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Minimum Energy to Send k Bits Over
Multiple-Antenna Fading Channels
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Abstract— This paper investigates the minimum energy
required to transmit k information bits with a given reliability
over a multiple-antenna Rayleigh block-fading channel, with
and without channel state information (CSI) at the receiver.
No feedback is assumed. It is well known that the ratio between
the minimum energy per bit and the noise level converges to
−1.59 dB as k goes to infinity, regardless of whether CSI is
available at the receiver or not. This paper shows that the lack of
CSI at the receiver causes a slowdown in the speed of convergence
to −1.59 dB as k → ∞ compared with the case of perfect
receiver CSI. Specifically, we show that, in the no-CSI case, the
gap to −1.59 dB is proportional to ((log k)/k)1/3, whereas when
perfect CSI is available at the receiver, this gap is proportional
to 1/

√
k. In both cases, the gap to −1.59 dB is independent of

the number of transmit antennas and of the channel’s coherence
time. Numerically, we observe that, when the receiver is equipped
with a single antenna, to achieve an energy per bit of −1.5 dB in
the no-CSI case, one needs to transmit at least 7×107 information
bits, whereas 6 × 104 bits suffice for the case of perfect CSI at
the receiver.

Index Terms— Channel coding, energy efficiency, minimum
energy per bit, multiple-antenna fading channels, nonasymptotic
analysis.

I. INTRODUCTION

A CLASSIC result in information theory is that, for a wide
range of channels including AWGN channels and fading

channels, the minimum energy per bit Eb required for reliable
communication satisfies [1], [2]

Eb

N0 min
= loge 2 = −1.59 dB. (1)

Here, N0 is the noise power per complex degree of freedom.
For fading channels, (1) holds regardless of whether the
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instantaneous fading realizations are known to the receiver or
not [2, Th. 1], [3].1

The expression in (1) is asymptotic in several aspects:
• the blocklength n of each codeword is infinite;
• the number of information bits k, or equivalently, the

number of messages M = 2k is infinite;
• the error probability ε vanishes;
• the total energy E is infinite;
• E/n vanishes.

For many channels, the limit in (1) does not change if we allow
the error probability to be positive. However, keeping any of
the other parameters fixed results in a backoff from (1) [2],
[4]–[8].

In this paper, we study the maximum number of information
bits k that can be transmitted with a finite energy E and a
fixed error probability ε > 0 over a multiple-input multiple-
output (MIMO) Rayleigh block-fading channel, when there is
no constraint on the blocklength n. Equivalently, we determine
the minimum energy E required to transmit k information bits
with error probability ε. We consider two scenarios:

1) neither the transmitter nor the receiver have a priori
channel state information (CSI);

2) perfect CSI is available at the receiver (CSIR) and no
CSI is available at the transmitter.

Throughout the paper, we shall refer to these two scenarios as
no-CSI case and perfect-CSIR case, respectively.

Related work: For nonfading AWGN channels with
unlimited blocklength, Polyanskiy et al. [8] showed that the
maximum number of codewords M∗(E, ε) that can be trans-
mitted with energy E and error probability ε satisfies2

log M∗(E, ε) = E

N0
log e −

√
2E

N0
Q−1(ε) log e

+ 1

2
log

E

N0
+ O(1), E → ∞. (2)

Here, Q−1(·) denotes the inverse of the Gaussian Q-function.
The first term on the right-hand side (RHS) of (2) gives
the −1.59 dB limit. The second term captures the penalty
due to the stochastic variations of the channel. This term
plays the same role as the channel dispersion in finite-
blocklength analyses [7], [9]. In terms of the minimum energy

1Knowledge of the fading realizations at the transmitter may improve (1),
because it enables the transmitter to signal on the channel maximum-
eigenvalue eigenspace [2].

2Unless otherwise indicated, the log and the exp functions are taken with
respect to an arbitrary fixed base.
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per bit E∗
b (k, ε) necessary to transmit k bits with error prob-

ability ε, (2) implies that, for large E ,

E∗
b (k, ε)

N0
≈ loge 2 +

√
2 loge 2

k
Q−1(ε) (3)

i.e., that the gap to −1.59 dB is proportional to 1/
√

k. The
asymptotic expansion (2) is established in [8] by showing that
in the limit E → ∞ a nonasymptotic achievability bound
and a nonasymptotic converse bound match up to third order.
The achievability bound is obtained by computing the error
probability under maximum-likelihood decoding of a code-
book consisting of M orthogonal codewords (e.g., uncoded
M-ary pulse-position modulation (PPM)). The converse bound
follows from the meta-converse theorem [7, Th. 27] with
auxiliary distribution chosen equal to the noise distribution.
Kostina et al. [10] generalized (2) to the setting of joint source
and channel coding, and characterized the minimum energy
required to reproduce k source samples with a given fidelity
after transmission over an AWGN channel.

Moving to fading channels, for the case of no CSI, flash
signalling [2, Definition 2] (i.e., peaky signals) must be used
to reach the −1.59 dB limit [2]. In the presence of a peak-
power constraint, (1) can not be achieved [11]–[14]. Verdú [2]
studied the rate of convergence of the minimum energy per bit
to −1.59 dB as the spectral efficiency vanishes. He showed
that, differently from the perfect-CSIR case, in the no-CSI case
the −1.59 dB limit is approached with zero wideband slope.
Namely, the slope of the spectral-efficiency versus energy-per-
bit function at −1.59 dB is zero. This implies that operating
close to the −1.59 dB limit is very expensive in terms of
bandwidth in the no-CSI case. For the scenario of finite
blocklength n, fixed energy budget E , and fixed probability
of error ε, bounds and approximations on the maximum
channel coding rate over fading channels (under various CSI
assumptions) are reported in [15]–[21].

Contributions: Focusing on the regime of unlimited
blocklength, but finite energy E , and finite error probability ε,
we provide upper and lower bounds on the maximum number
of codewords M∗(E, ε) that can be transmitted over an
mt ×mr MIMO Rayleigh block-fading channel with channel’s
coherence interval of nc symbols. For the no-CSI case, we
show that for every ε ∈ (0, 1/2)

log M∗(E, ε)

= mr E

N0
log e − V0 ·

(
mr E

N0
Q−1(ε)

)2/3(
log

mr E

N0

)1/3

+O
(

E2/3 log log E

(log E)2/3

)
, E → ∞ (4)

where

V0 =
(

12−1/3 +
(2

3

)1/3
)
(log e)2/3 . (5)

Note that the asymptotic expansion (4) does not depend on the
number of transmit antennas mt and the channel’s coherence
interval nc. The fact that the first term does not depend on nc
and mt follows directly from [2, Eq. (52)] by noting that an
mt × mr block-fading MIMO channel with coherence interval

nc is equivalent to an mtnc ×mrnc memoryless MIMO fading
channel with block-diagonal channel matrix [2, p. 1339]. Our
result (4) shows that the same holds for the second term
in the expansion of log M∗(E, ε) for E → ∞. In terms of
minimum (received) energy per bit E∗

b (k, ε), (4) implies that,
for large E ,3

E∗
b (k, ε)

N0
≈ loge 2+V0 ·

(
loge k

k

)1/3(
Q−1(ε)

)2/3
(loge 2)4/3

(6)

i.e., the gap to −1.59 dB is proportional to ((loge k)/k)1/3.
We establish (4) by analyzing in the limit E → ∞

an achievability bound and a converse bound. The
achievability bound follows from a nonasymptotic
extension of Verdú’s capacity-per-unit-cost achievability
scheme [5, pp. 1023–1024]. This scheme relies on a
codebook consisting of the concatenation of uncoded PPM
and a repetition code, and on a decoder that performs
binary hypothesis testing. The converse bound relies on the
meta-converse theorem [7, Th. 31] with auxiliary distribution
chosen as in the AWGN case. The resulting bound involves
an optimization over the infinite-dimensional space of input
codewords (recall that in our setup there is no constraint
on the blocklength n). By exploiting the Gaussianity of
the fading process, we show that this infinite-dimensional
optimization problem can be reduced to a three-dimensional
one. The tools needed to establish this result are the
ones developed by Abbe et al. [22] to prove Telatar’s
minimum outage probability conjecture for multiple-input
single-output (MISO) Rayleigh-fading channels. Indeed, both
problems involve the optimization of quantiles of a weighted
convolution of exponential distributions.

The asymptotic analysis of achievability and converse
bounds reveals the following tension: on the one hand, one
would like to make the codewords peaky to overcome lack
of channel knowledge; on the other hand, one would like to
spread the energy of the codewords uniformly over multiple
coherence intervals to mitigate the stochastic variations in the
received signal energy due to the fading.

For the case of perfect CSIR, we prove that for every
ε ∈ (0, 1/2)

log M∗(E, ε) = mr E

N0
log e −

√
2mr E

N0
Q−1(ε) log e

+ 1

2
log

mr E

N0
+ O

(√
log E

)
, E → ∞.

(7)

Note that the asymptotic expansion (7) is also independent
of the number of transmit antennas mt and the channel’s
coherence interval nc. Furthermore, apart from an energy
normalization resulting from the array gain, this asymptotic
expansion coincides with the one given in (2) for the AWGN
case up to a O(√log E

)
term. In terms of minimum (received)

3By considering the received energy per bit instead of the transmit energy
per bit, we account for the array gain resulting from the use of multiple receive
antennas.
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energy per bit, (7) implies that (3) holds also for the perfect-
CSIR case.

To establish (7), we show that every code for the AWGN
channel can be transformed into a code for the MIMO block-
memoryless Rayleigh-fading channel having the same proba-
bility of error. This is achieved by concatenating the AWGN
code with a rate 1/N repetition code, by performing maximum
ratio combining at the receiver, and then by letting N → ∞.
We obtain a converse bound that matches the achievability
bound up to third order as E → ∞ by using again the
meta-converse theorem and then by optimizing over all input
codewords. The asymptotic analysis of the converse bound
reveals that spreading the energy of the codewords uniformly
across many coherence intervals is necessary to mitigate the
stochastic variations in the energy of the received signal due
to fading.

In both the no-CSI and the perfect-CSIR case, the asymp-
totic analysis of the achievability bound is based on a standard
application of the Berry-Esseen central-limit theorem (see,
e.g., [23, Ch. XVI.5]). The asymptotic analysis of the converse
part in both cases is not as straightforward. The main difficulty
is that, unlike for discrete memoryless channels and AWGN
channels, we can not directly invoke the central-limit theo-
rem to evaluate the information density, because the central-
limit theorem may not hold if the energy of a codeword is
concentrated on few of its symbols. To solve this problem,
we develop new tools that rely explicitly on the Gaussianity
of the fading process. Specifically, for the no-CSI case, we
exploit the log-concavity of the information density to lower-
bound its cumulative distribution function (cdf). The resulting
bound allows us to eliminate the codewords for which the
central-limit theorem does not apply. For the perfect-CSIR
case, we show that the distribution of the information density
is unimodal and right-skewed (i.e., its mean is greater than
its mode). Using this result, we then prove that to optimize
the cdf of the information density, it is necessary to reduce its
“skewness”, thereby showing that the optimized information
density must converge as E → ∞ to a (non-skewed) Gaussian
distribution.

By comparing (7) with (4), we see that, although the min-
imum (received) energy per bit approaches (1) as k increases
regardless of whether CSIR is available or not, the convergence
is slower for the no-CSI case. For the case mr = 1, our
nonasymptotic bounds reveal that to achieve an energy per bit
of −1.5 dB, one needs to transmit at least 7×107 information
bits in the no-CSI case, whereas 6 × 104 bits suffice in the
perfect-CSIR case. Furthermore, the bounds also reveal that it
takes 2 dB more of energy to transmit 1000 information bits
in the no-CSI case compared to the perfect-CSIR case.

Notation: Upper case letters such as X denote scalar
random variables and their realizations are written in lower
case, e.g., x . We use boldface upper case letters to denote
random vectors, e.g., X , and boldface lower case letters for
their realizations, e.g., x. Upper case letters of two special
fonts are used to denote deterministic matrices (e.g., Y) and
random matrices (e.g., Y). The symbol N denotes the set of
natural numbers, and R+ denotes the set of nonnegative real
numbers. The superscripts T and H stand for transposition

and Hermitian transposition, respectively, and ·̄ stands for the
complex conjugate. We use tr(A) and det(A) to denote the
trace and determinant of the matrix A, respectively, and use
‖A‖F �

√
tr(AAH) to designate the Frobenius norm of A. For

an infinite-dimensional complex vector x ∈ C
∞, we use ‖x‖p

to denote the �p-norm of x, i.e., ‖x‖p �
(∑∞

i=1 |xi |p
)1/p.

The �∞-norm of x is defined as ‖x‖∞ � sup
i

|xi |. We

use e j to denote the infinite dimensional vector that has 1
in the j th entry and 0 elsewhere, and use Ia to denote the
identity matrix of size a × a. The distribution of a circularly
symmetric Gaussian random vector with covariance matrix A
is denoted by CN (0,A). We use Exp(μ) to denote the expo-
nential distribution with mean μ, and use Gamma(a, b) to
denote the Gamma distribution with shape parameter a and
scale parameter b [24, Ch. 17]. For two functions f and g,
we use f � g to denote the convolution of f and g. Fur-
thermore, the notation f (x) = O(g(x)), x → ∞, means
that lim supx→∞

∣∣ f (x)/g(x)
∣∣ < ∞, and f (x) = o(g(x)),

x → ∞, means that limx→∞
∣∣ f (x)/g(x)

∣∣ = 0. For two
measures μ and ν, we write μ 	 ν if μ is absolutely
continuous [25, p. 88] with respect to ν. Finally, | · |+ �
max{0, ·}.

Next, we introduce two definitions related to the perfor-
mance of optimal hypothesis testing. Given two probability
distributions P and Q on a common measurable space W ,
we define a randomized test between P and Q as a random
transformation PZ | W : W → {0, 1} where 0 indicates that
the test chooses Q. We shall need the following performance
metric for the test between P and Q:

βα(P, Q) � min
PZ |W :∫ PZ | W (1 |w)P(dw)≥α

∫
PZ | W (1 |w)Q(dw)

(8)

where the minimum is over all probability distributions PZ | W

satisfying ∫
PZ | W (1 |w)P(dw) ≥ α. (9)

The minimum in (8) is guaranteed to be achieved by the
Neyman-Pearson lemma [26]. For an arbitrary set F , we define
the following performance metric for the composite hypothesis
testing between QY and the collection {PY |X=x }x∈F :

κτ (F , QY ) � inf
∫

PZ |Y (1|y)QY (dy). (10)

Here, the infimum is over all conditional probability distribu-
tions PZ |Y : W → {0, 1} satisfying

inf
x∈F

∫
PZ |Y (1|y)PY |X=x(dy) ≥ τ. (11)

II. PROBLEM FORMULATION

A. Channel Model and Codes

We consider a MIMO Rayleigh block-fading channel
with mt transmit antennas and mr receive antennas that stays
constant over a block of nc channel uses (coherence interval)
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and changes independently from block to block. The chan-
nel input-output relation within the i th coherence interval is
given by

Vi = UiHi + Zi . (12)

Here, Ui ∈ C
nc×mt and Vi ∈ C

nc×mr are the transmitted
and received signals, respectively, expressed in matrix form;
Hi ∈ C

mt×mr is the channel matrix, which is assumed to
have i.i.d. CN (0, 1) entries; Zi ∈ C

nc×mr is the additive
noise matrix, also with i.i.d. CN (0, N0) entries. We assume
that {Hi } and {Zi } are mutually independent, and take on
independent realizations over successive coherence intervals
(block-memoryless assumption). In the remainder of the paper,
we shall set N0 = 1, for notational convenience.

We are interested in the scenario where the blocklength is
unlimited, and we aim at characterizing the minimum energy
required to transmit k information bits over the channel (12)
with a given reliability. We shall use U∞ and V

∞ to denote
the infinite sequences {Ui } and {Vi }, respectively. At times, we
shall interpret U∞ as the infinite-dimensional matrix obtained
by stacking the matrices {Ui }, i ∈ N, on top of each other. In
this case, the matrix U∞ has mt columns and infinitely many
rows, and its t th column vector represents the signal sent from
the t th transmit antenna. The energy of the input matrix U∞
is measured as follows∥∥U∞∥∥2

F =
∞∑

i=1

‖Ui‖2
F . (13)

Furthermore, we denote the set of all input matrices U∞ by A
and the set of all output matrices V∞ by B. Finally, we let H
be the set of channel matrices H∞.

Next, we define channel codes for the channel (12) for both
the no-CSI and the perfect-CSIR case.

Definition 1: An (E,M, ε)-code for the channel (12)
for the no-CSI case consists of a set of codewords
{C1, . . . ,CM } ∈ AM satisfying the energy constraint∥∥C j

∥∥2
F ≤ E, j ∈ {1, . . . ,M} (14)

and a decoder g : B → {1, . . . ,M} satisfying the maximum
error probability constraint

max
j∈{1,...,M} P[g(V∞) �= j | U

∞ = C j ] ≤ ε. (15)

Here, V
∞ is the output induced by the codeword U

∞ =
C j according to (12). The maximum number of messages
that can be transmitted with energy E and maximum error
probability ε is

M∗(E, ε) � max
{

M : ∃ (E,M, ε)-code
}
. (16)

Similarly, the minimum energy per bit is defined as

E∗
b (k, ε) � 1

k
inf
{

E : ∃ (E, 2k, ε)-code
}
. (17)

Definition 2: An (E,M, ε)-code for the channel (12) for
the perfect-CSIR case consists of a set of codewords
{C1, . . . ,CM } ∈ AM satisfying the energy constraint (14), and
a decoder g : B × H → {1, . . . ,M} satisfying the maximum
error probability constraint

max
j∈{1,...,M} P[g(V∞,H∞) �= j | U

∞ = C j ] ≤ ε. (18)

The maximum number of messages that can be transmitted
with energy E and maximum error probability ε for the
perfect-CSIR case is defined as in (16).

As we shall show in the next section, one can derive
tight bounds on M∗(E, ε) (for both the no-CSI and the
perfect-CSIR case) by focusing exclusively on the memoryless
single-input multiple-output (SIMO) scenario nc = mt = 1.
Therefore, we shall next develop a specific notation to
address this setup. In the SIMO case, the input-output relation
reduces to

Vr,i = Hr,i ui + Zr,i , r ∈ {1, . . . ,mr}, i ∈ N. (19)

Here, Vr,i ∈ C denotes the received symbol at the r th receive
antenna on the i th channel use, and Hr,i and Zr,i denote the
fading coefficient and the additive noise, respectively. We shall
set u � [u1, u2, . . .] and V r � [Vr,1, Vr,2, . . .].

B. An Equivalent Channel Model for the No-CSI case

Focusing on the no-CSI case, we define next a channel
model that is equivalent to (19). Observe that, given U = u,
the output vectors V 1, . . . ,V mr are i.i.d. Gaussian, i.e.,

PV r | U=u =
∞∏

i=1

CN (0, (1 + |ui |2)), r ∈ {1, . . . ,mr}. (20)

Since the {V r } depend on the input symbols {ui } only through
their squared magnitude {|ui |2}, we can reduce without loss
of generality the input space to R

∞+ . We also note that, given
U = u, the joint conditional probability distribution of the
random variables {Vr,i } in (19) does not change if we multiply
{Vr,i } with arbitrary deterministic phases. This means that the
{|Vr,i |2} are a sufficient statistics for the detection of u from
{V r }. Letting xi � |ui |2 and Yr,i � |Vr,i |2, r ∈ {1, . . . ,mr},
i ∈ N, we obtain the following input-output relation, which is
equivalent to (19):

Yr,i = (1 + xi )Sr,i , r ∈ {1, . . . ,mr}, i ∈ N. (21)

Here, the input xi and the output Yr,i are nonnegative real
numbers, and {Sr,i } are i.i.d. Exp(1)-distributed. We shall
denote the input of the channel (21) by x � [x1, x2, . . .] ∈ R

∞+
and denote the output by the matrix Y, whose entry on the
r th row and the i th column is Yr,i . Since ‖x‖1 = ‖u‖2

2 and
since ‖x‖∞ = ‖u‖2∞, we shall measure the energy and the
peakiness of an input codeword x for the channel (21) by its
�1-norm ‖x‖1, and by its �∞-norm ‖x‖∞, respectively.

III. MINIMUM ENERGY PER BIT

We shall now characterize M∗(E, ε) for both the no-CSI
and the perfect-CSIR case. The organization of this section is
as follows. In Section III-A, we first present nonasymptotic
achievability and converse bounds on M∗(E, ε) for general
channels subject to a cost constraint. In Section III-B, we
then particularize these bounds to the channel (12) for the
no-CSI case. Both the converse and achievability bounds in
Section III-B are derived by reducing the MIMO channel (12)
to the SIMO channel (21). We then show in Section III-C
that these bounds match asymptotically as E → ∞ up to
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second order, thus establishing (4). In Section III-D, we derive
bounds on M∗(n, ε) for the perfect-CSIR case and prove the
asymptotic expansion (7). Finally, the nonasymptotic bounds
for both the no-CSI and the perfect-CSIR case are evaluated
numerically in Section III-E.

A. General Nonasymptotic Bounds

We consider in this section general stationary memoryless
channels (X , PY |X ,Y) with input codewords subject to a cost
constraint. As in [5], we use b[x] to denote the cost of the
symbol x in the input alphabet X . We shall also assume that
there exists a zero-cost symbol, which we label as “0”. With a
slight abuse of notation, we use E to denote the cost constraint
imposed on a codeword. An (E,M, ε)-code for this general
channel consists of a set of M codewords c j = [c j,1, c j,2, . . .],
j = 1, . . . ,M that satisfy the cost constraint

∞∑
i=1

b[c j,i ] ≤ E, j = 1, . . . ,M (22)

and has maximum error probability not exceeding ε.
We next present two achievability bounds on M∗(E, ε)
that are finite-energy generalizations of Verdú’s lower
bound [5, pp. 1023–1024] on the capacity per unit cost.4

Theorem 1: Consider a stationary memoryless channel
(X , PY |X ,Y) that has a zero-cost input symbol. For every
N ∈ N, every 0 < ε < 1, and every input symbol x0 ∈ X
satisfying b[x0] > 0, there exists an (E,M, ε)-code for which
E = b[x0]N and

M − 1 ≥ sup
0<τ<ε

τ

β1−ε+τ (P⊗N
Y |X=x0

, P⊗N
Y |X=0)

. (23)

Here, β(·)(·, ·) is given in (8), and

P⊗N
Y |X=x � PY |X=x × · · · × PY |X=x︸ ︷︷ ︸

N times

(24)

for every x ∈ X .
Proof: As in [5], we choose the codewords c j ∈ X∞,

j = 1, . . . ,M , as follows:

c j � [0, . . . , 0︸ ︷︷ ︸
( j−1)N

, x0, . . . , x0︸ ︷︷ ︸
N

, 0, . . .]. (25)

Fix an arbitrary τ ∈ (0, ε). For a given received signal
Y ∈ Y∞, the decoder runs M parallel binary hypothesis
tests Z j , j = 1, . . . ,M , between PY | X=0 and PY | X=c j . Here,
Z j = 1 indicates that the test selects PY | X=c j . The tests {Z j },
j = 1, . . . ,M , are chosen to satisfy

P[Z j = 1 | X = c j ] ≥ 1 − ε + τ (26)

P[Z j = 1 | X = 0] = β1−ε+τ (PY | X=c j , PY | X=0). (27)

The existence of tests that satisfy (26) and (27) is guaranteed
by the Neyman-Pearson lemma [26]. The decoder outputs the
index m if Zm = 1 and Z j = 0 for all j �= m. It outputs 1 if
no such index can be found.

4For stationary memoryless channels, the capacity per unit cost is given by
lim
ε→0

lim
E→∞(log M∗(E, ε))/E .

By construction, the maximum probability of error of the
code just defined is upper-bounded by

ε ≤ P[Z1 = 0 | X = c1] + (M − 1)P[Z1 = 1 | X = 0] (28)

≤ ε − τ + (M − 1)β1−ε+τ (PY | X=c1, PY | X=0). (29)

Here, (28) follows because for each test Z j ( j �= 1) satisfy-
ing (26) and (27),

P[Z j = 1|X = c1] = P[Z j = 1|X = 0] (30)

= P[Z1 = 1|X = 0] (31)

and (29) follows by (26) and (27). From (29), we conclude that

M − 1 ≥ τ

β1−ε+τ (PY | X=c1, PY | X=0)
. (32)

The proof is completed by noting that

β1−ε+τ (PY | X=c1, PY | X=0) = β1−ε+τ (P⊗N
Y |X=x0

, P⊗N
Y |X=0)

(33)

and by maximizing the RHS of (32) over τ ∈ (0, ε).
The proof of Theorem 1 is based on the same binary

hypothesis-testing decoder that is used in the proof of the
κβ bound [7, Th. 25]. In fact, if PY |X=x0 	 PY |X=0, a
slightly weakened version of (32), with M −1 replaced by M ,
follows directly from the κβ bound [7, Th. 25] upon setting
QY = PY | X=0 and choosing the set F as

F =
{

x ∈ X∞ : x = [0, . . . , 0︸ ︷︷ ︸
( j−1)N

, x0, . . . , x0︸ ︷︷ ︸
N

, 0, . . .]

for some j ∈ N

}
. (34)

Since β1−ε+τ (PY | X=x , QY ) takes the same value for all x ∈
F , to establish this looser bound it is sufficient to show that
(proof omitted)

κτ (F , QY ) = τ (35)

where κ(·)(·, ·) is given in (10).
Using the same codebook as in Theorem 1 together with

a maximum likelihood decoder, we obtain a different achiev-
ability bound, which is stated in the following theorem.

Theorem 2: Consider a stationary memoryless channel
(X , PY |X ,Y) that has a zero-cost input symbol. For every
N ∈ N, every 0 < ε < 1, and every input symbol x0 ∈ X
satisfying b[x0] > 0, there exists an (E,M, ε)-code for which
E = b[x0]N and

ε ≤ E

[
min

{
1, (M−1)P

[
ıN (x0; Y N ) ≤ ıN (x0; Ŷ N ) | Y N

]}]
.

(36)

Here, PY N Ŷ N (y N , ŷ N ) � P⊗N
Y |X=x0

(y N )P⊗N
Y |X=0(ŷ

N ) and

ıN (x; y N ) � log
d P⊗N

Y |X=x

d P⊗N
Y |X=0

(y N ) (37)

with P⊗N
Y |X=x , x ∈ X , defined in (24).

Remark 1: For AWGN channels with cost function
b[x] = x2, one can recover [8, Eq. (15)] from (36) by setting
N = 1 and x0 = √

E .
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Proof: We use the same codebook as in Theorem 1,
together with a maximum likelihood decoder. Let

ı(x, y) � log
d PY | X=x

d PY | X=0
(y). (38)

Let Y N = [Y1, . . . ,YN ] denote the vector containing the first
N entries of Y and let Ŷ N ∼ P⊗N

Y |X=0 be independent of Y .
The probability of error ε is upper-bounded as follows:

ε ≤ PY | X=c1

⎡
⎣ M⋃

j=2

{
ı(c1,Y) ≤ ı(c j ,Y )

}⎤⎦ (39)

= E

⎡
⎣P

⎡
⎣ M⋃

j=2

{
ı(c1,Y ) ≤ ı(c j ,Y )

}∣∣∣∣Y N

⎤
⎦
⎤
⎦ (40)

≤ E

[
min

{
1, (M − 1)P

[
ı(c1,Y ) ≤ ı(c2,Y)

∣∣∣Y N
] }]

(41)

= E

[
min

{
1, (M − 1)P

[
ıN (x0; Y N ) ≤ ıN (x0; Ŷ N ) | Y N

]}]
.

(42)

Here, (39) follows because all codewords have the same
error probability under maximum likelihood decoding; (41)
follows by choosing the tighter bound between 1 and the union
bound; (42) follows because c1 = [x0, . . . , x0︸ ︷︷ ︸

N

, 0, . . . , 0︸ ︷︷ ︸
N

, 0, . . .]

and c2 = [0, . . . , 0︸ ︷︷ ︸
N

, x0, . . . , x0︸ ︷︷ ︸
N

, 0, . . .], and because, under

PY | X=c1 , the sequence Y 2N
N+1 has the same distribution as

Ŷ N ∼ P⊗N
Y |X=0. Furthermore, Y 2N

N+1 is independent of Y N since
the channel is stationary and memoryless.

On the converse side, we have the following result, which
follows by applying the meta-converse theorem [7, Th. 31]
with QY = PY | X=0.

Theorem 3: Consider a channel (X , PY |X ,Y) that has a
zero-cost input symbol. Every (E,M, ε)-code with codewords
satisfying the cost constraint (22) satisfies

M ≤ sup

x:
∞∑

i=1
b[xi ]≤E

1

β1−ε(PY | X=x , PY | X=0)
. (43)

The bound (43) is in general not computable because
it involves an optimization over infinite-dimensional code-
words. As we shall see in the next section, in the MIMO
Rayleigh block-fading case it is possible to reduce this infinite-
dimensional optimization problem to a three-dimensional one,
which can be solved numerically.

We would like to remark that the general bounds developed
in this section apply to both the no-CSI case and the perfect-
CSIR case. For the perfect-CSIR case, we view the pair (V,H)
as the channel output, and identify the channel law with
PV,H|U = PH PV | H,U. For the no-CSI case, we view V as
the output and identify the channel law with PV|U, which
is obtained by averaging PV | H,U over the fading matrix H.
In both cases, the channel is stationary and memoryless.

B. Nonasymptotic Bounds: the No-CSI Case

Particularizing Theorems 1 and 2 to the channel (12) for the
no-CSI case, we obtain the achievability bounds given below
in Corollaries 4 and 5.

Corollary 4: For every E > 0 and every 0 < ε < 1, there
exists an (E,M, ε)-code for the MIMO Rayleigh block-fading
channel (12) for the case of no CSI satisfying

M − 1 ≥ sup
0<τ<ε, N∈N

τ

P[GN ≥ (1 + E/N)ξ ] (44)

where GN ∼ Gamma(mr N, 1) and ξ satisfies

P[GN ≤ ξ ] = ε − τ. (45)
Proof: Every code for the memoryless SIMO Rayleigh-

fading channel (mt = nc = 1) can be used on a MIMO
Rayleigh block-fading channel with mt > 1 and nc > 1.
Indeed, it is sufficient to switch off all transmit antennas but
one, and to limit transmissions to the first channel use in
each coherence interval. Therefore, it is sufficient to prove
that (44) is achievable for the memoryless SIMO Rayleigh-
fading channel (21). In the SIMO case, we have (see (21))

log
d P⊗N

Y |X=x0

d P⊗N
Y |X=0

(
yN
)

= x0 log e

1 + x0

mr∑
r=1

N∑
i=1

yr,i − mr N log(1 + x0). (46)

Let x0 = E/N for some N ∈ N. Then, under P⊗N
Y |X=x0

, the

random variable log
d P⊗N

Y |X=x0

d P⊗N
Y |X=0

(Y N ) has the same distribution as

E

N
GN log e − mr N log(1 + E/N) (47)

where GN ∼ Gamma(mr N, 1), and, under P⊗N
Y |X=0, it has the

same distribution as

E

N

GN log e

1 + E/N
− mr N log(1 + E/N). (48)

The proof of (44) is concluded by using (47) and (48)
in (23) together with the Neyman-Pearson lemma [26], and
by optimizing over N ∈ N.

Corollary 5: For every M > 0 and every 0 < ε < 1, there
exists an (E,M, ε)-code for the MIMO Rayleigh block-fading
channel (12) for the case of no CSI satisfying

ε ≤ min
N∈N

E

[
min

{
1, (M−1)P

[
ḠN ≥ (1 + E/N)GN

∣∣∣GN

]}]
(49)

where GN and ḠN are i.i.d. Gamma(mr N, 1) random vari-
ables.

Proof: We proceed first as in the proof of Corollary 4.
Then, we use (47) and (48) in (36).

Numerical evidence (provided in Section III-E) suggests
that (49) is tighter than (44). However, (44) is more suitable
for asymptotic analyses.

We now provide a converse bound, which is based on
Theorem 3.

Theorem 6: Let {Si } be i.i.d. Exp(1)-distributed random
variables. Every (E,M,ε)-code for the MIMO Rayleigh block-
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fading channel (12) for the case of no CSI satisfies

1

M
≥ sup
η∈R

inf
x

P

[ ∞∑
i=1

(
xi Si log e − log(1 + xi )

)
≤ η

]
− ε

exp(η)
.

(50)

The infimum in (50) is over all x ∈ R
∞+ taking one of the

following two forms:

x = [q3, q2, . . . , q2︸ ︷︷ ︸
N

, q1, 0, 0, . . .] (51)

or

x = [q̃2, . . . , q̃2︸ ︷︷ ︸
Ñ2

, q̃1, . . . , q̃1︸ ︷︷ ︸
Ñ1

, 0, 0, . . .]. (52)

Here, N ∈ N and 0 < q1 < q2 < q3 satisfy q1 + Nq2 + q3 =
mr E . Furthermore, Ñ1, Ñ2 ∈ N and 0 ≤ q̃1 ≤ q̃2 satisfy
Ñ1q̃1 + Ñ2q̃2 = mr E .

Remark 2: The optimization over infinite-dimensional
codewords in the converse bound (43) is reduced
in (50) to a three-dimensional optimization problem.
This makes (50) numerically computable. In words, the
conditions in (51) and (52) imply that i) the entries of x can
take at most three distinct nonzero values, and that ii) if the
entries of x take exactly three distinct nonzero values, then
both the largest and the smallest nonzero entries must appear
only once.

Proof: Without loss of generality, we can assume that each
codeword matrix C j satisfies the energy constraint (14) with
equality. Indeed, for an arbitrary code C, we can construct a
new code C ′ by appending to each codeword matrix C j in C
an extra nc × mt block of energy E − ∥∥C j

∥∥2
F (recall that the

number of transmitted symbols is unlimited). The resulting
code C ′ has the same number of codewords as C and each
codeword of C ′ satisfies (14) with equality. Moreover, the error
probability of C ′ can not exceed that of C.

We continue the proof of (50) by using Theorem 3, which
implies

1

M
≥ inf

U∞∈A: ‖U∞‖2
F=E

β1−ε(PV∞ | U∞=U∞, PV∞ | U∞=0). (53)

For a given U∞ = {Ui }, let Ũ∞ = {Ũi } where Ũi ∈ R
nc×mt+

is a diagonal matrix whose diagonal elements are the singular
values of Ui . We shall next show that

β1−ε(PV∞ | U∞=U∞, PV∞ | U∞=0)

= β1−ε(PV∞ | U∞=Ũ∞, PV∞ | U∞=0). (54)

This implies that to evaluate the RHS of (53), it suffices to
focus on diagonal matrices {Ui }. Note also that when the input
matrices {Ui } are diagonal, the mt × mr MIMO block-fading
channel (12) decomposes into min{mt, nc} noninteracting
memoryless SIMO fading channels with mr receive antennas.
Therefore, exploiting the equivalence between (19) and (21),
we conclude that the RHS of (53) coincides with

inf
x∈R∞+ :‖x‖1=E

β1−ε(PY | X=x , PY | X=0) (55)

where PY | X is the conditional distribution of the output of
the channel (21) given the input.

To prove (54), we note that given Ui = Ui , the column
vectors of the output matrix Vi are i.i.d. CN (0, Inc + Ui UH

i

)
-

distributed. Therefore, the probability distribution PVi | Ui=Ui

depends on Ui only through UiUH
i . In particular, it is invariant

to right-multiplication of Ui by an arbitrary mt × mt unitary
matrix G. Furthermore, since the noise matrix Zi is isotropi-
cally distributed [27, Definition 6.21], for every nc×nc unitary
matrix G̃ and every U ∈ C

nc×mt , the conditional distribution
of Vi given Ui = U coincides with that of G̃H

Vi given
Ui = G̃U. Therefore, for every i ∈ N, and every unitary
matrices G and G̃, we have

β1−ε
(
PVi | Ui=U, PVi | Ui=0

)
= β1−ε

(
PG̃HVi | Ui=G̃UG, PG̃HVi | Ui=0

)
(56)

= β1−ε
(

P
Vi | Ui=G̃UG, PVi | Ui=0

)
. (57)

Here, the second step follows because β1−ε(·, ·) stays
unchanged under the change of variables Vi �→ G̃HVi . Since
G, G̃, and i are arbitrary, and since the channel PV∞ | U∞ is
block-memoryless, (57) implies (54).

Next, we lower-bound β1−ε(PY | X=x, PY | X=0) in (55)
using [7, Eq. (102)]. Specifically, we fix an arbitrary η ∈ R

and obtain

β1−ε(PY | X=x , PY | X=0)

≥ exp(−η)
(

PY | X=x[ı(x,Y) ≤ η] − ε
)

(58)

where ı(·, ·) was defined in (38). Under PY | X=x , the random
variable ı(x,Y) has the same distribution as

mr∑
r=1

∞∑
i=1

(
xi Sr,i log e − log(1 + xi )

)
(59)

where {Sr,i } are i.i.d. Exp(1)-distributed. Substitut-
ing (59) into (58), and then (58) into (53), we obtain

1

M
≥

inf
x

P

[
mr∑

r=1

∞∑
i=1

(
xi Sr,i log e − log(1 + xi )

)
≤ η

]
− ε

exp(η)
(60)

≥
inf

x
P

[ ∞∑
i=1

(
xi Si log e − log(1 + xi)

)
≤ η

]
− ε

exp(η)
. (61)

Here, the infimum in (60) is over all x ∈ R
∞+ satisfying

‖x‖1 = E , the infimum in (61) is over all x ∈ R
∞+

satisfying ‖x‖1 = mr E , and {Si } in (61) are again i.i.d.
Exp(1)-distributed. The inequality (61) follows because the
feasible region of the optimization problem in (60) is contained
in the feasible region of the optimization problem in (61).

Lemma 7 below, which is proven in Appendix I, sheds light
on the structure of the vectors x∗ that minimize the RHS
of (61).

Lemma 7: Let x∗ be a minimizer of

inf
x∈R∞+ :‖x‖1=mr E

P

[ ∞∑
i=1

(
xi Si log e − log(1 + xi )

)
≤ η

]
. (62)
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Assume without loss of generality that the entries of x∗ are
in nonincreasing order. Then, x∗ must be of the form given
in (51) or in (52).

The proof of Theorem 6 is concluded by using Lemma 7
in (61) and by maximizing the RHS of (61) over η.

Remark 3: The proof of Lemma 7 relies on an elegant
argument of Abbe et al. [22], used in the proof of Telatar’s
minimum outage probability conjecture for MISO Rayleigh-
fading channels. Indeed, both [22] and Lemma 7 deal with
the optimization of quantiles of a weighted convolution of
exponential distributions.

C. Asymptotic Analysis

Evaluating the bounds in Corollary 4 and Theorem 6 in
the limit E → ∞, we obtain the asymptotic closed-form
expansion for M∗(E, ε) provided in the following theorem.

Theorem 8: The maximum number of messages M∗(E, ε)
that can be transmitted with energy E and error probability ε ∈
(0, 1/2) over the MIMO Rayleigh block-fading channel (12)
for the case of no CSI admits the following expansion

log M∗(E, ε)

= mr E log e − V0 ·
(

mr E Q−1(ε)
)2/3(

log(mr E)
)1/3

+O
(

E2/3 log log E

(log E)2/3

)
, E → ∞. (63)

Here, V0 is given in (5).
Proof: See Appendix III.

The intuition behind (63) is as follows. It is well known that
in the no-CSI case, to achieve the asymptotic limit −1.59 dB,
it is necessary to use flash signalling [2]. If all codewords
satisfy a peak-power constraint ‖x‖∞ ≤ A in addition to (14),
then log M(E, ε)/(mr E) converges as E → ∞ to (see [13]
and [14, Eq. (59)])

log e − log(1 + A)

A
. (64)

The second term in (64) can be interpreted as the penalty due
to bounded peakiness, which vanishes as A → ∞. When the
energy E is finite, as in our setup, it turns out that for larg E

log M(E, ε)

mr E
≈ log e − log(1 + A)

A
−
√

A

mr E
Q−1(ε) log e.

(65)

The second term on the RHS of (65) captures the fact that
codewords that satisfy (14) for a finite E are necessarily peak-
power limited. The third term captures the penalty resulting
from the stochastic variations of the fading and the noise
processes, which cannot be averaged out for finite E . This
penalty increases with the peak power. Coarsely speaking,
peakier codewords result in less channel averaging. To sum-
marize, peakiness in the codewords reduces the second term
on the RHS of (65) but increases the third term. The optimal
peak power A∗ that minimizes the sum of these two penalty
terms turns out to be

A∗ =
(

3

2
Q−1(ε) log e

)− 2
3

(mr E)
1
3 log

2
3 (mr E)+ o(E

1
3 ). (66)

Substituting (66) into (65) we obtain (63). See Appendix III
for a rigorous proof.

D. The Perfect-CSIR Case

In this section, we provide achievability and converse
bounds on M∗(E, ε) for the case of perfect CSIR. To state our
achievability bound, it is convenient to introduce the following
complex AWGN channel

Yi = Xi + Zi , i ∈ N. (67)

Here, {Zi } are i.i.d. CN (0, 1)-distributed random variables.
Theorem 9 below allows us to relate the performance of
optimal codes for the AWGN channel (67) to the perfor-
mance of optimal codes for the MIMO Rayleigh block-fading
channel (12).

Theorem 9: Consider an arbitrary (mr E,M, ε)-code for the
AWGN channel (67). There exists a sequence of (E,M, εN )-
codes for the MIMO Rayleigh block-fading channel (12) with
perfect CSIR, for which limN→∞ εN ≤ ε.

Remark 4: Theorem 9 holds also if the fading is not
Rayleigh, provided that the entries {Hi, j,k} of Hi are i.i.d.
and satisfy E

[|Hi, j,k|2
] = 1.

Proof: As in the proof of Corollary 4, it is sufficient to
consider the case mt = nc = 1. Take an arbitrary (mr E,M, ε)-
code for the AWGN channel. We assume without loss of
generality that only the first M entries of each codeword are
nonzeros. This is because, for the AWGN channel, the error
probability under maximal likelihood decoding depends only
on the Euclidean distance between codewords, and because
we can embed the M codewords in an M-dimensional space
without changing their Euclidean distances.

Next, we transform the SIMO memoryless fading channel
(with perfect CSIR) into an AWGN channel as follows. Fix an
arbitrary N ∈ N; for every codeword u = [u1, . . . , uM , 0, . . .]
for the AWGN channel, we generate the following codeword ũ
for the memoryless SIMO fading channel (19)

ũ � 1√
mr N

[u1, . . . , u1︸ ︷︷ ︸
N

, u2, . . . , u2︸ ︷︷ ︸
N

, . . .]. (68)

By construction, ‖ũ‖2
2 = ‖u‖2

2/mr. For a given channel out-
put {Vr,i } (see (19)), the receiver performs coherent combining
across the mr receive antennas and the length-N repetition
block:

Ṽ j � 1√
mr N

mr∑
r=1

N∑
i=1

H̄r,( j−1)N+i Vr,( j−1)N+i (69)

= u j

mr N

mr∑
r=1

N∑
i=1

|Hr,( j−1)N+i |2

+ 1√
mr N

mr∑
r=1

N∑
i=1

H̄r,( j−1)N+i Zr,( j−1)N+i ,

j = 1, . . . ,M. (70)

If we let N → ∞, the first term in (70) converges in
distribution to u j by the law of large numbers, and the second
term converges in distribution to Z j ∼ CN (0, 1) by the
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central limit theorem. Therefore, Ṽ j converges in distribution
to u j + Z j . Thus, PṼ M |U M =uM converges in distribution to an
AWGN channel law PAWGN

V M | U M =uM = CN (uM , IM ) as N → ∞.
We next evaluate the error probability εN of the code that

we constructed above. Let D j denote the decoding region for
message j , 1 ≤ j ≤ M , and let Int(D j ) denote the interior
of D j . It follows that for every 1 ≤ j ≤ M

lim
N→∞ 1 − εN = lim

N→∞ PṼ M |U M =u j
[D j ] (71)

≥ lim
N→∞ PṼ M |U M =u j

[Int(D j )] (72)

= PAWGN
V M | U M =u j

[Int(D j )] (73)

= PAWGN
V M | U M =u j

[D j ] (74)

≥ 1 − ε. (75)

Here, (73) follows because PṼ M |U M =u j
converges in distri-

bution to PAWGN
V M | U M =u j

and because Int(D j ) is open; (74)
follows because the boundary of the maximum likelihood
decoding region D j has zero probability measure under
PAWGN

V M | U M =u j
.

Note that the proof of Theorem 9 above requires perfect
CSIR. The approach just described does not necessarily work
if only partial CSI is available at the receiver. For example,
consider the following partial-CSI model [28]

Vi = (H̄i + Ĥi)Ui + Zi , i ∈ N (76)

where H̄i ∼ CN (0, ρ), ρ ∈ (0, 1), Ĥi ∼ CN (0, 1 − ρ), and
{H̄i} and {Ĥi} are independent. We assume that the receiver
has perfect knowledge of {H̄i}, but knows only the statistics
of {Ĥi}. The random variables {H̄i} and {Ĥi} can be viewed
as the estimation of the channel coefficients and the estimation
errors, respectively [28]. Following steps similar to the ones
in the proof of [2, Th. 7], one can show that flash-signalling is
necessary to achieve the −1.59 dB limit. Hence, spreading the
energy as it is done in the proof of Theorem 9 is not first-order
optimal.

For the case where perfect CSI is available at both the trans-
mitter and the receiver, and where the fading distribution has
infinite support (e.g., Rayleigh distribution), it is well known
that the minimum energy per bit E∗

b (k, ε) converges to 0 in the
limit k → ∞ and ε → 0 [2, p. 1325]. Using the approach used
in the proof of Theorem 9, one can show that E∗

b (k, ε) = 0
for every k and ε > 0. Indeed, since both the transmitter
and the receiver have perfect CSI, they can agree to use the
channel only if the fading gain |H |2 is above a threshold 
.
By doing so, we have transformed the original fading channel
into a channel with a fading distribution P̃H that satisfies
EP̃H

[|H |2] ≥ 
. Proceeding as in the proof of Theorem 9,
we conclude that every (E, 2k, ε) code for the AWGN channel
can be converted into an (E/EP̃H

[|H |2], 2k, ε) code for the

fading channel with distribution P̃H . Since 
 can be taken
arbitrarily large, we conclude that the minimum energy per
bit E∗

b (k, ε) is 0.
Theorem 9 implies that the asymptotic expansion (2) with E

replaced by mr E is achievable in the perfect-CSIR case.
Theorem 10 below establishes that, for 0 < ε < 1/2, the
converse is also true.

Theorem 10: The maximum number of messages M∗(E, ε)
that can be transmitted with energy E and error probability
0 < ε < 1/2 over the MIMO Rayleigh block-fading chan-
nel (12) for the case of perfect CSIR satisfies

log M∗(E, ε) = mr E log e −√
2mr E Q−1(ε) log e

+ 1

2
log(mr E)+ O

(√
log E

)
(77)

as E → ∞.
Proof: See Appendix IV.

Unlike Theorem 9, the converse part of Theorem 10 relies
on the Gaussianity of the fading coefficients and does not
necessarily hold for other fading distributions. Indeed, consider
a single-input single-output (SISO) on-off fading channel
PV ,H |U where the channel coefficients {Hi} are i.i.d. and
satisfy

P[Hi = 0] = ε′, P[|Hi |2 = 1/(1 − ε′)] = 1 − ε′ (78)

where 0 < ε′ < ε. Such a fading distribution satisfies
E
[|Hi |2

] = 1. Set now N = 1, x0 = √
E , and

1

M
= Q

(√
2E

1 − ε′ + Q−1

(
1 − ε − ε′

1 − ε′ +
√

2(1 − ε′)
E

))
.

(79)

Let

ı(u; v, h) � log
d PV ,H |U=u

d PV ,H |U=0
(v, h). (80)

By Theorem 2, there exists an (E,M, ε′′)-code for which the
maximal probability of error ε′′ is upper-bounded as follows:

ε′′ ≤ E

[
min

{
1,

(M − 1)P
[
ı(x0; V , H ) ≤ ı(x0; V̂ , H ) | V , H

]}]
(81)

≤ ε′ + (1 − ε′)E
[

min

{
1, (M − 1)

· P
[

ı(x0; V , H ) ≤ ı(x0; V̂ , H )
∣∣∣V , |H |2 = 1

1 − ε′

]}]
(82)

≤ ε′ + (1 − ε′)
(
ε − ε′

1 − ε′ −
√

2(1 − ε′)
E

+
√
(1 − ε′)

E
(1 + o(1))

)
, E → ∞. (83)

Here, in (81) and (82), PH V V̂ (h, v, v̂) =
PH (h)PV |H,U (v|h, x0)PV |H,U (v̂ |h, 0), and (83) follows
from [8, Eqs. (33)–(40)]. For sufficiently large E , the RHS
of (83) is less than ε. This implies that M∗(E, ε) ≥ M for
sufficiently large E . Furthermore, by [8, Eqs. (47)–(49)], we
have

log M∗(E, ε) ≥ log M ≥ E log e

1 − ε′ + O(
√

E), E → ∞.

(84)
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Fig. 1. Minimum energy per bit versus number of information bits; here
ε = 10−3 and mr = 1.

TABLE I

MINIMUM ENERGY E AND OPTIMAL NUMBER OF CHANNEL USES N∗ VS.
NUMBER OF INFORMATION BITS k FOR THE CASE ε = 10−3 .

Clearly, the RHS of (84) is greater than the RHS of (77)
(computed for mr = 1) for large E .

In Theorem 11 below, we present a nonasymptotic converse
bound, which we shall evaluate numerically in Section III-E.

Theorem 11: Fix η > 6, E > 0, and 0 < ε < 1/2. Let
x1(η) > η be the unique solution of

1

4
√
π

e−(x1−η)2/(4x1)

(
η√
x1

+ √
x1

)
= Q

(
η − x1√

2x1

)
. (85)

Furthermore, let

gη(x) �

⎧⎪⎨
⎪⎩

Q
(
(x − η)/

√
2x
)
, x > x1(η),

1 − x

x1(η)
Q

(
η − x1(η)√

2x1(η)

)
, x ≤ x1(η).

(86)

Every (E,M, ε)-code for the MIMO Rayleigh block-fading
channel (12) for the case of perfect CSIR satisfies

log M ≤ η log e − log
∣∣gη(mr E)− ε

∣∣+ . (87)
Proof: See Appendix V.

E. Numerical Results

Fig. 1 shows5 the achievability bounds (Corollary 4 and
Corollary 5) and the converse bound (Theorem 6) for the
channel (12) for the no-CSI case and when ε = 10−3 and
mr = 1. Specifically, the energy per bit Eb =
E/ log2 M∗(E, ε) is plotted against the number of information
bits log2 M∗(E, ε). For the perfect-CSIR case, we plot the

5The numerical routines used to obtain these results are available at
https://github.com/yp-mit/spectre

converse bound (Theorem 11) together with the achievability
bound provided in [8, Eq. (15)] for the AWGN case. As proved
in Theorem 9, this bound is also achievable in the perfect-
CSIR case. As expected, as the number of information bits
increases, the minimum energy per bit converges to −1.59 dB
regardless of whether CSIR is available or not. However,
for a fixed number of information bits, it is more costly to
communicate in the no-CSI case than in the perfect-CSIR
case. For example, it takes 2 dB more of energy to transmit
1000 information bits in the no-CSI case compared to the
perfect-CSIR case. Additionally, to achieve an energy per bit
of −1.5 dB, we need to transmit 7 × 107 information bits in
the no-CSI case, but only 6 × 104 bits when perfect CSIR is
available.

The codebook used in both Corollary 4 and Corollary 5
uses only one symbol x∗

0 of the input alphabet in addition to 0.
In Table I we list the number of channel uses N∗ = E/x∗

0 over
which the optimal input symbol x∗

0 is repeated, as a function
of the number of information bits k. For comparison, we

also list the number of repetitions N∗ ≈
(

3
2 Q−1(ε) E log e

log E

)2/3

predicted by the asymptotic analysis (see (195)).

IV. CONCLUSIONS

In this paper, we established nonasymptotic bounds on
the minimum energy per bit E∗

b (k, ε) required to transmit
k information bits with error probability ε over a MIMO
Rayleigh block-fading channel. As the number of information
bits k goes to infinity, the ratio between E∗

b (k, ε) and the noise
level converges to −1.59 dB, regardless of whether CSIR is
available or not. However, in the nonasymptotic regime of
finite k and nonzero error probability ε, the minimum energy
per bit required in the no-CSI case is larger than that in the
perfect-CSIR case (see Fig. 1). Specifically, as k → ∞ the gap
to −1.59 dB is proportional to ((log k)/k)1/3 in the no-CSI
case, and to 1/

√
k in the perfect-CSIR case.

The optimal signalling strategies for the two cases are differ-
ent: in the no-CSI case, the transmitted codewords must have
sufficient peakiness in order to overcome the lack of channel
knowledge; in the perfect-CSIR case, the energy of each
codeword must be spread uniformly over sufficiently many
fading blocks in order to mitigate the stochastic variations on
the received-signal energy caused by the fading process.

Throughout the paper, we have focused on the scenario
where the blocklength of the code is unlimited, i.e., the spectral
efficiency is zero. From a practical perspective, generalizing
our analysis to the case of low but nonzero spectral efficiency
is of interest. In the asymptotic regime k → ∞, this can
be done by approximating the spectral efficiency by an affine
function of the energy per bit, and by characterizing the slope
of the spectral efficiency versus energy per bit function at
−1.59 dB (wideband slope) [2]. A generalization of Verdú’s
wideband-slope analysis to the finite-k case seems to require
more sophisticated tools than the one used in the present
paper (see [29, Sec. V.C] for some preliminary results in this
direction).
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APPENDIX I
PROOF OF LEMMA 7

The proof relies on [22]. In particular, we shall make
repeated use of [22, Corollary 1 and Lemma 2], which are
restated below for convenience. For a continuous random
variable A, let fA denote its probability density function
(pdf), and let f ′

A and f ′′
A denote the first and the second

derivatives of fA, respectively. Furthermore, let S1 and S2 be
independent Exp(1)-distributed random variables, which are
also independent of A. Then, for every x, q1, q2 ∈ R [22,
Lemma 2]:

fA+q1 S1(x)− fA+q2 S2(x) = (q2 − q1) f ′
A+q1 S1+q2 S2

(x).

(88)

This identity can be readily verified by computing the
Fourier transform of both sides. Setting q2 = 0 in (88),
we obtain [22, Corollary 1]

fA+q1 S1(x)− fA(x) = −q1 f ′
A+q1 S1

(x). (89)

The proof of Lemma 7 consists of four steps.
1) We first restrict ourselves to the finite-dimensional setup,

i.e., we assume that x ∈ R
m+ for some m ∈ N. We shall

derive a necessary condition a minimizer x∗ ∈ R
m+ must

satisfy, by deriving the Karush-Kuhn-Tucker (KKT)
optimality conditions (see, e.g., [30, Sec. 5.5.3]).

2) Building upon these conditions, we show that the entries
of x∗ can take at most three distinct nonzero values.

3) We prove that if the entries of x∗ take exactly three
distinct nonzero values, then the maximum and the
minimum nonzero value must appear only once, i.e., x∗
is of the form (51). If the entries of x∗ take less
than three distinct nonzero values, then x∗ satisfies (52)
trivially.

4) Finally, we take m to infinity to complete the proof.
Departing from our convention, in this appendix we shall use
log to denote the natural logarithm.

A. The KKT conditions

Let

ϕ(x, s) �
m∑

i=1

(
xi si − log(1 + xi )

)
. (90)

Using (90), we can express (62) for the case x ∈ R
m+ as

inf
x∈R

m+:‖x‖1=E
P[ϕ(x, S) ≤ η]. (91)

By the KKT optimality conditions, if x∗ is a minimizer
of (62), then there must exist a λ ∈ R such that for all
k = 1, . . . ,m,

∂P[ϕ(x, S) ≤ η]
∂xk

∣∣∣∣
x=x∗

{
= λ, if x∗

k > 0

≥ λ, otherwise.
(92)

Let Ŝk be an Exp(1)-distributed random variable that is
independent of S. Let 〈x, S〉 �

∑m
i=1 xi Si , and let η̃ �

η + ∑m
j=1 log(1 + x j ). The partial derivative in (92) can

be computed through a Fourier analysis as in the proof
of [22, Lemma 1]. This yields

∂P[ϕ(x, S) ≤ η]
∂xk

= f〈x,S〉(η̃)
1 + xk

− f〈x,S〉+xk Ŝk
(η̃). (93)

From (93), it follows that

∂P[ϕ(x, S) ≤ η]
∂x j

− ∂P[ϕ(x, S) ≤ η]
∂xk

= f〈x,S〉+xkŜk
(η̃)− f〈x,S〉+x j Ŝ j

(η̃)

+ (xk −x j ) f〈x,S〉(η̃)
(1 + xk)(1 + x j )

(94)

= (x j −xk)

(
f ′
〈x,S〉+xk Ŝk+x jŜ j

(η̃)− f〈x,S〉(η̃)
(1 + xk)(1 + x j )

)
(95)

where in the last step we used (88).

B. The Entries of a Minimizer Can Take at Most Three
Distinct Nonzero Values

As in [22], our proof is by contradiction. We shall assume
without loss of generality that m ≥ 4. Let x∗ be a minimizer
of (91), and assume that the entries of x∗ take more than
three distinct nonzero values, the smallest four of them being
0 < x∗

1 < x∗
2 < x∗

3 < x∗
4 . Then, by (92) and (95),

(1 + x∗
j ) f ′

〈x∗,S〉+x∗
1 Ŝ1+x∗

j Ŝ j
(η̃) = f〈x∗,S〉(η̃)

(1 + x∗
1 )
, j = 2, 3, 4.

(96)

By (89), the left-hand side (LHS) of (96) can be expressed as
follows:

(1 + x∗
j ) f ′

〈x∗,S〉+x∗
1 Ŝ1+x∗

j Ŝ j
(η̃)

= f ′
〈x∗,S〉+x∗

1 Ŝ1+x∗
j Ŝ j
(η̃)+ f〈x∗,S〉+x∗

1 Ŝ1
(η̃)

− f〈x∗,S〉+x∗
1 Ŝ1+x∗

j Ŝ j
(η̃). (97)

Since the RHS of (96) does not depend on j , by substitut-
ing (97) into (96) and by taking the difference between the
case j = 2 and the case j = 3, we obtain

0 = f ′
〈x∗,S〉+x∗

1 Ŝ1+x∗
2 Ŝ2
(η̃)− f ′

〈x∗,S〉+x∗
1 Ŝ1+x∗

3 Ŝ3
(η̃)

−
(

f〈x∗,S〉+x∗
1 Ŝ1+x∗

2 Ŝ2
(η̃)− f〈x∗,S〉+x∗

1 Ŝ1+x∗
3 Ŝ3
(η̃)
)

(98)

= (x∗
3 − x∗

2 )
(

f ′′
〈x∗,S〉+x∗

1 Ŝ1+x∗
2 Ŝ2+x∗

3 Ŝ3
(η̃)

− f ′
〈x∗,S〉+x∗

1 Ŝ1+x∗
2 Ŝ2+x∗

3 Ŝ3
(η̃)
)
. (99)

Here, (99) follows by (88). Set

A � 〈x∗, S〉 + x∗
1 Ŝ1 + x∗

2 Ŝ2. (100)

Since x∗
2 �= x∗

3 by assumption, (99) can be rewritten as

f ′′
A+x∗

3 Ŝ3
(η̃)− f ′

A+x∗
3 Ŝ3
(η̃) = 0. (101)

Following the same steps as in (98)–(101), we also have that

f ′′
A+x∗

4 Ŝ4
(η̃)− f ′

A+x∗
4 Ŝ4
(η̃) = 0. (102)
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Next, we show that (101) and (102) cannot hold simultane-
ously. This in turn implies that the entries of x∗ must take at
most three distinct nonzero values. Let

g(t) � f ′′
A+t Ŝ

(η̃)− f ′
A+t Ŝ

(η̃) (103)

where Ŝ ∼ Exp(1). Since (101) and (102) imply that
g(x∗

3 ) = g(x∗
4 ) = 0, to establish a contradiction between (101)

and (102), it suffices to show that the function g(t) has at most
one zero on (0,∞). Observe that g(t) can be rewritten as

g(t) = f ′′
A+t Ŝ

(η̃)− f ′
A+t Ŝ

(η̃) (104)

=
(

f ′′
A � ft Ŝ

)
(η̃)−

(
f ′

A � ft Ŝ

)
(η̃) (105)

= 1

t

∫ η̃

0

(
f ′′
A(η̃ − z)− f ′

A(η̃ − z)
)

e−z/t dz. (106)

Since the kernel e−z/t is strictly totally positive [31, p. 11]
on [0, η̃] × [0,∞), it follows from [31, Th. 3.1(b)] that the
number of zeros of g(t) on (0,∞) cannot exceed the number
of sign changes of z �→ f ′′

A(z)− f ′
A(z) on (0, η̃), provided that

the latter number is finite. Thus, to prove that g(t) has at most
one zero over (0,∞), it suffices to show that f ′′

A(z)− f ′
A(z)

changes sign at most once on (0, η̃). In fact, we shall prove
that it changes sign at most once over an interval that contains
(0, η̃). By [22, Lemma 3], f ′

A(z) is continuous on R, and there
exists a ẑ > 0 such that f ′

A(z) > 0 for all z ∈ (0, ẑ). Let
z̄ = arg max

z∈[0,1] f ′
A(z). Since f ′

A(0) = 0 (which follows because

f ′
A(z) = 0 for all z < 0 and because f ′

A(z) is continuous) and
since f ′

A(z) > 0 for all z ∈ (0, ẑ), we have that 0 < z̄ ≤ 1.
This implies that

f ′
A(z̄)− fA(z̄) = f ′

A(z̄)−
∫ z̄

0
f ′
A(z)dz (107)

≥ f ′
A(z̄)− z̄ f ′

A(z̄) ≥ 0. (108)

By Lemma 12 in Appendix II, fA is strictly log-concave
on (0,∞), which implies that z �→ f ′

A(z)/ f A(z) is strictly
decreasing on (0,∞). This in turn implies that there exists a
unique z0 > 0 such that f ′

A(z0)− fA(z0) = 0. It also implies
that f ′

A(z)− fA(z) > 0 if z ∈ (0, z0) and f ′
A(z)− fA(z) < 0

if z > z0. We shall now prove that

1) f ′′
A(z)− f ′

A(z) changes sign at most once on (0, z0);
2) (0, η̃) ⊂ (0, z0), i.e.,

η̃ < z0. (109)

1) The function f ′′
A(z) − f ′

A(z) changes sign at most once
on (0, z0): It suffices to prove that f ′

A(z)− f A(z) is unimodal
on (0, z0). This is done by induction. Recall that fA is the
convolution of exponential pdfs (see (100)), i.e., A can be
written as

∑m′
i=1 ai Si for some ai > 0, i = 1, . . . ,m′, and

2 ≤ m′ ≤ m + 2. Let Bk , k = 1, . . . ,m′, denote the partial
sum

∑k
i=1 ai Si and let zk , k = 2, . . ., denote the solution of

f ′
Bk
(zk)− fBk (zk) = 0. Recall that, by the strict log-concavity

of fBk , we have that zk is unique and that f ′
Bk
(z)− fBk (z) > 0

if z ∈ (0, zk) and f ′
Bk
(z) − fBk (z) < 0 if z > zk . It can be

verified that f ′
B2

− fB2 is unimodal on (0, z2). Assume now

that f ′
Bk

− fBk is unimodal on (0, zk) for some k > 2. We next
show that f ′

Bk+1
− fBk+1 is unimodal on (0, zk+1). Note that

f ′
Bk+1

− fBk+1 = ( f ′
Bk

− fBk ) � fak+1 Sk+1 . (110)

Since f ′
Bk

− fBk and fak+1 Sk+1 are smooth and strictly positive
on (0, zk), it follows that ( f ′

Bk+1
− fBk+1)(zk) > 0. This implies

that zk+1 > zk . Since f ′
Bk

− fBk is positive and unimodal
on (0, zk), and since fak+1 Sk+1 is log-concave, it follows
that f ′

Bk+1
− fBk+1 is positive and unimodal on (0, zk) [32].

Furthermore, the strict log-concavity of fBk and the definitions
of zk and zk+1 imply that, for every z ∈ [zk, zk+1),(

f ′′
Bk+1

− f ′
Bk+1

)
(z)

= 1

ak+1

(
f ′
Bk
(z)− fBk(z)︸ ︷︷ ︸

≤0

−( f ′
Bk+1

(z)− fBk+1(z)︸ ︷︷ ︸
>0

))
(111)

< 0. (112)

The first step follows by applying (89) twice. The inequal-
ity (112) implies that f ′

Bk+1
− fBk+1 is unimodal on (0, zk+1).

Hence, by induction, f ′
A − fA is unimodal on (0, z0).

2) Proof of (109): It follows from (96) that f ′
A(η̃) > 0,

which implies by [22, Lemma 3] that f ′
A(t) > 0 for all

t ∈ (0, η̃). Therefore, we have

f ′
A+x∗

3 Ŝ3
(η̃) = (

f ′
A � fx∗

3 Ŝ3

)
(η̃) > 0. (113)

By the strict log-concavity of fA+x∗
3 Ŝ(·) and by (101),

f ′
A+x∗

3 Ŝ
(η̃)

fA+x∗
3 Ŝ(η̃)

>
f ′′

A+x∗
3 Ŝ
(η̃)

f ′
A+x∗

3 Ŝ
(η̃)

= 1. (114)

Moreover, by (89) and (101),

fA(η̃)− fA+x∗
3 Ŝ3
(η̃) = f ′

A(η̃)− f ′
A+x∗

3 Ŝ3
(η̃). (115)

Using (114) in (115), we conclude that

f ′
A(η̃)− fA(η̃) > 0. (116)

This implies (109).

C. The Minimum and Maximum Nonzero Values
Must Each Appear Only Once

We focus on the case when the entries of x∗ take exactly
three distinct nonzero values. Assume without loss of gener-
ality that x∗ has the following form

x∗ = [x∗
1 , . . . , x∗

1︸ ︷︷ ︸
N1

, x∗
2 , . . . , x∗

2︸ ︷︷ ︸
N2

, x∗
3 , . . . , x∗

3︸ ︷︷ ︸
N3

, 0, . . . , 0] (117)

where x∗
1 N1 + x∗

2 N2 + x∗
3 N3 = E , 0 < x∗

1 < x∗
2 < x∗

3 , and
N1, N2, N3 > 0. We shall prove that if N1 > 1, then

∂2
P[ϕ(x∗

δ , S) ≤ η]
∂δ2

∣∣∣∣
δ=0

< 0 (118)

where x∗
δ � x∗ + δe1 − δe2. Since this contradicts the

assumption that x∗ is a minimizer, we conclude that N1 = 1.
Using a similar argument, one can show that N3 = 1.
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We first compute the LHS of (118). Assume N1 > 1,

so that [x∗]1 = [x∗]2 = x∗
1 . Set η̃δ � η +

m∑
i=1

log(1 + [x∗
δ ]i ).

Proceeding similarly as in the proof of (93), we obtain

∂P[ϕ(x∗
δ , S) ≤ η]
∂δ

= −
(

f〈x∗
δ ,S〉+(x∗

1 +δ)Ŝ1
(η̃)− f〈xδ ,S〉+(x∗

1 −δ)Ŝ2
(η̃δ)

)

+ f〈x∗
δ ,S〉(η̃δ)

1 + x∗
1 + δ

− f〈x∗
δ ,S〉(η̃δ)

1 + x∗
1 − δ

(119)

= 2δ f ′
〈x∗
δ ,S〉+(x∗

1+δ)Ŝ1+(x∗
1−δ)Ŝ2

(η̃δ)−
2δ f〈x∗

δ ,S〉(η̃δ)
(1 + x∗

1 )
2 − δ2 . (120)

Here, (120) follows from (88). Taking the derivative of the
RHS of (120) with respect to δ and then setting δ = 0,

we obtain (recall that η̃ = η +
m∑

i=1
log(1 + [x∗]i ))

∂2
P[ϕ(x∗

δ , S) ≤ η]
∂δ2

∣∣∣∣
δ=0

= 2

(
f ′
〈x∗,S〉+x∗

1 Ŝ1+x∗
1 Ŝ2
(η̃)− f〈x∗,S〉(η̃)

(1 + x∗
1 )

2

)
. (121)

From the KKT condition (96), we know that

f ′
〈x∗,S〉+x∗

1 Ŝ1+x∗
2 Ŝ
(η̃)− f〈x∗,S〉(η̃)

(1 + x∗
1 )(1 + x∗

2 )
= 0 (122)

where Ŝ ∼ Exp(1) is independent of all other random
variables. Let T � Ŝ1 + Ŝ2. Subtracting the LHS of (122)
from (121), we obtain

1

2

∂2
P[ϕ(x∗

δ , S) ≤ η]
∂δ2

∣∣∣∣
δ=0

= (x∗
2 − x∗

1 )

(
f ′′
〈x∗,S〉+x∗

1 T +x∗
2 Ŝ
(η̃)− f〈x∗,S〉(η̃)

(1 + x∗
1 )

2(1 + x∗
2 )

)
(123)

= (x∗
2 − x∗

1 )

(
f ′′
〈x∗,S〉+x∗

1 T +x∗
2 Ŝ
(η̃)−

f ′
〈x∗,S〉+x∗

1 Ŝ1+x∗
2 Ŝ
(η̃)

1 + x∗
1

)
(124)

= x∗
2 − x∗

1

1 + x∗
1

(
f ′′
〈x∗,S〉+x∗

1 T +x∗
2 Ŝ
(η̃)− f ′

〈x∗,S〉+x∗
1 T +x∗

2 Ŝ
(η̃)

)
.

(125)

Here, in (123) we used (88); (124) follows from (122); and
in (125) we used (89).

We shall next make (125) depend on x∗
3 . Note first that

by (89),

f ′′
〈x∗,S〉+x∗

1 T +x∗
2 Ŝ
(η̃)− f ′

〈x∗,S〉+x∗
1 T +x∗

2 Ŝ
(η̃)

+ f ′
〈x∗,S〉+x∗

1 T +x∗
2 Ŝ+x∗

3 Ŝ3
(η̃)− f ′′

〈x∗,S〉+x∗
1 T +x∗

2 Ŝ+x∗
3 Ŝ3
(η̃)

= x∗
3

(
f ′′′
〈x∗,S〉+x∗

1 T +x∗
2 Ŝ+x∗

3 Ŝ3
(η̃)− f ′′

〈x∗,S〉+x∗
1 T +x∗

2 Ŝ+x∗
3 Ŝ3
(η̃)
)
.

(126)

Also by (89) and (101),

f ′′′
〈x∗,S〉+x∗

1 T +x∗
2 Ŝ+x∗

3 Ŝ3
(η̃)− f ′′

〈x∗,S〉+x∗
1 T +x∗

2 Ŝ+x∗
3 Ŝ3
(η̃)

= 1

x∗
1

(
f ′
〈x∗,S〉+x∗

1 T +x∗
2 Ŝ+x∗

3 Ŝ3
(η̃)− f ′′

〈x∗,S〉+x∗
1 T +x∗

2 Ŝ+x∗
3 Ŝ3
(η̃)
)
.

(127)

Combining (126) and (127), we conclude that

f ′′
〈x∗,S〉+x∗

1 T +x∗
2 Ŝ
(η̃)− f ′

〈x∗,S〉+x∗
1 T +x∗

2 Ŝ
(η̃)

= x∗
3 − x∗

1

x∗
1

(
f ′
〈x∗,S〉+x∗

1 T +x∗
2 Ŝ+x∗

3 Ŝ3
(η̃)

− f ′′
〈x∗,S〉+x∗

1 T +x∗
2 Ŝ+x∗

3 Ŝ3
(η̃)
)
. (128)

Substituting (128) in (125), we obtain

1

2

∂2
P[ϕ(x∗

δ , S) ≤ η]
∂δ2

∣∣∣
δ=0

= (x∗
2 − x∗

1 )(x
∗
3 − x∗

1 )

x∗
1 (1 + x∗

1 )

(
f ′
〈x∗,S〉+x∗

1 T +x∗
2 Ŝ+x∗

3 Ŝ3
(η̃)

− f ′′
〈x∗,S〉+x∗

1 T +x∗
2 Ŝ+x∗

3 Ŝ3
(η̃)
)
. (129)

Since (x∗
2 − x∗

1 )(x
∗
3 − x∗

1 ) > 0, to establish (118), it remains
to prove that

f ′
〈x∗,S〉+x∗

1 T +x∗
2 Ŝ+x∗

3 Ŝ3
(η̃)− f ′′

〈x∗,S〉+x∗
1 T +x∗

2 Ŝ+x∗
3 Ŝ3
(η̃) < 0.

(130)

Let Ã � 〈x∗, S〉 + x∗
2 Ŝ + x∗

3 Ŝ3. The LHS of (130) can be
rewritten as

f ′̃
A+x∗

1 T
(η̃)− f ′′̃

A+x∗
1 T
(η̃)

=
(

f ′
Ã+x∗

1 Ŝ1
− f ′′

Ã+x∗
1 Ŝ1

)
� fx∗

1 Ŝ2
(η̃) (131)

= 1

x∗
1

∫ η̃

0

(
f ′

Ã+x∗
1 Ŝ1
(η̃ − z)− f ′′

Ã+x∗
1 Ŝ1
(η̃ − z)

)
e−z/x∗

1 dz.

(132)

Since A + x∗
3 Ŝ3 ∼ Ã + x∗

1 Ŝ1, by (101),

f ′
Ã+x∗

1 Ŝ1
(η̃)− f ′′

Ã+x∗
1 Ŝ1
(η̃) = 0. (133)

Note that, for every t ∈ (0, η̃), we have

f ′
Ã+x∗

1 Ŝ1
(t)− f ′′

Ã+x∗
1 Ŝ1
(t)

=
∫ t

0
( f ′̃

A
(z)− f ′′̃

A
(z))e−(t−z)/x∗

1 dz (134)

= e−t/x∗
1

∫ t

0
( f ′̃

A
(z)− f ′′̃

A
(z))ez/x∗

1 dz︸ ︷︷ ︸
�h(t)

. (135)

In Appendix I-B1, we have shown that the function f ′̃
A

−
f ′′̃

A
changes sign at most once over the interval (0, η̃).

Therefore, h′(t) = ( f ′̃
A
(t) − f ′′̃

A
(t))et/x∗

1 changes sign at
most once over the interval (0, η̃). But since h(η̃) =
eη̃/x∗

1

(
f ′
Ã+x∗

1 Ŝ1
(η̃)− f ′′

Ã+x∗
1 Ŝ1
(η̃)

)
= 0 = h(0), the function h

does not change sign on (0, η̃). Indeed, there are three possible
cases:
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1) h′(t) = 0 for all t ∈ (0, η̃); in this case h(t) = 0 for all
t ∈ (0, η̃).

2) there exists a t0 ∈ (0, η̃) such that h′(t) ≤ 0 on (0, t0),
h′(t0) = 0, and h′(t) ≥ 0 on (t0, η̃); in this case h(t) ≤ 0
for all t ∈ (0, η̃).

3) there exists a t0 ∈ (0, η̃) such that h′(t) ≥ 0 on (0, t0),
h′(t0) = 0, and h′(t) ≤ 0 on (t0, η̃); in this case h(t) ≥ 0
for all t ∈ (0, η̃).

In all three scenarios, h(t) does not change sign on (0, η̃).
This implies that f ′

Ã+x∗
1 Ŝ1

− f ′′
Ã+x∗

1 Ŝ1
does not change sign on

(0, η̃) either. Furthermore,∫ η̃

0
f ′
Ã+x∗

1 Ŝ1
(z)− f ′′

Ã+x∗
1 Ŝ1
(z)dz

= f Ã+x∗
1 Ŝ1
(η̃)− f ′

Ã+x∗
1 Ŝ1
(η̃)

+ f ′
Ã+x∗

1 Ŝ1
(0)− f Ã+x∗

1 Ŝ1
(0)︸ ︷︷ ︸

=0

(136)

< 0. (137)

Here, the first step follows because f ′
Ã+x∗

1 Ŝ1
(0) =

f ′′
Ã+x∗

1 Ŝ1
(0) = 0 [22, Lemma 3], and the second step follows

from (114). We establish (130) by using the following chain
of inequalities

f ′̃
A+x∗

1 T
(η̃)− f ′′̃

A+x∗
1 T
(η̃)

≤ e−η̃/x∗
1

x∗
1

∫ η̃

0

(
f ′
Ã+x∗

1 Ŝ1
(η̃ − z)− f ′′

Ã+x∗
1 Ŝ1
(η̃ − z)

)
dz (138)

< 0. (139)

Here, (138) follows from (132) and because e−z/x∗
1 ≥

e−η̃/x∗
1 > 0 for all z ∈ (0, η̃); (139) follows from (137).

D. Extension to R
∞+

Consider the following chain of equalities:

inf
x∈R∞+ :‖x‖1=mr E

P

[ ∞∑
i=1

(
xi Si − log(1 + xi )

)
≤ η

]

= lim
m→∞ inf

x∈R
m+:‖x‖1=mr E

P

[
m∑

i=1

(
xi Si − log(1 + xi )

)
≤ η

]

(140)

= lim
m→∞ inf P

[
m∑

i=1

(
xi Si − log(1 + xi )

)
≤ η

]
(141)

= inf P

[ ∞∑
i=1

(
xi Si − log(1 + xi )

)
≤ η

]
. (142)

Here, both (140) and (142) follow from the monotone conver-
gence theorem [25, Th. 2.14]; the infimum in (141) and (142)
is over all x (in R

m+ and R
∞+ , respectively) of the form (51)

or (52). This concludes the proof of Lemma 7.

APPENDIX II
CONVOLUTION OF EXPONENTIAL DISTRIBUTIONS

In this appendix, we summarize some results about the
convolution of exponential distributions that are needed in
Appendices I, III, and IV.

The first lemma deals with the log-concavity of the convo-
lution of exponential distributions. Recall that a function f is
called log-concave if log f is concave, and it is called strictly
log-concave if log f is strictly concave. Since the exponential
distribution is log-concave, and log-concavity is preserved
under convolution [32], it follows that the convolution of
exponential distributions is also log-concave. Lemma 12 below
shows that this distribution is in fact strictly log-concave.

Lemma 12: Fix an integer m ≥ 2. Let S1, . . . , Sm be i.i.d.
Exp(1)-distributed random variables, and let a1, . . . , am be
positive real numbers. Furthermore, let B �

∑m
i=1 ai Si . Then,

the pdf fB of B is strictly log-concave on (0,∞).
Proof: The proof is based on induction. Through algebraic

manipulations, it can be verified that fa1 S1+a1 S2 is strictly log-
concave on (0,∞) for every a1, a2 > 0. Suppose now that
the pdf of Bk �

∑k
i=1 ai Si is strictly log-concave for some

k ≥ 2. We have

fBk+1(t) =
∫

fBk (t − s) fak+1 Sk+1(s)︸ ︷︷ ︸
�g(s,t)

ds, t > 0. (143)

It follows that the integrand g(s, t) in (143) is (jointly)
log-concave in (s, t) on R

2+ and it is strictly log-concave on
the subspace {(s, t) ∈ R

2+ : s ≤ t}. Note that by the Prékopa
Theorem [33], [34, Sec. 3] for each a, b > 0,

fBk+1

(
a + b

2

)
=
∫

g

(
s,

a + b

2

)
ds (144)

≥
(∫

g(s, a)ds

)1/2 (∫
g(s, b)ds

)1/2

(145)

=
√

fBk+1(a) fBk+1(b). (146)

This implies that fBk+1 is log-concave. Following the proof
of the Prékopa Theorem in [34, Sec. 3], and using that the
function (s, t) �→ fBk (t − s) fak+1 Sk+1(s) is strictly positive,
smooth [22, Lemma 3], and strictly log-concave for 0 < s < t ,
we can verify that the inequality in (145) is strict for every
a, b > 0. This in turn implies that fBk+1 is strictly log-concave
on (0,∞). By induction, fB is strictly log-concave on (0,∞)
for every m ≥ 2.

The next lemma characterizes the optimal convex combi-
nation of exponential random variables that minimizes the
probability that such combination does not exceed a given
threshold.

Lemma 13: Let n ∈ N, let S1, . . . , Sn be i.i.d.
Exp(1)-distributed random variables, and let An � {x ∈ R

n+ :
‖x‖1 ≤ 1, x1 ≥ x2 ≥ . . . ≥ xn}. Then, for every t ∈ R+, there
exists a k ∈ {1, . . . , n} such that

arg min
x∈An

P

[ n∑
i=1

xi Si ≤ t

]
=
[ 1

k
, . . . ,

1

k︸ ︷︷ ︸
k

, 0, . . . , 0
]
. (147)

In particular, if t ∈ (0, 1], then

arg min
x∈An

P

[ n∑
i=1

xi Si ≤ t

]
=
[1

n
, . . . ,

1

n

]
. (148)

Proof: The equality (147) follows directly
from [22, p. 2597]. To prove (148), it is sufficient to
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show that for every k ∈ N and every t ∈ (0, 1], the following
inequality holds:

P

[
k∑

i=1

Si ≤ tk

]
≥ P

[
k+1∑
i=1

Si ≤ t (k + 1)

]
. (149)

Let fk(x) � xke−x . Consider the following chain of
(in)equalities

P

[
k∑

i=1

Si ≤ tk

]
− P

[
k+1∑
i=1

Si ≤ t (k + 1)

]

=
∫ tk

0

fk−1(x)

(k − 1)!dx −
∫ t (k+1)

0

fk(x)

k! dx (150)

= 1

k!

(∫ tk

0
k fk−1(x)dx −

∫ t (k+1)

0
fk(x)dx

)
(151)

= 1

k!

(
fk(tk)−

∫ t (k+1)

tk
fk(x)dx

)
(152)

≥ 1

k!
(

fk(tk)

−
∫ t (k+1)

tk
exp
(

log f (tk)+ f ′
k(tk)

fk(tk)
(x − tk) log e

)
dx

)
(153)

= fk(tk)

k!
1 − te1−t

1 − t
(154)

≥ 0. (155)

Here, (150) follows because the random variable
k∑

i=1
Si is

chi-squared distributed with pdf fk−1(x)/(k − 1)!; in (152)
we used integration by parts; (153) follows because fk(x) is
log-concave, which implies that for every x ≥ 0

log fk(x) ≤ log fk(tk)+ f ′
k(tk)

fk(tk)
(x − tk) log e; (156)

finally, (155) follows because t �→ te1−t is monotonically
increasing on (0, 1], and because te1−t

∣∣
t=1 = 1. This

proves (149).
The following lemma provides a uniform lower bound on

the cdf of the weighted sum of exponential distributions.
Lemma 14: Let {Si } be i.i.d. Exp(1)-distributed random

variables. Let x = [x1, x2, . . .] ∈ R
∞+ satisfy 0 < ‖x‖1 < ∞.

Furthermore, let

L(x) � 1

‖x‖2

( ∞∑
i=1

xi Si − ‖x‖1

)
(157)

and denote the cdf of L(x) by FL(x)(t). Then, for every
t ∈ (−∞, 0],

FL(x)(t) ≥
∣∣∣∣12 + t

∣∣∣∣
+
. (158)

Equivalently,

F−1
L(x)(ε) ≤ ε − 1

2
, for all 0 < ε <

1

2
. (159)

Proof: Since ‖x‖1 > 0, we can assume without loss of
generality that x1 > 0. Let xn denote the vector that contains
the first n entries of x, let

Ln(x) � 1

‖xn‖2

( n∑
i=1

xi Si − ‖xn‖1

)
(160)

and let FLn (x)(t) denote the cdf of Ln(x). Through algebraic
manipulations, it can be shown that FLn(x)(t) converges point-
wise to FL(x)(t) as n → ∞. Hence, to prove (158), it suffices
to show that for every n ∈ N and every t ∈ (−∞, 0]

FLn(x)(t) ≥
∣∣∣∣12 + t

∣∣∣∣
+
. (161)

We first show that (161) holds when t = 0. Indeed, we have
that

FLn(x)(0) = P

[
n∑

i=1

xi Si ≤ ‖xn‖1

]
(162)

≥ inf
y∈R

n+:‖y‖1=‖xn‖1

P

[
n∑

i=1

yi Si ≤ ‖xn‖1

]
(163)

= P

[
n−1‖xn‖1

n∑
i=1

Si ≤ ‖xn‖1

]
(164)

>
1

2
. (165)

Here, (164) follows from (148); (165) follows because∑n
i=1 Si is chi-squared distributed, and because the median of

a chi-squared distribution is smaller than its mean [24, Ch. 17].
We next prove (161) for the case t < 0. By definition, Ln(x)

has zero mean and unit variance. Moreover, by Lemma 12
the pdf fLn(x) of Ln(x) is log-concave. Hence, we have
that [35, Lemma 5.5] [36, Proposition 2.1]

sup
t∈R

fLn(x)(t) ≤ 1. (166)

Then, the bound (161) holds because

FLn (x)(t) =
∫ 0

−∞
fLn (x)(y)dy︸ ︷︷ ︸
≥1/2

−
∫ 0

t
fLn (x)(y)︸ ︷︷ ︸

≤1

dy (167)

≥ 1

2
+ t . (168)

The last step follows from (165) and (166).
Consider the random variable obtained by summing finitely

many independent but not necessarily identically distributed
exponential random variables. The next lemma establishes that
the derivative of the pdf of the resulting random variable,
computed at the mean value, is negative. Since the convolution
of exponential distributions is unimodal, this implies that the
mode of this random variable is smaller than its mean, i.e., its
probability distribution is right skewed.

Lemma 15: Let m ∈ N, let a1, . . . , am be positive real num-
bers, and let S1, . . . , Sm be i.i.d. Exp(1)-distributed random
variables. Furthermore, let μ �

∑m
i=1 ai , amin � mini {ai},

amax � maxi {ai }, and A �
∑m

i=1 ai Si . Then,

f ′
A(μ) ≤ − amin

amax

fA(μ)

μ
< 0 (169)



6846 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 12, DECEMBER 2016

where f ′
A denotes the derivative of the pdf of A. Moreover,

the first inequality in (169) holds with equality if and only if
a1 = · · · = am .

Proof: Note that the {Si }, i = 1, . . . ,m, have the same
distribution as {X2

i + X2
m+i }, i = 1, . . . ,m, where {Xi },

i = 1, . . . , 2m, are i.i.d. N (0, 1/2)-distributed. Let am+i � ai ,
i = 1, . . . ,m. Then, A has the same distribution as

Ã �
2m∑
i=1

ai X2
i . (170)

Next, we prove that f ′̃
A
(μ) < 0 by using [18, Lemma 22],

which provides expressions for the pdf and the derivative of
the pdf of functions of random variables. We first give some
definitions. Let X � [X1, . . . , X2m], and let fX denote the
joint pdf of X1, . . . , X2m . Let ϕ(x) : R

2m → R+ be defined as

ϕ(x) �
2m∑
i=1

ai x
2
i . (171)

Let ∇ϕ and �ϕ be the gradient and Laplacian of ϕ, namely,

∇ϕ(x) �
[
∂

∂x1
ϕ(x), . . . ,

∂

∂x2m
ϕ(x)

]
(172)

and

�ϕ(x) �
2m∑
i=1

∂2

∂x2
i

ϕ(x). (173)

Finally, let ϕ−1(μ) denote the preimage {x ∈ R
2m : ϕ(x) =

μ}, and let dS be the surface area form on ϕ−1(μ), chosen
so that dS(∇ϕ) > 0. Note that fX is smooth and that the set
ϕ−1(μ) is bounded. Moreover, for every x ∈ ϕ−1(μ)

‖∇ϕ(x)‖2
2 =

2m∑
i=1

4a2
i x2

i ≥ 4μ min
i=1,...,m

{ai } > 0. (174)

Then, by [18, Eq. (407)],

f ′
Ã
(μ) =

∫
ϕ−1(μ)

ψ
dS

‖∇ϕ‖2
(175)

where [18, Eq. (422)]

ψ � 〈∇ fX ,∇ϕ〉 + fX ·�ϕ
‖∇ϕ‖2

2

− fX 〈∇‖∇ϕ‖2
2,∇ϕ〉

‖∇ϕ‖4
2

. (176)

The first term on the RHS of (176) is equal to zero. Indeed,

〈∇ fX ,∇ϕ〉 + fX ·�ϕ

=
2m∑
i=1

−2xi fX · (2ai xi )+ fX ·
2m∑
i=1

2ai (177)

= 4 fX

(
m∑

i=1

ai −
2m∑
i=1

ai x
2
i

)
(178)

= 0. (179)

Here, the last step follows because for every x ∈ ϕ−1(μ)

2m∑
i=1

ai x
2
i = μ =

m∑
i=1

ai . (180)

The second term on the RHS of (176) can be computed as
follows:

fX 〈∇‖∇ϕ‖2
2,∇ϕ〉

‖∇ϕ‖4
2

= fX
16
∑2m

i=1 a3
i x2

i(∑2m
i=1 4a2

i x2
i

)2 (181)

≥ fX
amin

∑2m
i=1 a2

i x2
i

amaxμ
∑2m

i=1 a2
i x2

i

(182)

= amin

amax

fX

μ
. (183)

Note that the inequality on the RHS of (182) holds with
equality if and only if a1 = · · · = am . Finally, using (179)
and (183) in (175) we conclude that

f ′
Ã
(μ) ≤ −

∫
ϕ−1(μ)

amin

amax

fX

μ

dS

‖∇ϕ‖2
= − amin

amax

f Ã(μ)

μ
. (184)

Here, the last step follows from [18, Lemma 22]. The
second inequality in (169) follows because f Ã(μ) > 0
(see [22, Lemma 3]).

APPENDIX III
PROOF OF THEOREM 8

A. Achievability

To prove that (63) is achievable, we start from the inequality

M − 1 ≥ τ

β1−ε+τ (PY | X=c1, PY | X=0)
(185)

which is equivalent to Theorem 1 (see (25) for a defini-
tion of c1). First, we upper-bound β1−ε+τ (PY | X=c1, PY | X=0)
as [7, Eq. (103)]

β1−ε+τ (PY | X=c1, PY | X=0) ≤ ξ−1 (186)

where ξ > 0 satisfies

PY | X=c1[ı(c1,Y) ≤ log ξ ] = ε − τ (187)

and ı(·, ·) was defined in (38). The LHS of (187) can be lower-
bounded as follows:

PY | X=c1[ıX,Y(c1,Y) ≤ log ξ ] (188)

= P

[
−mr N log

(
1 + E

N

)
+ E

N

mr N∑
i=1

Si log e ≤ log ξ

]
(189)

≥ Q

(
− log ξ + mr N log(1 + E/N) − mr E log e√

mr N · (E/N) log e

)
− const√

N
.

(190)

Here, const denotes a positive constant6 independent
of E and N , (189) follows from (47), and (190) follows from
the Berry-Esseen Theorem (see, e.g., [23, Ch. XVI.5]).

Next, we set τ = 1/
√

E in (187) and consider the asymp-
totic regime E → ∞. We shall choose N as a function of E so

6Throughout the remainder of the paper, we will use const to denote an
arbitrary constant whose exact value is irrelevant for the analysis. Its value
may change at each appearance.
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that N → ∞ as E → ∞ with N/E → 0. Substituting (190)
into (187), and solving for log ξ we obtain

log ξ ≥ mr E log e − mr N log

(
1 + E

N

)

−
√

mr E log e√
N

Q−1
(
ε − 1√

E
+ const√

N

)
(191)

= mr E log e − mr N log

(
1 + E

N

)

−
√

mr E log e√
N

Q−1(ε)+ O
(( −1√

E
+ const√

N

) E√
N

)
(192)

= mr E log e − mr N log

(
1 + E

N

)

−
√

mr E log e√
N

Q−1(ε)+ O
(

E

N

)
. (193)

Here, (192) follows by operating a Taylor-expansion of Q−1(·)
around ε, and (193) follows because N/E → 0.

We next maximize the dominant terms on the RHS of (193)
by choosing

N = N∗ � arg min
N∈N

{
mr N log

(
1 + E

N

)

+
√

mr E log e√
N

Q−1(ε)
}
. (194)

After some algebraic computations, we obtain

N∗ = 1

mr

(
3

2
Q−1(ε)

(mr E) log e

log(mr E)

)2/3

+ O
(

E2/3 log log E

(log E)5/3

)
.

(195)

Substituting (195) into (193), then (193) into (186), and
finally (186) into (32) we conclude that

log M∗(E, ε)

≥ mr E log e − V0 ·
(

mr E Q−1(ε)
)2/3(

log(mr E)
)1/3

+O
(

E2/3 log log E

(log E)2/3

)
(196)

where V0 is given in (5).

B. Converse

It follows from (61) that for every η ∈ R

log M∗(E, ε) ≤ η

− log

∣∣∣∣inf
x

P

[ ∞∑
i=1

(
xi Si log e − log(1 + xi )

)
≤ η

]
− ε

∣∣∣∣
+

(197)

where the infimum is taken over all x that are of the form
specified in (51) and (52).

Before proceeding to further bound (197), we introduce
some notation. To every x ∈ R

∞+ satisfying ‖x‖1 = mr E ,
we assign the random variable

L(x) � 1

‖x‖2

( ∞∑
i=1

xi Si − mr E

)
. (198)

Let FL(x)(t) be the cdf of L(x). By construction, L(x) has
zero mean and unit variance. Let η̂E (x) : R

∞+ → R be defined
as follows:

η̂E (x) � mr E log e −
∞∑

i=1

log(1 + xi )

+ F−1
L(x)

(
ε + E−1/2)‖x‖2 log e. (199)

We shall choose η so that

η = ηE � sup
x
η̂E (x) (200)

where the supremum is again over all x that are of the
form specified in (51) and (52). Substituting (200) into (197),
we obtain

log M∗(E, ε)
≤ sup

x
η̂E (x)− log

∣∣∣inf
x

FL(x)
(
F−1

L(x)(ε + E−1/2)
)− ε

∣∣∣ (201)

= sup
x
η̂E (x)+ 1

2
log E . (202)

To conclude the proof, it remains to show that for every x
that is of the form specified in (51) and (52)

η̂E (x) ≤ mr E log e − V0 ·
(

mr E Q−1(ε)
)2/3(

log(mr E)
)1/3

+O
(

E2/3 log log E

(log E)2/3

)
. (203)

To this end, we consider the following three cases separately.
1) The vector x takes the form (52), and Ñ2 > E1/6;
2) The vector x takes the form (51);
3) The vector x takes the form (52), and Ñ2 ≤ E1/6.
Case 1: By assumption, x has at most two distinct nonzero

entries 0 ≤ q̃1 ≤ q̃2, and Ñ2 ≥ E1/6. Suppose that we can
approximate F−1

L(x)

(
ε+ E−1/2

)
by −Q−1(ε) in the limit E →

∞ (in a sense we shall make precise later on). The proof
is then concluded by using the result in Lemma 16 below,
together with (194) and (195), in (202).

Lemma 16: For every positive constant a, we have that

inf
x∈R∞+ :‖x‖1=mr E

∞∑
i=1

log(1 + xi )+ a‖x‖2

= min
N∈N

N log

(
1 + mr E

N

)
+ a

mr E√
N
. (204)

Proof: See Appendix III-C.
It remains to show that we can indeed approximate

F−1
L(x)

(
ε + E−1/2

)
by −Q−1(ε). Since L(x) is the normal-

ized sum of Ñ1 + Ñ2 independent random variables, and
Ñ2 → ∞ as E → ∞, it is natural to use the central-limit
theorem to establish this result. More precisely, we apply the
Berry-Esseen Theorem [23, Ch. XVI.5] to FL(x)(·) and obtain
that, for an arbitrary ξ ∈ R,

FL(x)(ξ)

= P

⎡
⎣ 1

‖x‖2

⎛
⎝q̃1

Ñ1∑
i=1

Si + q̃2

Ñ2∑
i=1

Si+Ñ1
− mr E

⎞
⎠ ≤ ξ

⎤
⎦ (205)

≥ Q(−ξ)−
const

(
Ñ1(q̃1)

3 + Ñ2(q̃2)
3
)

(
Ñ1(q̃1)2 + Ñ2(q̃2)2

)3/2 . (206)
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The second term on the RHS of (206) can be evaluated as
follows

Ñ1(q̃1)
3 + Ñ2(q̃2)

3(
Ñ1(q̃1)2 + Ñ2(q̃2)2

)3/2
≤ q̃2(

Ñ1(q̃1)2 + Ñ2(q̃2)2
)1/2 (207)

≤ Ñ−1/2
2 (208)

≤ E−1/12. (209)

Here, (207) follows because (q̃1)
3 ≤ (q̃1)

2q̃2, and in (209) we
used that Ñ2 > E

1
6 . Using (209) in (206), selecting ξ such

that the LHS of (205) equals ε + E−1/2, and using that the
function Q(·) is monotonically decreasing, we conclude that

ξ = F−1
L(x)

(
ε + E−1/2

)
(210)

≤ −Q−1
(
ε + E−1/2 + const · E−1/12

)
(211)

= −Q−1(ε)+ O
(

E−1/12
)
. (212)

Here, (212) follows by applying Taylor’s theorem to Q−1(·)
around ε.

Case 2: By assumption, x contains three distinct nonzero
entries 0 < q1 < q2 < q3, and q1 and q3 each appear only
once. For this case, we shall use a different approach from
that used in Case 1. The main differences between the two
cases are as follows:

• In order to use the central limit theorem, we need to show
that the x that maximizes η̂E (x) contains sufficiently
many nonzero entries, and that the available energy mr E
is spread evenly over these nonzero entries as E → ∞.
These properties are satisfied in Case 1 by definition.
In Case 2, however, we need to verify that they hold.

• Intuitively, since q1 and q3 appear only once in x,
we expect that they do not contribute to the dominant
terms in (202). As a result, we can approximate the
second and the third term on the RHS of (202) directly
without using Lemma 16.

We proceed now with the proof. The idea is to upper-
bound (202) using (159) (Lemma 14 in Appendix II), and
then compare the resulting bound with the achievability
result (196). Since 0 < ε < 1/2, and since we are interested in
the asymptotic regime E → ∞, we can assume without loss
of generality that ε + E−1/2 < 1/2. Applying (159) to (199),
we obtain

η̂E (x) ≤ mr E log e −
∞∑

i=1

log(1 + xi )

−
(

1/2 − ε − E−1/2
)
‖x‖2 log e + O(log E). (213)

Since we are interested in upper-bounding supx η̂E (x),
we focus without loss of generality on the x for which η̂E (x) is
greater than the RHS of (196). By comparing (213) with (196),
we conclude that such x must satisfy

‖x‖2 ≤ V0 ·(Q−1(ε)
)2/3

(1/2 − ε) log e

(
mr E

)2/3(
log(mr E)

)1/3+o
(

E2/3
)

(214)

and
∞∑

i=1

log(1 + xi ) ≤ V0 · (mr E Q−1(ε)
)2/3( log(mr E)

)1/3
+ o
(

E2/3
)
. (215)

We next refine the bounds (214) and (215) by exploiting
that x is of the form specified in (51). By (214) and (51),
we have the following estimates

q3 = ‖x‖∞ ≤ ‖x‖2 ≤ O
(

E2/3( log E
)1/3) (216)

and

N + 2 ≥ ‖x‖2
1

‖x‖2
2

(217)

≥ const · E2/3( log E
)−2/3

. (218)

Here, (217) follows because x has N + 2 nonzero entries and
because ‖a‖1 ≤ √

N + 2‖a‖2 for every (N + 2)-dimensional
real vector a; in (218) we used (214) and that ‖x‖1 = mr E .
Since q1 + q2 N + q3 = mr E , it follows from (218) that

q1 ≤ q2 ≤ mr E

N
≤ O

(
E1/3( log E

)2/3)
. (219)

The bound (215) implies that

V0 · (mr E Q−1(ε)
)2/3( log(mr E)

)1/3 + o
(

E2/3
)

≥
∞∑

i=1

log(1 + xi ) (220)

≥ N log(1 + q2) (221)

= N log

(
1 + mr E − q1 − q3

N

)
(222)

≥ N log

⎛
⎝1 +

mr E − O
(

E2/3
(

log E
)1/3)

N

⎞
⎠. (223)

Here, in (223) we used (216) and (219). Solving (223) for N ,
we obtain

N ≤ const · E2/3( log E
)−2/3

. (224)

Using (218) and (224) back in (223) we obtain
∞∑

i=1

log(1 + xi)

≥ N log

(
1 + mr E

N

)
+ N log

(
1 − O

(
E−1/3( log E

)1/3))
(225)

= N log

(
1 + mr E

N

)
+ O

(
E1/3( log E

)−1/3
)
. (226)

Here, the last step follows by Taylor-expanding the log func-
tion in the second term on the RHS of (228) around 1.

We are now ready to provide a refined estimate for the term
F−1

L(x)

(
ε + E−1/2

) ‖x‖2 on the RHS of (202). Let

x′ �
[ mr E

N + 2
, . . . ,

mr E

N + 2︸ ︷︷ ︸
N+2

, 0, . . .
]
. (227)
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By Lemma 13 (see Appendix II) and by (198), the following
inequality holds for every γ ∈ (0,mr E]:

FL(x)

(
γ − mr E

‖x‖2

)
= P

[
q1S1 +

N+1∑
i=2

q2Si + q3SN+2 ≤ γ
]

(228)

≥ P

[
mr E

N + 2

N+2∑
i=1

Si ≤ γ

]
(229)

= FL(x′)

(
γ − mr E

‖x′‖2

)
. (230)

Since ε + E−1/2 < 1/2 and since, by Lemma 14
(see Appendix II), FL(x′)(0) ≥ 1/2, we have F−1

L(x′)
(
ε +

E−1/2
)
< 0. Set γ = mr E + F−1

L(x′)
(
ε + E−1/2

)‖x′‖2 < mr E .
Then, by (230),

F−1
L(x)

(
ε + E−1/2)‖x‖2 ≤ F−1

L(x′)
(
ε + E−1/2)‖x′‖2. (231)

Applying the Berry-Esseen central-limit theorem similarly as
in (205)–(212), we obtain

F−1
L(x′)

(
ε + E−1/2) ≤ −Q−1(ε)+ O

(
1√
N

)
. (232)

Furthermore,

‖x′‖2 = mr E√
N + 2

(233)

= mr E√
N

(
1 + O

(
1

N

))
. (234)

Substituting (232) and (234) into (231) and using (218)
and (224), we obtain

F−1
L(x)

(
ε + E−1/2)‖x‖2

≤ −mr E√
N

Q−1(ε)+ O
(

E1/3( log E
)2/3)

. (235)

Finally, substituting (226) and (235) into (202), we conclude
that

η̂E (x) ≤ mr E log e − N log
(

1 + mr E

N

)
− mr E log e√

N
Q−1(ε)

+O
(

E1/3( log E
)−1/3

)
. (236)

The proof is completed by maximizing the RHS of (236) over
N ∈ N and by using (194) and (195).

Case 3: By assumption, x has at most two different nonzero
entries 0 ≤ q̃1 ≤ q̃2, and Ñ2 ≤ E1/6. Since the multiplicity
of q2 in x is less than E1/6, it can be shown that all entries
of x that are equal to q̃2 do not contribute to the dominant
terms in (202). The analysis follows steps similar to the ones
for Case 2.

C. Proof of Lemma 16

Let

la(x) �
∞∑

i=1

log(1 + xi )+ a‖x‖2 (237)

with xi standing for the i th entry of x, and let x∗ be a
minimizer of

inf
x∈R∞+ :‖x‖1=mr E

la(x). (238)

In order to prove Lemma 16, it suffices to show that all
nonzero entries of x∗ must take the same value. This is proved
by contradiction.

Assume that there exist indices i, j for which
0 < x∗

i < x∗
j . Let b � x∗

i + x∗
j , c �

∑n
k �=i,k �= j (x

∗
k )

2,
and d �

∑n
k �=i,k �= j log(1 + x∗

k ). Consider now the function
f : [0, b] → R defined as

f (t) � log(1 + t)+ log(1 + b − t)

+ a
√

c + t2 + (b − t)2 + d. (239)

Note that f (t) is symmetric around t = b/2, and that f (x∗
i ) =

f (x∗
j ) = la(x∗).

Standard computations reveal that the minimum of f (t) over
[0, b/2] is achieved at one of the boundary points, i.e.,

f (t) > min{ f (0), f (b/2)}, for all t ∈ (0, b/2). (240)

Let x1 (resp. x2) be the vector obtained from x∗ by replacing
the i th and j th entries with 0 (resp. b/2) and b (resp. b/2),
respectively. Clearly, ‖x1‖1 = ‖x2‖1 = mr E . Then, (240)
implies that

la(x∗) > min{la(x1), la(x2)}. (241)

This contradicts the assumption that x∗ is a minimizer. There-
fore, the entries of x∗ cannot take more than one distinct
nonzero values.

APPENDIX IV
PROOF OF THEOREM 10

The achievability of (77) follows from Theorem 9
and [8, Th. 3]. Next, we prove a converse. As in the proof
of Theorem 6, we assume without loss of generality that each
codeword U∞ for the channel (12) satisfies the equal-energy
constraint ∥∥U∞∥∥2

F = E . (242)

Let PV∞H∞ | U∞ � PH∞ PV∞ | U∞H∞ . By the meta-converse
theorem [7, Th. 31] applied with QV∞H∞ = PV∞H∞ | U∞=0,
we obtain

1

M∗(E, ε)
≥ inf

U∞ β1−ε(PV∞H∞|U∞=U∞, QV∞H∞). (243)

Here, the infimum in (243) is over all matrices U∞ ∈ C
∞×mt

that satisfy ‖U∞‖2
F = E . Proceeding similarly to the proof of

Theorem 6, we observe that the RHS of (243) does not change
if we focus on diagonal input matrices. This implies that for
the purpose of evaluating (243), the MIMO Rayleigh block-
fading channel (12) is equivalent to the memoryless SIMO
Rayleigh-fading channel (19). Let now u and (V,H) denote
the input and the output of this SIMO channel, respectively.
Then, the RHS of (243) is equal to

inf
u∈C∞:‖u‖2

2=E
β1−ε(PVH | U=u, QVH) (244)
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where PVH | U=u denotes the conditional probability distrib-
ution of the output of the channel (19) given the input, and
QVH = PVH | U=0. Substituting (244) into (243), and using the
lower bound [7, Eq. (102)], we obtain that for every η > 0,

log M∗(E, ε) ≤ η log e

− log

∣∣∣∣ inf
u

PVH|U=u

[
log

d PVH|U=u

d QVH

(V,H) ≤ η log e

]
− ε

∣∣∣∣
+
.

(245)

Here, the infimum on the RHS of (245) is over all
u ∈ C

∞ that satisfy ‖u‖2
2 = E . Under PVH | U=u, the

random variable log
d PVH | U=u

d QVH
(V,H) in (245) has the same

distribution as

log e

( mr∑
r=1

∞∑
i=1

|ui Hr,i |2 +
(
2

mr∑
r=1

∞∑
i=1

|ui Hr,i |2
)1/2

Z

)
(246)

where Z ∼ N (0, 1).
Let now εE � ε + c1

√
E−1 log E , where c1 > 0 is an

arbitrary constant. Since, by assumption, 0 < ε < 1/2,
and since we are interested in the asymptotic behavior of
log M∗(E, ε) as E → ∞, we can assume without loss of
generality that εE < 1/2. Set

η = mr E −√
2mr E Q−1(εE ). (247)

Then, we can rewrite the minimization problem on the RHS
of (245) using (246) and (247) as follows

inf
u∈C∞:
‖u‖2

2=E

PVH | U=u

[
log

d PVH | U=u

d QVH

(V,H) ≤ η log e

]

= inf E

⎡
⎢⎢⎢⎣Q

⎛
⎜⎜⎜⎝

mr∑
r=1

∞∑
i=1

|ui Hr,i |2 − mr E + √
2mr E Q−1(εE )

(
2

mr∑
r=1

∞∑
i=1

|ui Hi |2
)1/2

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦

(248)

� q(E). (249)

where the infimum on the RHS of (248) is over all u ∈ C
∞

that satisfy ‖u‖2
2 = E .

We next show that q(E) admits the following large-E
expansion:

q(E) = inf
u∈C∞:
‖u‖2

2=1

P

[√
E

2mr

( mr∑
r=1

∞∑
i=1

|ui Hr,i |2 − mr

)

≤ Z − Q−1(εE )

]
+ O

(√
log E

E

)
. (250)

The key step is to replace the term
(

2
mr∑

r=1

∞∑
i=1

|ui Hi |2
)1/2

in

the denominator on the RHS of (248) by
√

2mr E . To this
end, consider the function t �→ Q((t − η)/

√
2t) with η given

in (247). If t ≤ η − 2
√

mr E log E , we have

1 ≥ Q

(
t − η√

2t

)
(251)

≥ Q

(
t − η√
2mr E

)
(252)

≥ Q

(
−2

√
mr E log E√

2mr E

)
(253)

= 1 − O
(

E−1
)
. (254)

Here, (252) follows because Q(·) is monotonically decreasing.
The inequality (254) implies that, if t ≤ η − 2

√
mr E log E ,

then ∣∣∣∣Q
(

t − η√
2t

)
− Q

(
t − η√
2mr E

)∣∣∣∣ ≤ O(E−1). (255)

Proceeding similarly as in (251)–(254), we can show that (255)
holds also if t ≥ η + 2

√
mr E log E . Finally, if |t − η| <

2
√

mr E log E , by the mean-value theorem [37, p. 107] there
exists an a0 ∈ [(t − η)/

√
2t, (t − η)/

√
2mr E

]
such that∣∣∣∣Q

(
t − η√

2t

)
− Q

(
t − η√
2mr E

)∣∣∣∣
= |Q′(a0)|

∣∣∣∣ t − η√
2t

− t − η√
2mr E

∣∣∣∣ (256)

= 1√
2π

e−a2
0/2
∣∣∣∣ t − η√

2mr E

∣∣∣∣O
(√

log E

E

)
(257)

= 1√
2π

e
− (t−η)2

4mr E ·
(

1+O
(√

log E
E

)) ∣∣∣∣ t − η√
2mr E

∣∣∣∣︸ ︷︷ ︸
≤const

O
(√

log E

E

)

(258)

= O
(√

log E

E

)
. (259)

Here, (257) and (258) follow because∣∣∣∣a0 − t − η√
2mr E

∣∣∣∣ ≤
∣∣∣∣ t − η√

2t
− t − η√

2mr E

∣∣∣∣ (260)

=
∣∣∣∣ t − η√

2mr E

∣∣∣∣O
(√

log E

E

)
. (261)

Combining (255) and (259), we conclude that for every
t ∈ (0,∞)

Q

(
t − η√

2t

)
= Q

(
t − η√
2mr E

)
+ O

(√
log E

E

)
(262)

where the O(√(log E)/E) term is uniform in t . This means
that replacing the denominator in (249) with

√
2mr E affects

the value of (249) only by O(√(log E)/E
)
. Finally, we

establish (250) by using (262) in (249) and by normalizing u
in (249) with respect to E .

Lemma 17 below characterizes the solution of the optimiza-
tion problem in (250).

Lemma 17: Fix an arbitrary a > 0, b > 0, and mr ∈ N. Let
{Hr,i} be i.i.d. CN (0, 1)-distributed and let Z ∼ N (0, 1) be
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independent of {Hr,i}. Then, we have

inf
u∈C∞:
‖u‖2

2=1

P

[
a

( mr∑
r=1

∞∑
i=1

|ui Hr,i |2 − mr

)
≤ Z − b

]
= Q(b).

(263)
Proof: See Appendix IV-A.

Using Lemma 17 in (250), we obtain

q(E) = εE + O
(√

log E

E

)
. (264)

Finally, substituting (264) and (247) into (245), we conclude
that

log M ≤ mr E log e −
√

2mr E Q−1(εE ) log e

− log

(
εE − ε + O

(√
log E

E

))
(265)

= mr E log e −
√

2mr E Q−1

(
ε + c1

√
log E

E

)
log e

− log

(
c1

√
log E

E
+ O

(√
log E

E

))
(266)

≤ mr E log e −√
2mr E Q−1(ε) log e

+ 1

2
log E + O(

√
log E). (267)

Here, the last step follows by Taylor-expanding Q−1(·)
around ε, and by taking c1 so that

c1

√
log E

E
+ O

(√
log E

E

)
≥
√

log E

E
. (268)

This concludes the proof.

A. Proof of Lemma 17

First, consider the following sequence of vectors indexed
by N :

u(N) � 1√
N

[
1, . . . , 1︸ ︷︷ ︸

N

, 0, . . .
]
. (269)

Evaluating the probability on the LHS of (263) for this
sequence of vectors, we establish the following upper bound

inf
u∈C∞:
‖u‖2

2=1

P

[
a

( mr∑
r=1

∞∑
i=1

|ui Hr,i |2 − mr

)
≤ Z − b

]

≤ lim
N→∞P

[
a

(
1

N

mr∑
r=1

N∑
i=1

|Hr,i |2 − mr

)
≤ Z − b

]
(270)

= Q(b). (271)

Here, the last step follows by the law of large numbers.
Next, we prove the reverse inequality. Suppose that for every

m ∈ N and every u ∈ C
m that satisfies ‖u‖2

2 = 1, the following
equality holds:

inf
a≥0

P

[
a

( m∑
i=1

|ui Hi |2 − 1

)
≤ Z − b

]
= Q(b). (272)

Then,

inf
u∈C∞:‖u‖2

2=1
P

[
a

( mr∑
r=1

∞∑
i=1

|ui Hr,i |2 − mr

)
≤ Z − b

]
(273)

= inf
u

P

[
mra

( ∞∑
i=1

|ui Hi |2 − 1

)
≤ Z − b

]
(274)

≥ inf
u∈C∞:‖u‖2

2=1
P

[
mra

( ∞∑
i=1

|ui Hi |2 − 1

)
≤ Z − b

]
(275)

≥ inf
a≥0,u∈C∞:‖u‖2

2=1
P

[
a

( ∞∑
i=1

|ui Hi |2 − 1

)
≤ Z − b

]

(276)

= lim
m→∞ inf

a≥0,u∈Cm :
‖u‖2

2=1

P

[
a

( m∑
i=1

|ui Hi |2 − 1

)
≤ Z − b

]
(277)

= Q(b). (278)

Here, the infimum on the RHS of (274) is over all vectors
u ∈ C

∞ that satisfy ‖u‖2
2 = 1 and u jmr+1 = · · · =

u( j+1)mr,∀ j ∈ N. The equality (274) follows because {Hr,i}
are independent and identically distributed. This allows us to
merge the double summation in (273) into one summation,
provided that we account for the fact that each ui must now
multiply mr successive {Hi} (see the additional constraint
on (274)). The inequality (275) follows by enlarging the feasi-
ble region of the minimization problem on the RHS of (274).

We next prove (272). Through standard algebraic manipu-
lations, it can be verified that (272) holds when m = 1. Fix
now an arbitrary m ≥ 2 and an arbitrary u ∈ C

m that satisfies
‖u‖2

2 = 1. Assume without loss of generality that all entries
of u are positive (otherwise just set m to be the number of
positive entries in u). Let B �

∑m
i=1 |ui Hi |2, and let

g(a) � P
[
a(B − 1) ≤ Z − b

] = E
[
Q
(
a B − a + b

)]
. (279)

Since g(0) = Q(b), it suffices to show that g(a) is nonde-
creasing on [0,∞), i.e., g′(a) ≥ 0 for all a ∈ [0,∞). The
derivative g′(a) is given by

g′(a) = d

da

(
EB [Q(a B − a + b)]

)
(280)

= −
∫ ∞

−1

t√
2π

e− (at)2+2atb+b2
2 fB−1(t)dt . (281)

Here, in (281) we used the Leibniz’s integration rule [38] and
the identity Q′(x) = − 1√

2π
e−x2/2. The RHS of (281) is equal

to zero when a = 0 because, by definition, E[B − 1] = 0.
When a > 0, we have

g′(a) ≥ −e−b2/2
√

2π

∫ ∞

−1
te− (at)2

2 fB−1(t)dt (282)

= −e−b2/2

a
√

2π

∫ ∞

−1
e− (at)2

2 f ′
B−1(t)dt (283)

= −e−b2/2

a2 f ′
B+Z/a(1). (284)

Here, (282) follows because e−abt t ≤ t for every t ∈ R;
in (283) we used integration by parts and that fB−1(−1) = 0.
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It remains to show that f ′
B+Z/a(1) ≤ 0 for every

a > 0. Since Z ∼ N (0, 1), by the central limit theorem
for densities (see [39, Th. VII.2.7]), the pdf of Z can be
approximated to an arbitrary precision by the pdf of a sum
of i.i.d. Exp(1)-distributed random variables. Moreover, B is
the convolution of finitely many exponential distributions and
E[B + Z/a] = 1. Hence, to prove f ′

B+Z/a(1) ≤ 0, it suffices
to show that the derivative of the convolution of finitely many
exponential pdfs computed at the mean value of the resulting
distribution is nonpositive. This follows from Lemma 15
(see Appendix II).

APPENDIX V
PROOF OF THEOREM 11

Let η > 0 be an arbitrary constant and let the function qη(·)
be defined as follows:

qη(x) � Q

(
x − η√

2x

)
, x > 0. (285)

It follows from (245), (246), and (249) that every
(E,M, ε)-code for the MIMO Rayleigh block-fading
channel (12) for the case of perfect CSIR satisfies

log M ≤ η log e

− log

∣∣∣∣∣ inf
u∈C∞:‖u‖2

2=E
E

[
qη

(
mr∑

r=1

∞∑
i=1

|ui Hr,i |2
)]

− ε

∣∣∣∣∣
+
. (286)

Suppose that the function gη(·) defined in (86) is convex on
[0,∞), and that

qη(x) ≥ gη(x), for all x ∈ [0,∞). (287)

In other words, suppose that gη(·) is a convex lower bound
on qη(x). Then, (87) follows because, for every u ∈ C

∞ with
‖u‖2

2 = E ,

E

[
qη

(
mr∑

r=1

∞∑
i=1

|ui Hr,i |2
)]

≥ E

[
gη

(
mr∑

r=1

∞∑
i=1

|ui Hr,i |2
)]

(288)

≥ gη

(
E

[
mr∑

r=1

∞∑
i=1

|ui Hr,i |2
])

(289)

= gη(mr E). (290)

Here, (289) follows from Jensen’s inequality.
It remains to prove that gη(x) is indeed a convex lower

bound on qη(x). Observe the following properties of qη(·),
which can be verified through standard algebraic manipula-
tions:

• qη(·) is monotonically decreasing;
• lim

x→0
qη(x) = 1, lim

x→∞ qη(x) = 0;
• qη(η) = 1/2;
• if η > π , then q ′

η(η) = −1/(2
√
ηπ) < −1/(2η);

• if η > 6, there exists an 0 < x0 < η such that qη(·) is
concave on (0, x0) and convex on (x0,∞).

Assume that η > 6. Then, the above properties of qη(·) imply
that there exists a unique x1 such that the line connecting (0, 1)

Fig. 2. A geometric illustration of qη(·) in (285) (black curve), of the tangent
line of qη(·) (blue curve), and of gη(·) in (86) (red curve).

and (x1, qη(x1)) lies below the graph of qη(x) and is tangent
to qη(·) at (x1, qη(x1)) (see Fig. 2). Since the slope of the line
connecting (0, 1) and (x1, qη(x1)) is

− 1

x1
Q

(
η − x1√

2x1

)
(291)

and since the derivative of qη(x) at x = x1 is given by

− 1

x1

1

4
√
π

e−(x1−η)2/(4x1)

(
η√
x1

+ √
x1

)
(292)

it follows that x1 is the solution of (85). Furthermore, since
q ′
η(η) < −1/(2η), and since −1/(2η) is the slope of the line

connecting (0, 1) and (η, 1/2), we have that x1 > η. Observe
now that gη(x) coincides with the line connecting (0, 1) and
(x1, qη(x1)) for x ≤ x1, and that it coincides with qη(x) if
x ≥ x1. This proves that gη(x) is indeed a convex lower bound
on qη(x).
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