y )n for all types P0 (before we chose PY n = (P0W )n different for each type P0). It

is well-known that

D(W ||P ∗Y |P0) ≤ D(W ||P ∗Y |P ∗) = C . (507)

This fact is crucial for proving the bound.

Note that V (Wx||P ∗Y ) is defined and finite since all Wx � P ∗Y . Denote a special subset of

nonzero-variance inputs as

A+
4
= {x ∈ A : V (Wx||P ∗Y ) > 0} . (508)

And also for every P0 ∈ Pn denote m(P0) = nP0(A+) which is the number of nonzero-variance

letters in any x ∈ T nP0
. Also note that there are minimal and maximal variances VM ≥ Vm > 0

such that Vm ≤ V (Wx||P ∗Y ) ≤ VM for all x ∈ A+.

Since PY n is a product distribution,

logM∗
P0

(n, ε) ≤ − log βn1−ε(x
n, PY n) (509)

for all xn ∈ T nP0
. We are going to apply Lemmas 58 and 59, Appendix C, and so need to compute

Dn, Vn and an upper bound on Bn. We have

Dn = D(W ||P ∗Y |P0) , (510)

Vn = V (W ||P ∗Y |P0) . (511)

To upper bound Bn we must lower bound Vn and upper bound Tn. Note that

V (W ||P ∗Y |P0) ≥ m(P0)

n
Vm . (512)

For Tn, we can write

Tn
4
=
∑
x∈A

∑
y∈B

P0(x)W (y|x)

∣∣∣∣log
W (y|x)

P ∗Y (y)
−D(Wx||P ∗Y )

∣∣∣∣3 =
∑
x∈A

P0(x)T (x) . (513)

Here, the T (x)’s are all finite and T (x) = 0 iff x 6∈ A+. Thus, for x ∈ A+ there is one maximal

T ∗ = maxx∈A T (x), and we have

Tn ≤
m(P0)

n
T ∗ . (514)
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Then, we see that

Bn
4
=

Tn

V
3/2
n

≤
√

n

m(P0)

T ∗

V
3/2
m

4
=

√
n

m(P0)
MB . (515)

So we apply Lemma 58 with

∆ =

√
n

m(P0)
(MB + 1)−Bn ≥

√
n

m(P0)
≥ 1 . (516)

Using (344) and lower bounding log ∆ via (516) we have

log βn1−ε ≥ −nD(W ||P ∗Y |P0)−
√
nV (W ||P ∗Y |P0)Q−1

(
1− ε− MB + 1√

m(P0)

)
− 1

2
log n . (517)

Now, it is an elementary analytical fact that it is possible to choose a δ0 < 1− ε and Γ2 > 0

such that

Q−1(1− ε− z) ≤ Q−1(1− ε) + Γ2z , ∀z ∈ [0, δ0] . (518)

We now split types in Pn into two classes, PA and PB:

P0 ∈ PA ⇐⇒ m(P0) ≥ m∗ , PB = Pn \ PA . (519)

Here m∗ is chosen so that MB+1√
m∗
≤ δ0. Then, for all types in PA we have

Q−1

(
1− ε− MB + 1√

m(P0)

)
≤ Q−1(1− ε) +

Γ3√
m(P0)

. (520)

Notice also that with this choice of x0 and m∗, the argument of Q−1 in (517) is positive and

the bound is applicable to all types in PA. Substituting (507) we have, for any P0 ∈ PA,

log βn1−ε ≥ −nC −
√
nV (W ||P ∗Y |P0)Q−1(1− ε)− Γ3

√
nV (W ||P ∗Y |P0)

m(P0)
− 1

2
log n . (521)

Now notice that Q−1(1− ε) ≤ 0 (this is the key difference with Case 4) and also that

V (W ||P ∗Y |P0) ≤ m(P0)

n
VM . (522)

Finally, for P0 ∈ PA we have

logM∗
P0

(n, ε) ≤ nC + Γ3

√
VM +

1

2
log n . (523)

Now for types in PB we have m(P0) < m∗ and thus,

nV (W ||P ∗Y |P0) ≤ m∗VM . (524)
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So Lemma 59 yields

logM∗
P0

(n, ε) ≤ nC +

√
2m∗VM
1− ε

− log
1− ε

2
. (525)

In summary, we see that in both cases, PA and PB, inequalities (523) and (525) imply (272) for

n ≥ 1.

Case 3. The proof for this case is analogous to that for Case 1, except that when applying

Lemma 64 we must choose g∗ =
√
Vmax because the sign of Q−1(1− ε) is positive this time.

An additional difficulty is that it might be possible that Vmax > 0 but Vmin = 0. In this case the

bound (493) is no longer applicable. What needs to be done is to eliminate types inside Πδ with

small variance:

ΠV = {P ∈ Πδ : V (P,W ) < A} , (526)

where

A <
1− ε

2
Vmax

(
Q−1(ε)

)2
. (527)

Then, for types in ΠV we can apply the fixed-blocklength bound in Lemma 59. For the remaining

types in Πδ \ ΠV the argument in Case 1 works, after Vmin is replaced by A in (493).

Case 4. Fix a type P0 ∈ Pn and use PY n =
∏n

1 (P0W ). Then, a similar argument to that for

Case 2 and Lemma 59 yields

logM∗
P0

(n, ε) ≤ nI(P0,W ) +

√
2nV (P0,W )

1− ε
+ log

1− ε
2

(528)

for all n ≥ 1. We need to maximize the right-hand side of this bound over P0 ∈ P . This can be

done similarly to Lemma 64. The problem here, however, is that V (P,W ) = 0 for P ∈ Π. Thus,

even though V (P,W ) is differentiable in some neighborhood of Π,
√
V (P,W ) is not. This is

how a term of order n1/3 can appear. Indeed, suppose that there is some direction v along which

I(P + λv) decays quadratically, while V (P + λv) is linear. I.e.,

I(P + λv) = C − Γ4λ
2 + o(λ2) , (529)

V (P + λv) = Γ5λ+ o(λ) . (530)

Then it is not hard to see that

max
λ

{
nI(P + λv) +

√
nV (P + λv)

}
= nC + Γ6n

1/3 + o(n1/3) . (531)

Such a direction can only exist if all the conditions of the exotic DMC are satisfied. This can

be proved by computing gradients of I(P,W ) and V (P,W ).
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APPENDIX J

AUXILIARY MAXIMIZATION LEMMAS

This appendix is concerned with the behavior of the maximum of nf(x) +
√
ng(x) for large

n, for arbitrary continuous f and g.

Lemma 63: Let D be a compact metric space. Suppose f : D 7→ R and g : D 7→ R are

continuous. Define

f ∗ = max
x∈D

f(x) , (532)

and

g∗ = sup
{x: f(x)=f∗}

g(x) . (533)

Then,

max
x∈D

[
nf(x) +

√
ng(x)

]
= nf ∗ +

√
ng∗ + o(

√
n) . (534)

The message of this lemma is that, for continuous f and g,

max
x

{
nf(x) +

√
ng(x)

}
≈ nf(x∗∗) +

√
ng(x∗∗) (535)

where x∗∗ is found by first maximizing f(x) and then maximizing g(x) over the set of maximizers

of f(x).

If we assume more about f and g, then a stronger result can be stated. The assumptions below

essentially mean that f is twice differentiable near f ∗ with negative-definite Hessian and g is

differentiable. Without such assumptions Lemma 63 appears to be the best possible result; see

the example after the proof of Lemma 63 below.

Lemma 64: In the notation of previous lemma, denote

D0
4
= {x : f(x) = f ∗} , (536)

Dδ
4
= {x : d(x,D0) ≤ δ} , (537)

where d(·, ·) is a metric. Suppose that for some δ > 0 and some constants f1 > 0 and f2 we

have

f(x)− f ∗ ≤ −f1 d(x,D0)2 (538)

|g(x)− g∗| ≤ f2 d(x,D0) (539)
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for all x ∈ Dδ. Then,

max
x∈D

[
nf(x) +

√
ng(x)

]
= nf ∗ +

√
ng∗ +O(1) . (540)

Proof of Lemma 63: Denote

F (x, n) = nf(x) +
√
ng(x) (541)

F ∗(n) = max
x∈D

F (x, n) . (542)

Then (534) is equivalent to a pair of statements:

lim
n→∞

1

n
F ∗(n) = f ∗ (543)

lim
n→∞

F ∗(n)− nf ∗√
n

= g∗ , (544)

which we are going to prove. First we note that because of the compactness of D both f and

g are bounded. Now

F (x, n) ≤ nf ∗ +
√
ngmax , (545)

which implies
1

n
F ∗(n) ≤ f ∗ +

1√
n
gmax , (546)

which in turn implies

lim sup
1

n
F ∗(n) ≤ f ∗ . (547)

On the other hand, if we take x∗ to be any x ∈ D maximizing f(x) then

F ∗(n) = max
x

F (x, n) ≥ F (x∗, n) = nf ∗ +
√
ng(x∗) . (548)

Thus

lim inf
1

n
F ∗(n) ≥ f ∗ , (549)

and the first statement is proved. Now define

D1 = {x ∈ D : f(x) = f ∗} , (550)

which is also compact. Thus, there exists an (possibly non-unique) x∗∗ maximizing g(x) on D0:

x∗∗ = argmax
x∈D0

g(x) , (551)

g(x∗∗) = g∗ . (552)
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By definition

F ∗(n)− nf ∗ ≥ F (x∗∗, n)− nf ∗ =
√
ng∗ . (553)

Thus

lim inf
F ∗(n)− nf ∗√

n
≥ g∗ . (554)

On the other hand, F (x, n) is continuous on D, so that

F ∗(n) = F (x∗n, n) . (555)

Then notice that

F ∗(n)− nf ∗ = n(f(x∗n)− f ∗) +
√
ng(x∗n) (556)

≤
√
ng(x∗n) , (557)

where the last inequality follows because f(x∗n) ≤ f ∗. Now we see that

F ∗(n)− nf ∗√
n

≤ g(x∗n) . (558)

Denoting

φ(n)
4
=
F ∗(n)− nf ∗√

n
, (559)

there exists a sequence {nk} such that

φ(nk)→ lim supφ(n) , as k →∞ . (560)

For that sequence we have

φ(nk) ≤ g(x∗nk) . (561)

Since the x∗nk’s all lie in the compact D, there exists a convergent subsequence20:

yl
4
= x∗nkl

→ x0 (562)

We will now argue that f(x0) = f ∗. As we have just shown,

1

nkl
F ∗(nkl)→ f ∗ , (563)

20This is the only place where we use the metric-space nature of D. Namely we need sequential compactness to follow from

compactness. Thus, in complete generality Lemma 63 holds for an arbitrary compact topological space D that is first-countable

(i.e. every point has a countable neighborhood basis).
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where

F ∗(nkl) = F (yl, nkl) = nklf(yl) +
√
nklg(yl) . (564)

Thus, since g(x) is bounded

lim
l→∞

1

nkl
F ∗(nkl) = lim

l→∞
f(yl) = f(x0) , (565)

where the last step follows from the continuity of f . So indeed

f(x0) = f ∗ ⇐⇒ x0 ∈ D0 =⇒ g(x0) ≤ g∗ . (566)

Now we recall that

φ(nkl) ≤ g(yl) , (567)

and by taking the limit as l→∞ we obtain

lim supφ(n) = lim
l→∞

φ(nkl) (568)

≤ lim
l→∞

g(yl) = g(x0) (569)

≤ g∗ . (570)

So we have shown

lim
F ∗(n)− nf ∗√

n
= g∗ . (571)

Lemma 63 is tight in the sense that term o(
√
n) cannot be improved without further assump-

tions. Indeed, take f(x) = −x2 and g(x) = x1/k for some k ∈ Z+ on [−1, 1]. Then, a simple

calculation shows that

max
x∈[−1,1]

{
nf(x) +

√
ng(x)

}
= const · n

k−1
2k−1 (572)

and the power of n can be arbitrary close to
√
n.

Lemma 63 can be generalized to any finite set of “basis terms”, instead of {n,
√
n}. In this

case, the only requirement would be that uj+1(n) = o(uj(n)).

Proof of Lemma 64: Because of the boundedness of g(x), the points x∗n must all lie in Dδ

for n sufficiently large. So, for such n we have

max
x∈D

F (x, n) = max
x∈Dδ

F (x, n) (573)

max
x∈Dδ

F (x, n) = nf ∗ +
√
ng∗ +

[
n(f(x∗n)− f ∗) +

√
n(g(x∗n)− g∗))

]
. (574)
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We can now bound the term in brackets by using conditions in the lemma:

0 ≤
[
n(f(x∗n)− f ∗) +

√
n(g(x∗n)− g∗))

]
(575)

≤ −f1

(√
nd(x∗n, D0)

)2
+ f2

(√
nd(x∗n, D0)

)
. (576)

Now we see that we have a quadratic polynomial in the variable y 4=
√
nd(x∗n, D0). Since f1 > 0

it has a maximum equal to f2
2

4f2
1

. Then,

0 ≤
[
n(f(x∗n)− f ∗) +

√
n(g(x∗n)− g∗))

]
≤ f 2

2

4f 2
1

(577)

and we see that residual term is O(1). This establishes (540).

APPENDIX K

REFINED EXPANSIONS FOR THE BSC AND BEC

Proof of Theorem 52: The converse bound was computed in Section III-H in (180)

and (173). To analyze the asymptotics of βnα we proceed as in the proof of Theorem 48, Case

1. Similarly to (496) we obtain

log2M
∗(n, ε) ≤ n(1− h(δ))−

√
nδ(1− δ) log2

1− δ
δ

Q−1(ε) +
1

2
log2 n+O(1) . (578)

Note that because of Theorem 28 this upper bound holds even if ε is an average probability of

error.

We now return to the achievability part. In order to obtain the constant in the log n term we

use Theorem 33, as none of the other bounds is tight enough to yield the right log n term. First,

denote

Skn
4
= 2−n

k∑
l=0

(
n

l

)
. (579)

Then (162) implies the existence of an (n,M, ε) code (maximal probability of error) with

ε ≤
n∑
k=0

(
n

k

)
δk(1− δ)n−k min

{
1, MSkn

}
. (580)

We will argue that (580) implies a lower bound on M∗ with a matching log n term.

Without loss of generality, assume δ < 1/2; choose any r ∈ (δ, 1/2) and set

q =
r

1− r
< 1 , (581)

K = nδ +
√
nδ(1− δ)Q−1

(
ε− B +G√

n

)
, (582)
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where B denotes the Berry-Esseen constant for a binomial (n, δ) distribution,

G =
G1

(1− q)2
(583)

and G1 is a constant (guaranteed to exist according [46]) such that for all k = 0, . . . n(
n

k

)
δk(1− δ)n−k ≤ G1√

n
. (584)

Then from Berry-Esseen Theorem 44 we obtain∑
k>K

(
n

k

)
δk(1− δ)n−k ≤ ε− G√

n
. (585)

It is also clear that for all sufficiently large n we have K < rn. Now, observe the following

inequality, valid for k = 1, . . . n− 1 and j = −(n− k), . . . k:(
n

k − j

)
≤
(
n

k

)(
k

n− k

)j
. (586)

Consider any M such that MSKn ≤ 1, then

M
K∑
k=0

Skn = M
K∑
t=0

(K − t+ 1)

(
n

t

)
2−n (587)

= M
K∑
l=0

(l + 1)

(
n

K − l

)
2−n (588)

≤ MSKn

K∑
l=0

(l + 1)

(
K

n−K

)l
(589)

≤ MSKn

K∑
l=0

(l + 1)ql (590)

≤ MSKn

∞∑
l=0

(l + 1)ql (591)

≤ 1

(1− q)2
. (592)

If MSKn ≤ 1 then by (592)
K∑
k=0

(
n

k

)
δk(1− δ)n−kMSkn ≤

G√
n
. (593)

We can now see that (580) implies that

M∗(n, ε) ≥ 1

SKn
. (594)
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Indeed, choose M = 1
SKn

. Then from (585) and (593) it follows that

n∑
k=0

(
n

k

)
δk(1− δ)n−k min

{
1, MSkn

}
(595)

≤
K∑
k=0

(
n

k

)
δk(1− δ)n−k +

∑
k>K

(
n

k

)
δk(1− δ)n−k (596)

≤ G√
n

+ ε− G√
n

(597)

= ε . (598)

Finally, we must upper bound logSKn up to O(1) terms. This is simply an application of (586):

SKn = 2−n
K∑
k=0

(
n

k

)
(599)

≤ 2−n
(
n

K

) ∞∑
l=0

(
K

n−K

)l
(600)

≤ 2−n
(
n

K

)
n−K
n− 2K

. (601)

For n sufficiently large n− 2K will become larger than n(1− 2r); thus for such n we have
n−K
n−2K

≤ 1
1−2r

and hence

log2 S
K
n ≤ −n+ log2

(
n

K

)
+O(1) . (602)

Using Stirling’s approximation we obtain the inequality(
n

K

)
≤ e1/12

√
2π

√
n

K(n−K)
exp(nh(K/n)) . (603)

Substituting K from (582) and applying Taylor’s formula to h(p) implies

log2 S
K
n ≤ n(h(δ)− 1) +

√
nδ(1− δ) log2

1− δ
δ

Q−1

(
ε− B +G√

n

)
− 1

2
log2 n+O(1) . (604)

Finally, applying Taylor’s formula to Q−1, we conclude

log2 S
K
n ≤ n(h(δ)− 1) +

√
nδ(1− δ) log2

1− δ
δ

Q−1(ε)− 1

2
log2 n+O(1) . (605)

Substituting this into (594) we obtain the sought-after expansion.

Proof of Theorem 53: The achievability part of (290) is established by (276). The converse

in Theorem 48 yields the wrong log n term; instead, we use the stronger converse in Theorem 38

(which holds for average error probability). Since any (n,M, ε) code must satisfy this bound
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then we must simply find M so large that the left-hand side is larger than a given ε. We can

then conclude that M∗(n, ε) is upper bounded by such M . We observe that by (584),
n∑

`=bn−log2Mc+1

(
n

`

)
δ`(1− δ)n−`2n−`−log2M ≤ 2G1√

n
. (606)

Then, denote by B the usual Berry-Esseen constant for a binomial distribution, and set

log2M = n(1− δ)−
√
nδ(1− δ)Q−1

(
ε+

B + 2G1√
n

)
. (607)

Then from Berry-Esseen Theorem 44 we obtain∑
l≥n−log2M

(
n

l

)
δl(1− δ)n−l ≥ ε+

2G1√
n
. (608)

Finally from (606) we conclude that
n∑

`=bn−log2Mc+1

(
n

`

)
δ`(1− δ)n−`

(
1− 2n−`−log2M

)
≥ ε , (609)

and hence

log2M
∗(n, ε) ≤ n(1− δ)−

√
nδ(1− δ)Q−1

(
ε+

B + 2G1√
n

)
(610)

= n(1− δ)−
√
nδ(1− δ)Q−1(ε) +O(1) , (611)

where (611) follows from Taylor’s formula.

APPENDIX L

PROOF OF THEOREM 54

It is convenient to split the proof of Theorem 54 into three parts. We first address the converse

parts.

Theorem 65: For the AWGN channel with SNR P and ε ∈ (0, 1) and equal-power constraint

we have

logM∗
e (n, ε, P ) ≤ nC −

√
nV Q−1(ε) +

1

2
log n+O(1) , (612)

where the capacity C and dispersion V are defined in (292) and (293).

Proof: Take A,B, PY n and PY n|Xn=xn as in Section III-J. There we have shown that, for

any xn ∈ Fn the distribution of i(xn;Y n) is the same as that of Hn in (205). Thus, using (106),
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we have for any ζn,

inf
xn∈Fn

βn1−ε(x
n) = βn1−ε(x

n) (613)

≥ exp(ζn − nC)

(
1− ε− P

[
n∑
i=1

Si ≤ ζn

])
. (614)

with

Si =
P log e

2(1 + P )

(
Z2
i − 2

Zi√
P
− 1

)
(615)

and the Zi’s are i.i.d. standard normal. Note that E [Si] = 0 and

Var(Si) =

(
P log e

2(1 + P )

)2

E

[(
Z2
i − 2

Zi√
P
− 1

)2
]

(616)

=

(
P log e

2(1 + P )

)2

E
[
Z4
i +

(
4

P
− 2

)
Z2
i + 1

]
(617)

=

(
P log e

2(1 + P )

)2(
4

P
+ 2

)
(618)

= V . (619)

Furthermore, define

B(P ) =
6E [|Si|3]

V 3/2
(620)

Nc(P, ε) =

(
2B(P )

1− ε

)2

. (621)

Then for n > Nc(P, ε) we have

αn = 1− ε− 2B(P )√
n

> 0 . (622)

For such n choose

ζn = −
√
nV Q−1(αn) . (623)

Then from Theorem 44, we have

P

[
n∑
i=1

Si ≤ ζn

]
≤ αn +

B(P )√
n

(624)

≤ 1− ε− B(P )√
n

. (625)

On substituting (625) into (613) we obtain

βn1−ε ≥ exp(ζn − nC)
B(P )√

n
. (626)
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Using Theorem 31, this implies

logM∗
e (n, ε, P ) ≤ nC − ζn +

1

2
log n− logB(P ) . (627)

From Taylor’s theorem, for some θ ∈
[
1− ε− 2B(P )√

n
, 1− ε

]
, we have

ζn = −
√
nV Q−1(1− ε) + 2B(P )

√
V
dQ−1

dx
(θ) . (628)

Without loss of generality, we assume that 0 < ε < 1 − 2B(P )√
n

, for all n > Nc(P, ε) (otherwise

just increase Nc(P, ε) until this is true). Since d
dx
Q−1 is a continuous function on (0, 1), we can

lower bound d
dx
Q−1(θ) by

g1(P, ε) = min
θ∈[α1,1−ε]

d

dx
Q−1(θ) , (629)

where α1 = 1− ε − 2B(P )√
Nc(P,ε+1)

. Note that g1(P, ε) is a continuous function of P and ε. This

results in

ζn ≥ −
√
nV Q−1(1− ε) + g1(P, ε)2B(P )

√
V . (630)

Substituting this bound into (627) and defining

gc(P, ε) = −2B(P )
√
V g1(P, ε)− logB(P ) (631)

we arrive at

logM∗
e (n, ε, P ) ≤ nC +

√
nV Q−1(1− ε) +

1

2
log n+ gc(P, ε) . (632)

Corollary 66: For the AWGN channel with SNR P and for each 0 < ε < 1, we have

M∗
m(n, ε, P ) ≤ nC −

√
nV Q−1(ε) +

1

2
log n+O(1) , (633)

M∗
a (n, ε, P ) ≤ nC −

√
nV Q−1(ε) +

3

2
log n+O(1) . (634)

Proof: By Lemma 39 we have

logM∗
m(n, ε, P ) ≤ logM∗

e (n+ 1, ε, P ) . (635)

Therefore from (612) and Taylor’s theorem we get (633).
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To prove (634) we set

N(ε, P ) = max
P1∈[P,2P ]

Nc(ε, P1) , (636)

g(ε, P ) = max
P1∈[P,2P ]

gc(ε, P1) , (637)

where Nc and gc are continuous functions defined in (621) and (631). Now set Pn = (1+1/n)P

and use Lemma 39. Then for all n > N(ε, P ) according to Theorem 65 we have

logM∗
a (n, ε, P ) ≤ − log

(
1− P

Pn

)
+ logM∗

m(n, ε, Pn) (638)

≤ log(n+ 1) + logM∗
e (n+ 1, ε, Pn) (639)

≤ (n+ 1)C(Pn)−
√

(n+ 1)V (Pn)Q−1(ε) +
3

2
log(n+ 1) + g(ε, P ) .(640)

After repeated use of Taylor’s theorem we can collect all O(1), O(1/n) and O(1/
√
n) terms

into O(1), and (634) follows.

Theorem 67: For the AWGN channel with SNR P and for 0 < ε ≤ 1, we have

logM∗
e (n, ε, P ) ≥ nC −

√
nV Q−1(ε) +O(1) . (641)

Obtaining an expansion up to o(
√
n) would only require Lemma 43. However, to refine the term

to O(1) requires a certain lower bound on κnτ uniform in τ ∈ [0, δ) because we need to set

τn = O(1/
√
n) instead of τ = O(1).

Proof of Theorem 67: We will use all the notation of the proof of Theorem 65, but redefine

αn = 1− ε+
2B(P )√

n
. (642)

Note that for n sufficiently large αn < 1 and the definition of ζn in (623) is meaningful.

As in (625) we conclude that

P

[
n∑
i=1

Si ≤ ζn

]
≥ αn −

B(P )√
n
≥ 1− ε+

B(P )√
n

. (643)

In other words, we have proven that for

log γn = nC(P )− ζn = nC(P ) +
√
nV (P )Q−1(αn) , (644)

we obtain

PY n|X=xn [i(xn;Y n) ≥ log γn] = P

[
n∑
i=1

Si ≤ ζn

]
≥ 1− ε+

B(P )√
n

(645)
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for sufficiently large n and any xn ∈ Fn. Therefore, by setting

τn
4
=
B(P )√

n
. (646)

we have

log βn1−ε+τn ≤ PY n [i(xn;Y n) ≥ log γn] (647)

= E
[
exp{−i(xn;Y n)}1{i(xn;Y n)≥log γn}

∣∣Xn = xn
]

(648)

≤ − log γn −
1

2
log n+O(1) (649)

= −nC(P ) + ζn −
1

2
log n+O(1) , (650)

where the (649) is by Lemma 47.

Finally, we use general Theorem 25 with τ = τn to obtain

logM∗
e (n, P, ε) ≥ log

κnτn
βn1−ε+τn

. (651)

For the chosen τn Lemma 61 gives

log κnτn ≥ −
1

2
log n+O(1) . (652)

This inequality, together with (650), yields

logM∗
e (n, P, ε) ≥ nC(P )− ζn +O(1) . (653)

It is easy to see that Q−1(αn) = Q−1(1− ε) +O(1/
√
n) and thus, for ζn we have

ζn =
√
nV (P )Q−1(ε) +O(1) . (654)

Proof of Theorem 54: Expansion (291) is implied by (294) and (295). The lower bounds

in (294) and (295) follow from (641). The upper bound in (294) is given by (612) for equal-

power constraint and by (633) for maximal-power constraint. The upper bound in (295) is proved

by (634).
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Fig. 18. Reference [51] reproduced in its entirety.
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