Minimum energy to send bits
with and without feedback
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Abstract—The question of minimum achievable energy per bit posed [4], [5], studied numerically [6]-[8] and tightly app-
over memoryless channels has been previously addressed imet imated [5], [9].

limit of number of information bits going to infinity, in whic h case In this paper we investigate the minimal ene@vequired
it is known that availability of noiseless feedback does noower p_ P . . 9 . gyreq
to transmit & bits allowing error probabilitye > 0 and

the minimum energy per bit. This paper analyzes the behavioof . . .
the minimum energy per bit for memoryless Gaussian channelas 7 — oo. Equivalently, we determine the maximal number of
a function of the number of information bits. It is demonstrated  bits of information that can be transmitted with a fixed (non-
that_i_n this non-asymptotic r(_eg_ime, noiseless feedchk lda to asymptotic) energy budget and an error probability coirgtra

significantly better energy efficiency. A feedback coding $eme but without any limitation on the number of degrees of

with zero probability of block error and finite energy per bit is L .
constructed. For both achievability and converse, the fedshck freedom used. This is different from [1] in that we do not take

coding problem is reduced to a sequential hypothesis tesin & — oo, and from [4]-[9] in that we do not fix a non-zero rate
problem for Brownian motion. % By doing so, we obtain thbona fideenergy-information

Index Terms—Shannon theory, minimum energy per bit, tradeoff for the AWGN channel. Even though (2) results in (1)
feeo_lback, non-asymptotic analysis, AWGN channel, Brownia by letting R — 0, the minimum energy for finité cannot be
motion. obtained from the asymptotic limit in (2).

|. INTRODUCTION AND PROBLEM STATEMENT The AWGN channel acts between input spéce R and

A problem of broad practical interest is to transmit Quiput spac& = R by addition:
message with minimum energy. For the additive white Gaus- y=X+1z, (3)
sian noise (AWGN) channel, the key parameters of the codtf1 I
are: the number of degrees of freedom the number of Where R is the vector space of rea_ll valued sequehces
information bitsk, the probability of block error and the (¥1:%2:---:@n;...), X € A,y € B andz is a random vector
total energy budgef. Determining the region of feasibleW|th independent and |dent|c.ally distributed (i.i.d.) Gaian
(n, k, ¢, E) has received considerable attention in informatio%og‘)fp'j?mgl’f ZN(E’ ]]\\[/[0/2) m%epgndenlt_ c:k'f d d
theory, primarily in various asymptotic regimes. efinition 'AII\} ( - f’.e) code 15 a fist of codewords
The first asymptotic result, due to Shannon [1], demofCts - -»€ur) € A, satisfying
strates that in the limit ok — 0, & — oo, nA—> oo and ||cj||2 <E,j=1,...,M, (4)
k i it= £ j
- — 0 the smallest achievable energy per bif = 7 is and a decodeg : B — {1,..., M} satisfying
Ly — - _
(%),,, = log.2=~159 dB. @) Plg(y) # W] <e, (5)

where% is the noise power per degree of freedom. The limithere y is the response tx = cy, and W is the mes-
does not change i is fixed, if noiseless causal feedback isage which is equiprobable di, ..., M}. The fundamental
available at the encoder, if the channel is subject to fading energy-information tradeoff is given by

even if the modulation is suitably restricted.

Alternatively, if one fixese > 0 and rateX = R then as M*(E, €) = max{M : 3(E, M, ¢)-codg . ©6)
k — oo andn — oo we have (e.g., [2]) Equivalently, we define the minimum energy per bit:
ﬁ—z — %(41% —1). (2) E;(k,e) = Z inf{E : 3(F, 2", ¢)-code . @)

Thus in this case the minimum energy per bit becomesaithough, we are interested in (7)/*(E, ¢) is more suitable

function of R, but note. In contrast to (1), (2) is sensitivefor expressing our results.

to modulation and fading scenarios; see [3]. Definition 2: An (E, M,¢) code with feedback is a se-
Non-asymptotically, in the regime of fixed rafé ande, quence of encoder functiods’.}7° , determining the channel

bounds on the minimun¥}, for finite & have been pro- input as a function of the messageé and the past channel
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satisfying where the right-hand side of (12) is denoted by

E[l[x|[W=4<E,j=1,...,M, ) Ba(E):Q( %JFQ*(Q)) , (17)
and a decodey : B — {1,...,M} satisfying (5). The
fundamental energy-information tradeoff with feedback is

M
M; (E, €) = max{M : 3(E, M, ¢)-feedback code  (10) % _ % S 0 () (18)
And E; (k,€) is defined similar to (7). =1

From (16) we complete the proof of (12):

In the context of finite-blocklength codes without feedhack 1 U
we showed in [5] that the maximum rate compatible with a = M Zﬁpj(g*l(J'))(E) (19)
given error probability for finite blocklengthn admits a tight 7=t
analytical approximation which can be obtained by proving a > fi-e(E), (20)

asymptotic expansior_l un<_jer fixedand n — oo. We follow  \\here (18) follows becausg ! (j) partitions the spacB, (19)
the same approach in this paper obtaining upper and l0Wgfiows from (16), and (20) follows since the function —

bounds orlog M*(E, ¢) andlog M{(E, €) and corresponding 3. (E) is non-decreasing convex for ady and
asymptotics for fixed and £ — oo.
M
1 o
Il. MAIN RESULTS i ZPﬂ(g () >1—e (21)
A. No feedback j=1
Theorem 1:For every M > 0 there exists an(F, M,¢) is equivalent to (5), which holds for evefy, M, ¢) code.

code for the channel (3) with To prove (16) we compute the Radon-Nikodym derivative
— ~ 2B dPi =
€ E [mln{MQ ( N, T Z) ,IH ) (12) log, %(y) — (_% ?,k + Cj,kYk) , (22)
and Z ~ N(0,1). Conversely, any(E, M, ) code without k=1
feedback satisfies which is Gaussian under botR7 and ®. A simple analy-
1 °F 4 sis [15] then shows (16). This method closely parallels the
M =@ ( N TQ (1- E)) ‘ (12) meta-converse in [5, Theorem 26]. ]

Proof: To prove (11), notice that a codebook wiflif ~ ASymptotic analysis of (11) and (12) shows: .
orthogonal codewords under a maximum likelihood decoderTheorem 2:In the absence of feedback, the number of bits

has probability of error equal to that can be transmitted with enerdy and error probability
0 < e < 1 satisfies agy — oc:
oo M-1 R

Po—1-— / 1-Q 2, e 4 log M*(E, ¢) =

STV e Vi o g M7 (E,e) = 1

13 Elpge— /2201 Zlog £
ge Q (e)loge+ = log = + O(1). (23)

A change of variables = /-2 z and application of the bound o o 2 "N
1—(1-y)M-1 < min{My, 1} weakens (13) to (11). B. Communication with feedback

To prove (12) fix an arbitrary codebodks, ..., cn) and We start by stating non-asymptotic converse and achievabil
a decodey : B — {1,..., M}. We denote the measuf®’ = ity bounds whose proofs are given in the appendix.

Py|x=c, On B = R as the infinite dimensional Gaussian Theorem 3:Let 0 < ¢ < 1. Any (E,M,¢) code with

distribution with meanc; and independent components witlfeedback for the channel (3) must satisfy

individual variances equal tég—“; ie., B

. d(l—e||ﬁ)gﬁloge, (24)

Pi =] N(eju. No/2). n=1,2,... (14) 0

k=1 whered(z||y) = zlog £ +(1-x)log }:—; is the binary relative

entropy.

In the special case = 0 (24) reduces tdog M < N% loge.
Theorem 4:For any £ > 0 and positive integeM there

wherec;, is the k-th coordinate of the vectoe;. We also
define an auxiliary measure

R _ exists an(E, M,e) code with feedback for the channel (3)
P = HN(O,NO/2), n=12,... (15) satisfying
Assume for now that for eachand event € B> we have e <inf{l—a+(M-1)5}, (25)
PI(F) > a = &(F) > Bu(E) (16) where the infimum is over all < 8 < o < 1 satisfying

E
2As usual,Q(z) = [° ﬁe*’@/2 dt . d(al|B) = Fo loge. (26)



— ity por-fetbach where we have defined information densities
~ - - Achievability (feedback)
- -~ ~Converse k s
Z(wvyl) - Z 0og j—1 .
j=1 13Yj|Y]j*1 (yj|y1 )

Since the alternative in (31) depends on the difference @f th
information densities, it is convenient to define

(32)

Eb/No, dB

s, = 1ogH (33)
= LYY - (LY. (34)

| The main observation is that assuming= +1 and regardless
R AR of the alternative in (31) we have for eagh> 1

Fig. 1. Bounds on the minimum energy per bit as a function efrtamber
of information bits with and without feedback; block erratee = 103, From (35) we see that und& = +1, S,, is a submartingale
Moreover, there exists af, M, ¢) decision feedbackode, drifting towards+oo. Since the transmitter outpufs, = +d
which uses the feedback link only once to send a “ready-tonly when S, < 0 and otherwise outputs(, = 0, the
decode” signal; its probability of error is bounded by (25%w positive drift of S,, implies that only finitely manyX,,’s will be
a =1, namely, . different from zero with probability one. Another conclosi

e< (M —1)e M. (27) is that Py yy—41 and Py~ |y—_; are mutually singular and
thereforelV' can be recovered fro > with zero error.
To finish the proof, we need to compute the average energy
ent by our scheme. Conditioning & = +1 we see that

10°
Information bits, k

Asymptotic analysis of (24) and (27) shows:
Theorem 5:In the presence of feedback, the number of bits
that can be transmitted with enerdy and error probability sp
0 < e < 1 satisfies ady — oo i i
IxI* =D IIX517 = > d*1{s; < 0}. (36)
j=1

Jj=1

E loge E
log M{(E,¢€) = — log — | . 28
og Mg (E, €) N01_6+0(0gN0> (28)
Note that ase — 0, the leading term in (28) coincides
with the leading term in (23). As we know, in the regim
of arbitrarily reliable communication (and therefdte— oo)

feedback does not help. S, — (f N %Ws) o (37)

To simplify the computation off [||x||?], we replaced Z,,
in (35) with W, 42 — W,_1yq2, Where W is a standard
iener process. In this way, we can write

C. Zero-error communication 2

At first sight it may be plausible that infinite bandwidth may-.€. S,, is just a sampling ofV; on ad*-spaced grid. According
allow finite energy per bit when zero-error is required. Howto (36),]|x]|? is a total number of negative samples multiplied
ever, a simple consequence of [10] is that without feedbacky a grid step. Since every realization Bf; is continuous,
asd — 0 the ||x||? tends to the total tim&@ the Brownian

log M*(E,0) =0 (29 motion L+ /%W, spends below zero:
for all £ > 0. With noiseless feedback the situation changes. oo
Theorem 6:For any positive integek and E > kN, there lim ||x|]? =T 2 / 1{£+\/N_ow <0}dt. (38)
exists an(E, 2F,0)-code with feedback. Equivalently, for all - 0 PV
positive integers: we have Then, taking expectations we get that the average energy spe
to transmit 1 bit is
Ef (k,0) < Np. (30) ©
Proof: An (F;, M;,0) code and aiE,, M,,0) code can E[T] = / P [5 +BWe < 0] dt = No. (39)
be combined into atE; + E», M;M,,0) code by using the 0 )
first code on odd channel inputs and the second code on evdgnce.M¢ (E,0) > 2 for any E > N, as required. =

Therefore, to prove the theorem, it is sufficient to provet tha 1he weaker result thai/¢ (£, 0) > 2 for sufficiently large
for any E > N, there exists ariE, 2,0) code with feedback. 2 follows from _[11, Lemma 4.2],.Wh|cr_1 analyzes a modifica-
To this end, we construct the following binary communicatiotion of an original method of Zigangirov [12]. In contrast,
scheme. Fix an arbitrary > 0, assuméV = £1 and consider OUr method is motivated by the Brownian motion analysis

the following code with feedback: and antipodal signaling arising in the achievability pradf
Section 1I-B. At the expense of a significantly more involved
FalW, Y1) = {Wd, (WY1 <i(=Wiynth), analysis, the bound in Theorem 6 can be further improved by
’ 0, otherwise using multidimensional constellations. It remains to bense

(31) whether such a method could close the gap with (24).
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transmission of any number of bits with finite energy per bit APPENDIX
(with infinite degrees of freedom).

A quantitative analysis of the dependence of the requir%gd
energy on the number of information bits is given in Fig. 1
The non-feedback upper (11) and lower (12) bounds are ti
enough to conclude that for messages of dize 100 bits
the minimumﬁ—g is 0.20 dB, whereas the Shannon limit of
—1.59 dB is only approachable &t ~ 10° bits. In contrast,
with feedback the upper bound, which is the best of (25)
and (30), and the lower bound (24) demonstrate that with
feedback,—1.5 dB is achievable already #t~ 200. N -

Surprisingly, virtually all of the discussed benefits ofdee and . is replaced by3,, a unique solutiors < « of

Proof of Theorem 3: Consider an arbitrarfE, M, ¢)

e with feedback, namely a sequence of encoder functions
1o, and a decoder map: B — {1,..., M}. The “meta-
nverse” part of the proof proceeds step by step as in the
non-feedback case (14)-(21), with the exception that nreasu
P7 = Py —; onB are defined as

Pl= TNV (G YY), 3N0) (41)

k=1

back can be achieved via decision feedback codes only; 5. dlalld) — E | 42
see [15]. In this way, the results of Section 1I-B extend to Ba: d(af|B) = N e (42)
noisy and/or finite capacity feedback links. We need only to show that (16) holds with these modifications,

Note that (3) also models an infinite-bandwidth continuouse  for anya € [0,1]
time Gaussian channel (without feedback) with noise spkectr ’ ) -
densiw% observed over an intervél, T']. If we denote by FCB:IIDI}{F)M‘I)(F) 2 Ba - (43)
M>(T,e) the maximum number of messages that is possibbenceW _ j is fixed, channel inputsy;, become functions
to communicate over such a channel with probability of ecror = J ' k

. . - : on the spaceB defined asX; = fk(j,Yl’“‘l). To find the
and power constrain?, then by taking’ = PT"in Theorem 2 critical set F' achieving the infimum in the hypothesis testing

h . o
we have problem (43) we compute the Radon-Nikodym derivative:
log M} (T, ¢€) = ; o0
e\ A dp’ 1 w2
PT 2PT 1. PT R=log, —= = ) Xi¥p—35Xj. (44)
—loge —y/ =——Q '(e)loge + = log — + O(1) (40) d® kz::l 20k
NO NQ 2 NO

To prove a lower bound (43) we need to optimize over the
choice of bothX, and the critical regiort’. The key simplifi-
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Similarly, under®, we haveR ~ B,. because there are only two error mechanisthsdowncrosses

Note that without loss of generaliti(;, # 0 since having -, before upcrossing,, or some othes; upcrosses; before
X, = 0 does not help in discriminating® vs. ®. Then S;. Notice that in computing probabilitieB[S; -, < ~o] and
eachY}, can be recovered fronX,Y; — %X,f since X, is  P[S2,,, > 71,72 < 71] on the right-hand side of (55) we are
known. Consequently, eack;, is a function of only the past interested only in time instants < n < 7, and thus we can
observationg By, B;,, ..., B;, ,). This implies that eachy,, assume thaf,, = C;,. Then undef? = 1 the processS;
and thusr, is a stopping time of the filtratiotF; satisfying  can be rewritten as

Epilr] <E (49) Sin = Bnaz , (56)
) , where we defind3; and B; as in (45) and (46). The stopping
by the energy constraint (undét’). Therefore, the encoder

maps {f,}52, and the minimizing setF" in (43) define a fime 7, then becomes

sequentialnhylpothesis test, namely a stopping tinaad a de- &’ = mf{.t >0: By & (o,m) t =nd*,n€Z}. (57)
cision regionF € ., for discriminating between a Brownian!f we now define

motion with a positive driftB, (under P) and a Brownian 7 = inf{t >0:B: & (y0,7)}, (58)
motion with a negative driftB; (under ®). According to Fo= nf{t>0:B¢ (v0,m)}, (59)
Shiryaev [13, Section 4.2], among 4, F') satisfying (49)

. ; _ : then the path-continuity aB; implies thatd? d—0.
and havingP(F) > « there exists an optimal one achieving en the path-continuity o, implies thatd =, , r asd —

Similarly, still under the conditio = 1 we rewrite

O(F) = Ba, 50 n _
- ( ) ﬁ ( ) 52,71 = d2 Z Lk + Bnd2 ’ (60)
where(,, is defined in (42). Any other test, F') has a larger =1
value of ®(F'), which proves (43). ® where L, = +1 are i.i.d., independent oB; and P[L; =
Proof of Theorem 4: Fix a list of elements 1] = 1. It can be shown [15] that as— 0 we also have
M . 2 2
(c1,...,cam) € A™ to be chosen lateri|c;||* need not be P[S1., <] — 1—a(yo,m), (61)
finite. Upon receiving channel outpuls, . .., Y, the decoder PlS, . > e 62
computes the likelihood; ,, for each codeworgi = 1,..., M, [S2.0 271,72 <00l = B(y0,m), (62)
cf. (22) and (44): wherea(vo,v1) and B(vo,71) are
n a(y0,71) = P[Br=m], (63)
Sj,nzzcj,kyk—%cika Jj=1...,M. (51) B(v0,71) = P[Br=m,7 < x)]. (64)
_ k=1 . _ . Thus, the intervalvy,~1) determines the boundaries of the
Fix two scalarsyy < 0 < and defineM stopping times  sequential probability ratio test. As shown by Shiryaev,[13
7, =inf{n >0:8;, & (v0,m)}- (52) Section 4.2] and j satisfy log e
The decoder outputV is the index;j of the processS;,, d(a(yo0, 1)l18(v0,71)) = No Efr]. (65)

that is the first to upcross; without having downcrossety, By (55) and from (61) and (62), as— 0 we must have
previously. The encoder conserves energy by transmittihg o ]P’[W £1] < 1—alyo,m) + (M —1)B(v0,m) (66)
up until time 7; (when the true messagé’ = j): whereas the average energy spent by our scheme is

X0 2 [l YT = Cinl{rw 20} (59) ImE([x|’] = Im E[d*r) =E[r],  (67)
To complete the construction of the encoder-decoder pair \h@C_aUSGFTl N T _ o
need to chooskey, . . ., cyr). This is done by a random-coding  Finally, comparing (26) and (65) it follows that optimiz-
argument. Fixd > 0 and generate eaa}y independently with ing (66) over ally, < 0 < v, satisfyingE[r] = E we
equiprobable antipodal coordinates: obtain (25). To prove (27) simply notice that when= 1
1 we havey, = —oo, and hence the decision is taken by the
PlCjr =+d =P[Cjr=—d] = 3 j=1,...,M. (54) decoder the first time ang; upcrossesy;. Therefore, in the

_encoder rule (53) the time;, whose computation requires the

By symmetry the probability of error averaged over the c&oig | knowledge ofY;, can be replaced with the time of decoder
of the codebook equals[W” 7 1| = 1] and thus henceforth yecision. Obviously, this modification will not change the

probabilities conditioned ofl” = 1. We have probability of error and will conserve energy even moredsin

. = —oo prohibitsT; to occur before the decision time
P # 1] < P[S1 <0+ Y PlSjr, 2 70,7 <) (B5) " P ' -

Jj=2

3If instead of (9) we impose the maximum energy constrdint}|? < E
(a.s.), thenr < E and hence instead df € . we would haveF' € Fg,
thus obtaining a usual, fixed-sample-size, binary hyp@htst. Theng,
should be replaced witl$, from (17) and thus, such an energy constraint
renders feedback useless. This parallels the result of WA



