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Abstract—The question of minimum achievable energy per bit
over memoryless channels has been previously addressed in the
limit of number of information bits going to infinity, in whic h case
it is known that availability of noiseless feedback does notlower
the minimum energy per bit. This paper analyzes the behaviorof
the minimum energy per bit for memoryless Gaussian channelsas
a function of the number of information bits. It is demonstrated
that in this non-asymptotic regime, noiseless feedback leads to
significantly better energy efficiency. A feedback coding scheme
with zero probability of block error and finite energy per bit is
constructed. For both achievability and converse, the feedback
coding problem is reduced to a sequential hypothesis testing
problem for Brownian motion.

Index Terms—Shannon theory, minimum energy per bit,
feedback, non-asymptotic analysis, AWGN channel, Brownian
motion.

I. I NTRODUCTION AND PROBLEM STATEMENT

A problem of broad practical interest is to transmit a
message with minimum energy. For the additive white Gaus-
sian noise (AWGN) channel, the key parameters of the code
are: the number of degrees of freedomn, the number of
information bitsk, the probability of block errorǫ and the
total energy budgetE. Determining the region of feasible
(n, k, ǫ, E) has received considerable attention in information
theory, primarily in various asymptotic regimes.

The first asymptotic result, due to Shannon [1], demon-
strates that in the limit ofǫ → 0, k → ∞, n → ∞ and
k
n
→ 0 the smallest achievable energy per bitEb

△
= E

k
is

(

Eb

N0

)

min
= loge 2 = −1.59 dB , (1)

whereN0

2 is the noise power per degree of freedom. The limit
does not change ifǫ is fixed, if noiseless causal feedback is
available at the encoder, if the channel is subject to fading, or
even if the modulation is suitably restricted.

Alternatively, if one fixesǫ > 0 and ratek
n

= R then as
k → ∞ andn → ∞ we have (e.g., [2])

Eb

N0
→ 1

2R
(4R − 1). (2)

Thus in this case the minimum energy per bit becomes a
function of R, but not ǫ. In contrast to (1), (2) is sensitive
to modulation and fading scenarios; see [3].

Non-asymptotically, in the regime of fixed rateR and ǫ,
bounds on the minimumEb for finite k have been pro-
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posed [4], [5], studied numerically [6]–[8] and tightly approx-
imated [5], [9].

In this paper we investigate the minimal energyE required
to transmit k bits allowing error probabilityǫ ≥ 0 and
n → ∞. Equivalently, we determine the maximal number of
bits of information that can be transmitted with a fixed (non-
asymptotic) energy budget and an error probability constraint,
but without any limitation on the number of degrees of
freedom used. This is different from [1] in that we do not take
k → ∞, and from [4]–[9] in that we do not fix a non-zero rate
k
n

. By doing so, we obtain thebona fideenergy-information
tradeoff for the AWGN channel. Even though (2) results in (1)
by letting R → 0, the minimum energy for finitek cannot be
obtained from the asymptotic limit in (2).

The AWGN channel acts between input spaceA = R
∞ and

output spaceB = R
∞ by addition:

y = x + z , (3)

where R
∞ is the vector space of real valued sequences1

(x1, x2, . . . , xn, . . .), x ∈ A, y ∈ B andz is a random vector
with independent and identically distributed (i.i.d.) Gaussian
componentsZk ∼ N (0, N0/2) independent ofx.

Definition 1: An (E, M, ǫ) code is a list of codewords
(c1, . . . , cM ) ∈ AM , satisfying

||cj ||2 ≤ E , j = 1, . . . , M , (4)

and a decoderg : B → {1, . . . , M} satisfying

P[g(y) 6= W ] ≤ ǫ , (5)

where y is the response tox = cW , and W is the mes-
sage which is equiprobable on{1, . . . , M}. The fundamental
energy-information tradeoff is given by

M∗(E, ǫ) = max{M : ∃(E, M, ǫ)-code} . (6)

Equivalently, we define the minimum energy per bit:

E∗
b
(k, ǫ) =

1

k
inf{E : ∃(E, 2k, ǫ)-code} . (7)

Although, we are interested in (7),M∗(E, ǫ) is more suitable
for expressing our results.

Definition 2: An (E, M, ǫ) code with feedback is a se-
quence of encoder functions{fk}∞k=1 determining the channel
input as a function of the messageW and the past channel
outputs,

Xk = fk(W, Y k−1
1 ) , (8)

1In this paper, boldface lettersx, y etc. denote the infinite dimensional
vectors with coordinatesXk, Yk etc., correspondingly.



satisfying

E [||x||2|W = j] ≤ E , j = 1, . . . , M , (9)

and a decoderg : B → {1, . . . , M} satisfying (5). The
fundamental energy-information tradeoff with feedback is

M∗
f (E, ǫ) = max{M : ∃(E, M, ǫ)-feedback code}. (10)

And E∗
f
(k, ǫ) is defined similar to (7).

In the context of finite-blocklength codes without feedback,
we showed in [5] that the maximum rate compatible with a
given error probabilityǫ for finite blocklengthn admits a tight
analytical approximation which can be obtained by proving an
asymptotic expansion under fixedǫ and n → ∞. We follow
the same approach in this paper obtaining upper and lower
bounds onlog M∗(E, ǫ) andlog M∗

f
(E, ǫ) and corresponding

asymptotics for fixedǫ andE → ∞.

II. M AIN RESULTS

A. No feedback

Theorem 1:For everyM > 0 there exists an(E, M, ǫ)
code for the channel (3) with2

ǫ = E

[

min
{

MQ
(
√

2E
N0

+ Z
)

, 1
}]

, (11)

and Z ∼ N (0, 1). Conversely, any(E, M, ǫ) code without
feedback satisfies

1

M
≥ Q

(
√

2E
N0

+ Q−1(1 − ǫ)
)

. (12)

Proof: To prove (11), notice that a codebook withM
orthogonal codewords under a maximum likelihood decoder
has probability of error equal to

Pe = 1− 1√
πN0

∫ ∞

−∞

[

1 − Q

(
√

2

N0
z

)]M−1

e
− (z−

√
E)2

N0 dz .

(13)
A change of variablesx =

√

2
N0

z and application of the bound

1 − (1 − y)M−1 ≤ min{My, 1} weakens (13) to (11).
To prove (12) fix an arbitrary codebook(c1, . . . , cM ) and

a decoderg : B → {1, . . . , M}. We denote the measureP j =
Py|x=cj

on B = R
∞ as the infinite dimensional Gaussian

distribution with meancj and independent components with
individual variances equal toN0

2 ; i.e.,

P j =

∞
∏

k=1

N (cj,k, N0/2) , n = 1, 2, . . . (14)

where cj,k is the k-th coordinate of the vectorcj . We also
define an auxiliary measure

Φ =

∞
∏

k=1

N (0, N0/2) , n = 1, 2, . . . (15)

Assume for now that for eachj and eventF ∈ B∞ we have

P j(F ) ≥ α =⇒ Φ(F ) ≥ βα(E) , (16)

2As usual,Q(x) =
R ∞

x
1√
2π

e−t2/2 dt .

where the right-hand side of (12) is denoted by

βα(E) = Q
(
√

2E
N0

+ Q−1(α)
)

. (17)

From (16) we complete the proof of (12):

1

M
=

1

M

M
∑

j=1

Φ(g−1(j)) (18)

≥ 1

M

M
∑

j=1

βP j(g−1(j))(E) (19)

≥ β1−ǫ(E) , (20)

where (18) follows becauseg−1(j) partitions the spaceB, (19)
follows from (16), and (20) follows since the functionα →
βα(E) is non-decreasing convex for anyE and

1

M

M
∑

j=1

P j(g−1(j)) ≥ 1 − ǫ (21)

is equivalent to (5), which holds for every(E, M, ǫ) code.
To prove (16) we compute the Radon-Nikodym derivative

loge

dP j

dΦ
(y) =

∞
∑

k=1

(

− 1
2c2

j,k + cj,kYk

)

, (22)

which is Gaussian under bothP j and Φ. A simple analy-
sis [15] then shows (16). This method closely parallels the
meta-converse in [5, Theorem 26].

Asymptotic analysis of (11) and (12) shows:
Theorem 2:In the absence of feedback, the number of bits

that can be transmitted with energyE and error probability
0 < ǫ < 1 satisfies asE → ∞:

log M∗(E, ǫ) =

E
N0

log e −
√

2E
N0

Q−1(ǫ) log e +
1

2
log E

N0
+ O(1). (23)

B. Communication with feedback

We start by stating non-asymptotic converse and achievabil-
ity bounds whose proofs are given in the appendix.

Theorem 3:Let 0 ≤ ǫ < 1. Any (E, M, ǫ) code with
feedback for the channel (3) must satisfy

d
(

1 − ǫ|| 1
M

)

≤ E

N0
log e , (24)

whered(x||y) = x log x
y
+(1−x) log 1−x

1−y
is the binary relative

entropy.
In the special caseǫ = 0 (24) reduces tolog M ≤ E

N0
log e.

Theorem 4:For anyE > 0 and positive integerM there
exists an(E, M, ǫ) code with feedback for the channel (3)
satisfying

ǫ ≤ inf {1 − α + (M − 1)β} , (25)

where the infimum is over all0 < β < α ≤ 1 satisfying

d(α||β) =
E

N0
log e . (26)
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Fig. 1. Bounds on the minimum energy per bit as a function of the number
of information bits with and without feedback; block error rate ǫ = 10−3.

Moreover, there exists an(E, M, ǫ) decision feedbackcode,
which uses the feedback link only once to send a “ready-to-
decode” signal; its probability of error is bounded by (25) with
α = 1, namely,

ǫ ≤ (M − 1)e
− E

N0 . (27)

Asymptotic analysis of (24) and (27) shows:
Theorem 5:In the presence of feedback, the number of bits

that can be transmitted with energyE and error probability
0 < ǫ < 1 satisfies asE → ∞

log M∗
f
(E, ǫ) =

E

N0

log e

1 − ǫ
+ O

(

log
E

N0

)

. (28)

Note that asǫ → 0, the leading term in (28) coincides
with the leading term in (23). As we know, in the regime
of arbitrarily reliable communication (and thereforek → ∞)
feedback does not help.

C. Zero-error communication

At first sight it may be plausible that infinite bandwidth may
allow finite energy per bit when zero-error is required. How-
ever, a simple consequence of [10] is that without feedback

log M∗(E, 0) = 0 (29)

for all E > 0. With noiseless feedback the situation changes.
Theorem 6:For any positive integerk andE > kN0 there

exists an(E, 2k, 0)-code with feedback. Equivalently, for all
positive integersk we have

E∗
f
(k, 0) ≤ N0 . (30)

Proof: An (E1, M1, 0) code and an(E2, M2, 0) code can
be combined into an(E1 + E2, M1M2, 0) code by using the
first code on odd channel inputs and the second code on even.
Therefore, to prove the theorem, it is sufficient to prove that
for anyE > N0 there exists an(E, 2, 0) code with feedback.
To this end, we construct the following binary communication
scheme. Fix an arbitraryd > 0, assumeW = ±1 and consider
the following code with feedback:

fn(W, Y n−1
1 ) =

{

Wd, i(W ; Y n−1) ≤ i(−W ; Y n−1) ,

0, otherwise
(31)

where we have defined information densities

i(w; yk
1 ) =

k
∑

j=1

log
PYj |Xj

(yj |fj(w; yj−1
1 ))

P
Yj |Y

j−1
1

(yj |yj−1
1 )

. (32)

Since the alternative in (31) depends on the difference of the
information densities, it is convenient to define

Sn = log
P[W = +1|Y n]

P[W = −1|Y n]
(33)

= i(+1; Y n
1 ) − i(−1; Y n

1 ) . (34)

The main observation is that assumingW = +1 and regardless
of the alternative in (31) we have for eachn > 1

Sn = Sn−1 + 1
2d2 + dZn . (35)

From (35) we see that underW = +1, Sn is a submartingale
drifting towards+∞. Since the transmitter outputsXn = +d
only when Sn < 0 and otherwise outputsXn = 0, the
positive drift ofSn implies that only finitely manyXn’s will be
different from zero with probability one. Another conclusion
is thatPY ∞|W=+1 andPY ∞|W=−1 are mutually singular and
thereforeW can be recovered fromY ∞ with zero error.

To finish the proof, we need to compute the average energy
spent by our scheme. Conditioning onW = +1 we see that

||x||2 =

∞
∑

j=1

||Xj ||2 =

∞
∑

j=1

d21{Sj ≤ 0} . (36)

To simplify the computation ofE [||x||2], we replacedZn

in (35) with Wnd2 − W(n−1)d2 , where Wt is a standard
Wiener process. In this way, we can write

Sn =

(

s

2
+

√

N0

2 Ws

)

|s=nd2 , (37)

i.e.Sn is just a sampling ofWt on ad2-spaced grid. According
to (36), ||x||2 is a total number of negative samples multiplied
by a grid step. Since every realization ofWt is continuous,
as d → 0 the ||x||2 tends to the total timeT the Brownian
motion t

2 +
q

N0
2 Wt spends below zero:

lim
d→0

||x||2 = T
△
=

∫ ∞

0

1n

t
2 +

√
N0
2

Wt≤0
odt . (38)

Then, taking expectations we get that the average energy spent
to transmit 1 bit is

E [T ] =

∫ ∞

0

P

[

t

2
+

√

N0

2 Wt ≤ 0

]

dt = N0. (39)

Hence,M∗
f
(E, 0) ≥ 2 for any E > N0, as required.

The weaker result thatM∗
f
(E, 0) ≥ 2 for sufficiently large

E follows from [11, Lemma 4.2], which analyzes a modifica-
tion of an original method of Zigangirov [12]. In contrast,
our method is motivated by the Brownian motion analysis
and antipodal signaling arising in the achievability proofof
Section II-B. At the expense of a significantly more involved
analysis, the bound in Theorem 6 can be further improved by
using multidimensional constellations. It remains to be seen
whether such a method could close the gap with (24).



III. C ONCLUSION

As the number of information bitsk goes to infinity,
the minimum energy per bit required for arbitrarily reliable
communication is equal to−1.59 dB with or without feedback.
However, in the non-asymptotic regime, feedback substantially
reduces the minimum energy per bit. Comparing Theorems 2
and 5, we observe a double benefit: feedback reduces the
leading term in the minimum energy by a factor of1 − ǫ,
and the penalty due to the second-order term in (23) disap-
pears. According to Theorem 6 feedback enables zero-error
transmission of any number of bits with finite energy per bit
(with infinite degrees of freedom).

A quantitative analysis of the dependence of the required
energy on the number of information bits is given in Fig. 1.
The non-feedback upper (11) and lower (12) bounds are tight
enough to conclude that for messages of sizek ∼ 100 bits
the minimum Eb

N0
is 0.20 dB, whereas the Shannon limit of

−1.59 dB is only approachable atk ∼ 106 bits. In contrast,
with feedback the upper bound, which is the best of (25)
and (30), and the lower bound (24) demonstrate that with
feedback,−1.5 dB is achievable already atk ∼ 200.

Surprisingly, virtually all of the discussed benefits of feed-
back can be achieved via decision feedback codes only;
see [15]. In this way, the results of Section II-B extend to
noisy and/or finite capacity feedback links.

Note that (3) also models an infinite-bandwidth continuous-
time Gaussian channel (without feedback) with noise spectral
density N0

2 observed over an interval[0, T ]. If we denote by
M∗

c (T, ǫ) the maximum number of messages that is possible
to communicate over such a channel with probability of errorǫ
and power constraintP , then by takingE = PT in Theorem 2
we have

log M∗
c (T, ǫ) =

PT

N0
log e −

√

2PT

N0
Q−1(ǫ) log e +

1

2
log

PT

N0
+ O(1) (40)

sharpening the capacity result of Shannon [1].
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bits with and without feedback,”IEEE Trans. Inf. Theory, Mar. 2010,
submitted for publication.

APPENDIX

Proof of Theorem 3: Consider an arbitrary(E, M, ǫ)
code with feedback, namely a sequence of encoder functions
{fn}∞n=1 and a decoder mapg : B → {1, . . . , M}. The “meta-
converse” part of the proof proceeds step by step as in the
non-feedback case (14)-(21), with the exception that measures
P j = Py|W=j on B are defined as

P j =
∞
∏

k=1

N (fk(j, Y k−1
1 ), 1

2N0) (41)

andβα is replaced byβ̃α, a unique solutioñβ < α of

β̃α : d(α||β̃) =
E

N0
log e . (42)

We need only to show that (16) holds with these modifications,
i.e. for anyα ∈ [0, 1]

inf
F⊂B:P j(F )≥α

Φ(F ) ≥ β̃α . (43)

OnceW = j is fixed, channel inputsXk become functions
on the spaceB defined asXk = fk(j, Y k−1

1 ). To find the
critical setF achieving the infimum in the hypothesis testing
problem (43) we compute the Radon-Nikodym derivative:

R
△
= loge

dP j

dΦ
=

∞
∑

k=1

XkYk − 1
2X2

k . (44)

To prove a lower bound (43) we need to optimize over the
choice of bothXk and the critical regionF . The key simplifi-
cation comes from identifying the noise random variablesZk

with increments of the Wiener process.
Formally, define a standard Wiener processWt with the

filtration {Ft}t∈[0,∞) and two Brownian motions:

Bt =
t

2
+

√

N0

2 Wt , (45)

B̄t = − t

2
+

√

N0

2 Wt . (46)

Then we can see that underP j we haveYk = Xk + Zk and
hence we can assume

XkYk − 1
2X2

k = Bτk
− Bτk−1

, (47)

where we have denoted the instantsτk =
∑k

m=1 X2
m. Then

under P j the distribution ofR coincides with that ofBτ ,
where the random variableτ is defined as

τ =

∞
∑

k=1

X2
k . (48)



Similarly, underΦ, we haveR ∼ B̄τ .
Note that without loss of generalityXk 6= 0 since having

Xk = 0 does not help in discriminatingP j vs. Φ. Then
eachYk can be recovered fromXkYk − 1

2X2
k since Xk is

known. Consequently, eachXk is a function of only the past
observations(B0, Bτ1 , . . . , Bτk−1

). This implies that eachτk,
and thusτ , is a stopping time of the filtrationFt satisfying

E P j [τ ] ≤ E (49)

by the energy constraint (underP j). Therefore, the encoder
maps {fn}∞n=1 and the minimizing setF in (43) define a
sequential hypothesis test, namely a stopping timeτ and a de-
cision regionF ∈ Fτ , for discriminating between a Brownian
motion with a positive driftBt (under P ) and a Brownian
motion with a negative driftB̄t (under Φ). According to
Shiryaev [13, Section 4.2], among all(τ, F ) satisfying (49)
and havingP (F ) ≥ α there exists an optimal one achieving3

Φ(F ) = β̃α , (50)

whereβ̃α is defined in (42). Any other test(τ, F ) has a larger
value ofΦ(F ), which proves (43).

Proof of Theorem 4: Fix a list of elements
(c1, . . . , cM ) ∈ AM to be chosen later;||cj ||2 need not be
finite. Upon receiving channel outputsY1, . . . , Yn the decoder
computes the likelihoodSj,n for each codewordj = 1, . . . , M ,
cf. (22) and (44):

Sj,n =
n

∑

k=1

Cj,kYk − 1
2C2

j,k , j = 1, . . . , M . (51)

Fix two scalarsγ0 < 0 < γ1 and defineM stopping times

τj = inf{n > 0 : Sj,n 6∈ (γ0, γ1)} . (52)

The decoder output̂W is the indexj of the processSj,n

that is the first to upcrossγ1 without having downcrossedγ0

previously. The encoder conserves energy by transmitting only
up until timeτj (when the true messageW = j):

Xn
△
= fn(j, Y n−1

1 ) = Cj,n1{τW ≥ n} . (53)

To complete the construction of the encoder-decoder pair we
need to choose(c1, . . . , cM ). This is done by a random-coding
argument. Fixd > 0 and generate eachcj independently with
equiprobable antipodal coordinates:

P[Cj,k = +d] = P[Cj,k = −d] =
1

2
, j = 1, . . ., M. (54)

By symmetry the probability of error averaged over the choice
of the codebook equalsP[Ŵ 6= 1|W = 1] and thus henceforth
probabilities conditioned onW = 1. We have

P[Ŵ 6= 1] ≤ P[S1,τ1 ≤ γ0]+
M
∑

j=2

P[Sj,τj
≥ γ1, τj ≤ τ1] (55)

3If instead of (9) we impose the maximum energy constraint:||x||2 ≤ E

(a.s.), thenτ ≤ E and hence instead ofF ∈ Fτ we would haveF ∈ FE ,
thus obtaining a usual, fixed-sample-size, binary hypothesis test. Thenβ̃α

should be replaced withβα from (17) and thus, such an energy constraint
renders feedback useless. This parallels the result of Wyner [14].

because there are only two error mechanisms:S1 downcrosses
γ0 before upcrossingγ1, or some otherSj upcrossesγ1 before
S1. Notice that in computing probabilitiesP[S1,τ1 ≤ γ0] and
P[S2,τ2 ≥ γ1, τ2 ≤ τ1] on the right-hand side of (55) we are
interested only in time instants0 ≤ n ≤ τ1 and thus we can
assume thatXn = Cj,n. Then underW = 1 the processS1

can be rewritten as

S1,n = Bnd2 , (56)

where we defineBt andB̄t as in (45) and (46). The stopping
time τ1 then becomes

d2τ1 = inf{t > 0 : Bt 6∈ (γ0, γ1) , t = nd2, n ∈ Z} . (57)

If we now define

τ = inf{t > 0 : Bt 6∈ (γ0, γ1)} , (58)

τ̄ = inf{t > 0 : B̄t 6∈ (γ0, γ1)} , (59)

then the path-continuity ofBt implies thatd2τ1 ց τ asd → 0.
Similarly, still under the conditionW = 1 we rewrite

S2,n = d2
n

∑

k=1

Lk + B̄nd2 , (60)

where Lk = ±1 are i.i.d., independent of̄Bt and P[Lk =
+1] = 1

2 . It can be shown [15] that asd → 0 we also have

P[S1,τ1 ≤ γ0] → 1 − α(γ0, γ1) , (61)

P[S2,τ2 ≥ γ1, τ2 < ∞] → β(γ0, γ1) , (62)

whereα(γ0, γ1) andβ(γ0, γ1) are

α(γ0, γ1) = P[Bτ = γ1] , (63)

β(γ0, γ1) = P[B̄τ̄ = γ1, τ̄ < ∞] . (64)

Thus, the interval(γ0, γ1) determines the boundaries of the
sequential probability ratio test. As shown by Shiryaev [13,
Section 4.2],α andβ satisfy

d(α(γ0, γ1)||β(γ0, γ1)) =
log e

N0
E [τ ] . (65)

By (55) and from (61) and (62), asd → 0 we must have

P[Ŵ 6= 1] ≤ 1 − α(γ0, γ1) + (M − 1)β(γ0, γ1) , (66)

whereas the average energy spent by our scheme is

lim
d→0

E [||x||2] = lim
d→0

E [d2τ1] = E [τ ] , (67)

becaused2τ1 ց τ .
Finally, comparing (26) and (65) it follows that optimiz-

ing (66) over all γ0 < 0 < γ1 satisfying E [τ ] = E we
obtain (25). To prove (27) simply notice that whenα = 1
we haveγ0 = −∞, and hence the decision is taken by the
decoder the first time anySj upcrossesγ1. Therefore, in the
encoder rule (53) the timeτj , whose computation requires the
full knowledge ofYk, can be replaced with the time of decoder
decision. Obviously, this modification will not change the
probability of error and will conserve energy even more (since
γ0 = −∞ prohibitsτj to occur before the decision time).


