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Abstract

We discuss the problem of designing channel access architectures for enabling fast, low-latency, grant-free, and

uncoordinated uplink for densely packed wireless nodes. Specifically, we study random-access codes, previously

introduced for the AWGN MAC in [2], in the practically more relevant case of Rayleigh fading, when channel

gains are unknown to the decoder. We propose a random coding achievability bound, which we analyze both non-

asymptotically and asymptotically. As a candidate practical solution, we propose an explicit iterative coding scheme.

The performance of such a solution is surprisingly close to the finite blocklength bounds. Our main findings are

twofold. First, just like in the AWGN MAC, we see that jointly decoding a large number of users leads to a surprising

phase transition effect, where, at spectral efficiencies below a critical threshold, a perfect multi-user interference

cancellation is possible. Second, while the presence of Rayleigh fading significantly increases the minimal required

energy-per-bit, the inherent randomization introduced by the channel makes it much easier to attain the optimal

performance via iterative schemes. We hope that a principled definition of the random-access model, together with

their information-theoretic analysis, will open the road towards unified benchmarking and performance comparison

of various random-access solutions for the 5G/6G.
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I. INTRODUCTION

Presently, wireless networks are starting to see a new type of communication traffic, in which hundreds

of thousands of devices are serviced by a single base station, each communicating very small and infrequent

data payloads. This scenario is known under the name of massive machine-type communications (mMTC).

In the interest of reducing hardware complexity, reducing latency and improving energy consumption, the

conceptual paradigm shift is to move to the grant-free access management, in which uplink communication

is not orthogonalized by the base-station (as it is done in today’s systems). In this case, devices transmit

independently from each other as well as without any centralized scheduling mechanism. In the literature,

this problem is also known as uncoordinated multiple access or random access. The most popular tech-

niques for uncoordinated multiple access include slotted ALOHA (SA) protocol [3] and its modifications

with contention resolution methods [4]–[7]. The asynchronous case was considered in [8]–[10]. The main

difference in our problem is in a huge number of devices which lead to a large collision probability.

This requires new methods to decode colliding transmissions. In this work, we aim at understanding

the fundamental tradeoffs of these dense random access systems and provide coding solutions that are

close to achieving these fundamental limits. As energy efficiency is of critical importance for the mMTC

scenario, we measure performance in terms of minimal energy-per-bit required to achieve the target per-user

probability of error (PUPE). Specifically, we consider a problem of a large number of nodes (potentially

unbounded) with any Ka of them communicating to a single access point or base station (BS) over a

frame synchronous multiple access channel (MAC) with frame length equals to n complex-valued channel

uses.

An information-theoretic formulation of this problem was done in [2] where the author considered an

additive white Gaussian noise (AWGN) random access channel (RAC) model. In this formulation, the

random access means the following: each of Ka active users encodes his k-bit message into an n-symbol

codeword. The receiver observes the superposition of Ka codewords corrupted by the AWGN. There are

many challenges in this model: finite blocklength (FBL) effects due to small payload size, a massive

number of users (comparable to blocklength), sparsity due to random access and incorporating accurate

channel models. However, the most crucial departure from canonical MAC is that the users are required to

share the same codebook, and the decoder is only required to provide an unordered list of user messages. In
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the follow-up works, this problem has also been called unsourced random access [11]–[13]. The unsourced

random access is a type of uncoordinated random access with no need to identify the sender. Another

important aspect of this new formulation is the notion of per-user probability of error (PUPE) which is

defined as the average (over the active users) fraction of the transmitted messages that are misdecoded.

(Recall that classical definition declares error even if any one of the messages is decoded incorrectly.)

In a quest towards low-complexity schemes achieving FBL bounds above, a scheme based on concate-

nated codes (with an inner binary linear code and an outer BCH codes) in conjunction with a protocol

called T -fold SA was considered in [14]. T -fold SA is a modification of the standard SA protocol [3],

in which collisions of order up to T can be decoded in a slot. So, SA corresponds to T = 1. The idea

of T -fold SA itself is not new as the idea of employing multi-packet receivers to resolve small order

collisions has reappeared periodically [15] and more recently [6, Appendix A]. The gap between this

low-complexity scheme in [14] and the FBL bound [2] was reduced in [11] by employing a successive

interference cancellation scheme on top of an interleaved LDPC code. Achievability bounds for successive

interference cancellation scheme (also known as irregular repetition SA [6]) were further improved in [16],

where density evolution method [6] and a finite length random coding bound for the Gaussian MAC [2]

were combined. In [17] the LDPC portion of [11] was improved by optimizing the protograph of LDPC

code for Gaussian MAC using generalized PEXIT charts. Further improvements were obtained in [12]

by developing a compressive sensing based algorithm. In [18] the idea of sparsifying collisions, inherent

in T -fold SA, was modified by randomizing (sparse) locations of the LDPC codeword symbols and by

optimizing degree distributions via a suitable approximation of a density evolution. Finally, we mention

that there is another promising idea, proposed in 2001 by Muller and Caire [19], that uses non-orthogonal

CDMA spreading coupled with an outer code. The key idea is to demodulate CDMA by leveraging the

soft information from the outer decoder (and alternate between the two). In [19] authors observed a perfect

multi-user cancellation effect, shown to exist also for the fundamental limit in [20]. It remains to explore

whether this method is competitive for practically relevant blocklengths. Another set of works considers

the problem of sending a (distributedly detected) alarm signal with high-reliability on top of the regular

low-rate update traffic, cf. [21].

All of the references above focused on the AWGN RAC (or, equivalently, assumed perfect power control
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of the users’ transmissions equalizing received powers). In the presence of fading and MIMO, there have

been various works on algorithms for on/off activity detection [22]–[24] that use compressive sensing

ideas along with approximate message passing algorithm. (We note that the random-access problem can

be seen as on/off activity detection within a population of 2k users, where k is the message length in bits.

However, already a moderate value of k = 100 bits precludes the straightforward usage of activity detection

protocols.) In [25], scaling laws were derived for activity detection in a massive MIMO scenario. This

and the ideas from [12] have been used to develop a low-complexity coding scheme in [13]. We also note

here that our problem can be understood as a sparse support recovery in the compressed sensing literature

[26]–[29]. Theoretical investigations in that literature predominantly consider iid Gaussian codebooks.

In particular, in [27], the authors analyze various estimators like maximum likelihood (ML) and linear

estimators like matched filter (MF) and linear minimum mean squared error (LMMSE) but in an asymptotic

setting similar to a many-user MAC [2], [20], [30]–[32] where the number of active users scales linearly

in blocklength.

The structure and main contributions of this paper are as follows. In Section II we formally define

the problem of unsourced frame synchronized single antenna quasi-static Rayleigh fading RAC under

per-user error. We assume that the channel realizations are not known to the receiver or the transmitters.

A T -fold SA access method from [14] is reviewed in Section III. There are two ways we apply T -fold

SA in this paper. One is to get a random-coding (non-constructive) achievability bounds, this is done in

Appendix A. Another is to use it as part of the explicit construction, which we do in Section V. A converse

(lower) bound on energy-per-bit required for any random-access codes is developed in Section IV. The

random coding achievability and converse bounds are evaluated in the asymptotic setting in Section VII.

In Section V we develop a low-complexity iterative multi-user decoding scheme based on LDPC codes

[33]–[35] and a belief propagation decoder on a joint Tanner graph. In SectionVI we numerically compare

various bounds in the finite-blocklength setting. It is found that our practical scheme is rather competitive

compared to both our own finite-blocklength bounds and asymptotic benchmarks. Section VIII finishes

with some future directions.
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II. SYSTEM MODEL

Let N denote the set of natural numbers. For n ∈ N, let Cn denote the n–dimensional complex Euclidean

space. Let S ⊂ Cn. We denote the projection operator or matrix onto the subspace spanned by S as PS

and its orthogonal complement as P⊥S . For 0 ≤ p ≤ 1, let h2(p) = −p log2(p) − (1 − p) log2(1 − p) and

h(p) = −p ln(p) − (1 − p) ln(1 − p), with 0 ln (0) defined to be 0. We denote by N (0, 1) and CN (0, 1)

the standard normal and the standard circularly symmetric complex normal distributions, respectively. P

and E denote probability measure and expectation operator respectively. For n ∈ N, let [n] = {1, 2, ..., n}.

Lastly, ‖·‖ represents the standard euclidean norm.

We follow the definition of a code from [2]. Fix an integer Ka ≥ 1 – the number of active users. Let

{PY n|Xn = PY n|Xn
1 ,X

n
2 ,...,X

n
Ka

: ×Kai=1X n
i → Yn}∞n=1 be a multiple access channel (MAC), which is also

permutation invariant: for any permutation π on [Ka], the distribution PY n|Xn
1 ,...,X

n
Ka
(·|xn1 , ..., xnKa) coincides

with PY n|Xn
1 ,...,X

n
Ka
(·|xnπ(1), ..., xnπ(Ka)). We also call this a random access channel (RAC).

Definition 1. An (M,n, ε) random-access code for the Ka user MAC PY n|Xn is a pair of (possibly

randomized) maps f : [M ]→ X n (the encoder) and g : Yn →
(
[M ]
Ka

)
such that if W1, ...,WKa are chosen

independently and uniformly from [M ] and Xj = f(Wj) then the average (per-user) probability of error

satisfies

Pe =
1

Ka

Ka∑
j=1

P [Ej] ≤ ε (1)

where Ej , {Wj /∈ g(Y n)} ∪ {Wj = Wi for some i 6= j} and Y n is the channel output.

So, all users use the same codebook, and the receiver outputs a list of Ka codewords. Further, the

probability of error is the average fraction of incorrectly decoded codewords. In the remainder of the

paper we particularly focus on the single antenna quasi-static fading MAC:

Y n =
Ka∑
i=1

Xn
i · diag(Hn

i ) + Zn (2)

where Xn
i ∈ Cn is the i-th transmitted codeword, Zn ∼ CN (0, In) is an additive white Gaussian noise

(AWGN) and {Hn
i } are the fading coefficients which are independent of {Xn

i } and Zn. We emphasize that

our channel model is an approximation to a slow fading channel and assume the channel to be constant for
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n1 < n channel uses (so-called quasi-static property or channel coherence time)1. Thus, in what follows

we consider a frame of n channel uses divided into L ∈ N slots of length n1, such that n = Ln1. Finally,

we require each codeword produced by the encoder f to satisfy a maximum power constraint:

‖f(w)‖2 ≤ nP , ∀w ∈ [M ] . (3)

We emphasize that there can be potentially an unbounded number of users, but only Ka of them are

active. If each user has a message of size k and transmits at power P per symbol, then the energy-per-bit

is given by Eb/N0 =
nP
k

. In the rest of the paper we drop the superscript n unless it is unclear.

III. RANDOM-ACCESS VIA T -FOLD SLOTTED ALOHA

In this section, we discuss our main achievability bound based on T -fold SA protocol [14]. Let T, n1 ∈ N

such that T < Ka and n1 < n. The frame of length n complex-valued channel uses (either in time or

in frequency domain) is partitioned into L = n/n1 ∈ N subframes of length n1 complex-valued channel

uses. The common codebook is of blocklength n1 and thus may use a larger power LP per degree of

freedom. Each user chooses a slot to send his message uniformly at random independently of other users.

If there are r users placing their codewords in a particular n1-slot, then the law of observations Y n1 and

messages W1, . . . ,Wr in this slot is given by

Y n1 =
r∑
i=1

Hif(Wi) + Zn1 , Wi,
iid∼ Unif[M ] . (4)

and Hi
iid∼ CN (0, 1), i = 1, . . . , r.

The idea of T -fold SA is to resolve collisions of order up to T . In other words if the number of users

r transmitting in a given slot is at most T , then, with good reliability the decoder can estimate all the

messages. For T = 1 this corresponds to the usual “collision model” prevalent in the analysis of the SA.

Thus, T -fold SA is a compromise between conventional SA and joint decoding of all active users, which

transmit simultaneously with the use of a common codebook. We want to emphasize that T -fold SA is

theoretically beneficial as it utilizes multi-user decoding and still has low complexity when the value of

T is small enough.

1In the numerical experiments we vary n1 in a small range as we may consider the channel to be constant for some set of n1.
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Let B(N, ρ) = {X ∈ CN : ‖X‖ ≤ ρ} be an CN -ball of radius ρ. For a given common codebook

C ⊂ B(n1,
√
n1LP ) of size |C| =M we let Pe,genie(C, r) denote the following quantity:

Pe,genie(C, r) =
1

r

r∑
i=1

P [Wi 6∈ L(Y n1 , r)] ,

where L is the decoded list of messages. The subindex “genie” denotes the fact that the decoder is aware

of the exact number of users active in a slot. Given this genie side-information we can show that the

T -fold SA access scheme then attains the overall PUPE for all of Ka users bounded by

εT,genie(C) , 1−
T∑
r=1

(1− Pe,genie(C, r))
(
Ka − 1

r − 1

)(
1

L

)r−1(
1− 1

L

)Ka−r
+
Ka − 1

M
.

To obtain this estimate, we first bound the probability that the i-th user’s message is in collision:

P [∃j 6= i : Wj = Wi] ≤
Ka − 1

M
.

Next, we note that the i-th user’s slot will have r−1 other users with probability
(
Ka−1
r−1

) (
1
L

)r−1 (
1− 1

L

)Ka−r.
Note that the resulting bound is monotonically improving with increasing T . We will use the genie bound

for our random-coding constructions and upper bound Pe,genie via (26) in appendix A.

Remark 1. Note that the genie assumption prevents the above from being a true achievability bound.

Consequently, our genie-based bound strictly speaking is only an optimistic estimate of the performance

achievable within a T -fold SA scheme by the best possible component subcode.

To get the true (genie-free) bounds, we are going to use an explicit (LDPC-based) code inside each

n1-slot. Our decoder automatically detects the number of users in a slot and estimates the messages. To

evaluate the performance we need to define two parameters corresponding to the n1-code C. Namely, we

define Pe(C, r) and Qe(C, r) as follows. Consider the setting of (4). Fix some decoder (unaware of the

number r) which outputs a variable-length list L = L(Y n1) ⊂ [M ]. We define

Pe(C, r) =
1

r

r∑
i=1

P [Wi 6∈ L] , Qe(C, r) = P [|L| > r] . (5)

With this definition we get the following bound on the overall PUPE (for all of Ka users):

εT (C) , 1−
T∑
r=1

(1− Pe(C, r))
(
Ka − 1

r − 1

)(
1

L

)r−1(
1− 1

L

)Ka−r
+
Ka − 1

M
+ q , (6)
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where q = L
∑Ka

r=0

(
Ka
r

)
L−r(1− 1

L
)Ka−rQe(C, r) is an upper bound on P

[
∪Lj=1Fj

]
, where Fj is the event

that the j-th slot’s decoded list has size strictly bigger than the number r of users active in that slot. Note

that if the decoder never outputs a list of size > T then Qe(C, r) = 0 for all r ≥ T .

IV. CONVERSE BOUND

In this section we describe a simple converse bound based on results from [36] and the meta-converse

from [37]. We omit the proof which is available in [38].

Theorem IV.1. Let

Ln = n log(1 + PG) +
n∑
i=1

(
1− |
√
PGZi −

√
1 + PG|2

)
(7)

Sn = n log(1 + PG) +
n∑
i=1

(
1− |

√
PGZi − 1|2

1 + PG

)
(8)

where G = |H|2 and Zi
iid∼ CN (0, 1). Then for every n and 0 < ε < 1, any (M,n − 1, ε) code for the

quasi-static Ka MAC satisfies

log(M) ≤ log(Ka) + log
1

P [Ln ≥ nγn]
(9)

where γn is the solution of

P [Sn ≤ nγn] = ε. (10)

V. LOW-COMPLEXITY ITERATIVE CODING SCHEME

In this section, we present a low-complexity iterative coding scheme based on LDPC codes, which

allows one to decode user messages in a slot. Recall that the users utilize the same codebook. Let us

denote it by C and explain how to construct it. We start with a binary [n1, k] LDPC codebook and replace

each 0 with +
√
P and each 1 with −

√
P .

Recall that T is a design parameter of our algorithm, which means the maximal collision order we are

going to resolve. Let us start with the case when the number of users transmitting in a slot r = T (in

what follows we will show how to generalize it for the case of unknown r) and show the bit-wise MAP

decoding rule for the j-th bit of the i-th user below (in what follows we omit the superscript n1)

X̂i,j = arg max
Xi,j∈±

√
P

E

∑
∼Xi,j

pY |X

(
Y |

T∑
l=1

HlXl

)
T∏
l=1

1Xl∈C

 , (11)
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where the expectation is taken over H1, H2, . . . , HT . Following [35], the summation “∼ Xi,j” means that

we sum over all positions in all user codewords, except Xi,j .

A. Alternating BP-decoder general description

The decoder aims to recover all the codewords based on the received vector Y . The decoder employs

a low-complexity iterative belief propagation (BP) decoder that deals with a received soft information

presented in a log-likelihood ratio (LLR) form. The decoding system can be represented as a graph (factor

graph, [39]), which is shown in Fig. 1 for the case T = 2.

C C

p (H1) p (H2)

Message 4

Message 3

Message 1

Message 2

Y n1

Fig. 1. Iterative joint decoding algorithm (alternating BP-decoder), factor graph for T = 2.

There are four types of nodes in the graph. Users’ LDPC codes are presented with the use of Tanner

graphs with variable (red color) and check nodes (blue color). At the same time, there is a third kind

of nodes in the figure – functional nodes (green color). These nodes correspond to the elements of the

received vector Y . The fourth kind of nodes (magenta nodes) corresponds to fading coefficients. We note

that the decoder also performs an estimation of fading coefficients (latent variables).

The decoding algorithm is based on the iterative message passing procedure. In what follows, we refer

to the iterations of our algorithm as outer iterations. By inner iterations, we mean iterations that are used

for LDPC code decoding (see Algorithm 1). Within the outer iteration, the users’ codewords are decoded

sequentially. Let us consider the decoding of the first user. This process consists of the calculation and

passing of four message types (see Fig. 1). We note that both fading coefficients and LLRs for other users

remain fixed during this process. Messages are described in details below:
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a) Message type 1 (from functional nodes to fading nodes): Without loss of generality let us consider

the first functional node. Assume we received a symbol y = Y1. By xi = Xi,1 ∈ {+
√
P ,−
√
P}, i =

1, . . . , T , we denote symbols sent by the users. Let us show how to calculate a posterior probability density

function (pdf) of H1 from the first functional node. We denote this message by R
(1)
1 and calculate it as

follows

R
(1)
1 (h1) ∝ E

[ ∑
x1,x2,...xT

p(y|
T∑
j=1

Hjxj)
T∏
j=2

Pr(xj)

]
, (12)

where the expectations are taken over H2, . . . , HT . Such updates are calculated at every functional node

and denoted by R(i)
1 , i = 1, . . . , n1.

b) Message type 2 (from fading nodes to functional nodes): We denote the message from j-th fading

node to i-th functional node by Q(i)
j , this message is a pdf. To find it we need to calculate the product of

incoming messages. Let us consider a message from the first fading to the first functional node, we have

Q
(1)
1 (h1) =

n∏
i=1

R
(i)
1 (h1)p(h1), (13)

In a conventional message passing algorithm, the outgoing message is calculated based on messages

which come through all the edges except the considered one. In our algorithm we use a randomized version

of this step and calculate the product of a few randomly selected incoming messages (in our simulations

we used 50 out n1 = 400). Further numerical experiments show this approach to reduce the decoding

complexity without any performance loss.

c) Message type 3 (from functional nodes to LDPC codes): Let us note that a posterior LLR for x1

can be calculated as follows.

L(x1) = log

E

[ ∑
x1=+

√
P ,x2,...xT

p(y|
T∑
j=1

Hjxj)
T∏
j=2

Pr(xj)

]

E

[ ∑
x1=−

√
P ,x2,...xT

p(y|
T∑
j=1

Hjxj)
T∏
j=2

Pr(xj)

] , (14)

where the expectations are taken over H1, H2, . . . , HT and p(y|a) = 1
π
exp(−(y − a)2). Note that for

practical implementation the Monte-Carlo sampling method can be used for expectations.

d) Message type 4 (LDPC decoding): After functional nodes decoding, one needs to update the

LLR for a given user with LDPC iterative decoder. Each user utilizes a standard BP decoding algorithm

(Sum-Product or Min-Sum, [35]) to decode an LDPC code.
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Algorithm 1 Iterative decoding algorithm (alternating BP-decoder)
Input: Y n1 , T . Received sequence and the value T

Output: Successfully decoded codewords list of size at most T .

1: initialize the LLR values of variable nodes for each user code with zero values assuming equal

probability for
√
P and −

√
P values

2: initialize pdf of Hi, i = 1, . . . , T . For each coefficient we have pdf for both real and imaginary parts

with prior distribution N (0, 1/2) corresponding to Rayleigh fading.

3: for iO = 1, . . . , IO do . perform IO outer iterations

4: for u = 1, . . . , T do . decode users sequentially

5: Propagate message type 1, eq. (12) . from functional nodes to fading nodes

6: Propagate message type 2, eq. (13) . from fading nodes to functional nodes

7: Sample fading coefficients for expectation estimation at (14) from the fading coefficients pdfs

8: Propagate message type 3 using sampled fading coefficients, eq. (14) . from functional

nodes to LDPC codes

9: Propagate message type 4 . run II inner iterations of BP decoder for u-th user LDPC code.

10: end for

11: Update the list of successfully decoded codewords.

12: end for

13: return Subset of unique codewords among successfully decoded . If r < T , there can be duplicated

codewords in the list.

The Algorithm 1 summarizes the above described procedure. We use the Gaussian mixtures (GM) to

construct the practical implementation. Let us present the fading coefficient estimate pdf in the form of

GM, i.e.

χ(·) =
ν∑
l=1

ωlN
(
µl, σ

2
l

)
,

ν∑
l=1

ωl = 1,

where ν is the number of components. This parameter controls the trade-off between the accuracy and

complexity of the decoding algorithm. In our simulations, we used ν = 20. The larger T is, the more GM

components are required. Thus, one should choose the larger value of ν.
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The message type 1 propagation (12) deals with the following subtraction (again consider the first

functional node). Note that we consider real and imaginary components of H estimate pdfs as separate

GMs.

H1x1 = y −

(
T∑
j=2

Hjxj + z

)
, (15)

where j is the user index. Given Hj to be a GM, the Hjxj is also a GM with the number of components

being doubled. This corresponds to two possible values of xj = ±
√
P with the probabilities taken from

LLR (note, that the same procedure also holds for extracting the Hj from Hjxj). Thus, the RHS of (15)

is a sum of random variables having GM pdfs. Hence, the resulting pdf is the convolution of GMs – also

a GM. As soon as the result of convolution or a product of two GMs with ν1 and ν2 components is a GM

with ν1 · ν2 components, the fading coefficient estimates have the same form from iteration to iteration.

Consider k-th component of the first GM and l-th component of the second GM. The convolution results

in the GM with the components mean µk,l = µk + µl and the variance σ2
k,l = σ2

k + σ2
l indexed by the

k, l pair. The GM product (message type 2) results in the µk,l = µk
σ2
l
+ µk

σ2
l
, 1

σ2
k,l

= 1
σ2
k
+ 1

σ2
l
. Note that the

procedures described above significantly increase the number of GM components. We use the components

prune and merge procedures. The first procedure skips the components with the negligible weight ωl,

while the second one merges multiple components with small the distance (for example, the KL distance)

smaller than some threshold into a single component. The next two steps in the user decoding procedure

are sampling from GM and functional nodes decoding procedure (see eq. (14)).

B. Blind detection and error floor

As soon as the iterative decoder operates as an optimization task and this optimization procedure is

split between two groups of variables (users’ LLRs and fading coefficients), one can expect this algorithm

to converge to some local maximum of (11). Convergence to a local maximum can be a source of the

error floor. To overcome the error floor problem one can start the decoding algorithm multiple times and

handle functional nodes in random order at every decoding iteration. As soon as GMs are merged and

pruned, this provides some source of randomness and pushes the decoding procedure to possibly different

local maximums. This approach has eliminated the error floor problem and allowed another opportunity

– a blind detection. Given the multiple decoding attempts, one can select a set of unique codewords that
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were successfully decoded. Every attempt can detect different codewords. The final output of the decoder

is the union of such sets (so e.g. for r = 3 and T = 4 the decoder may return 4 codewords but only 3 of

them are different). Without loss of generality, this approach can be applied to the case of unknown user

count. As further numerical experiments (see appendix D) show, this approach is a promising one. We

have limited the maximum number of decoding attempts to be equal to 10 in our numerical experiments.

The approach presented in this paper is similar to the approach from [40]. Nevertheless, the main

differences are: a) we consider same codebook case and changed the parallel schedule with serial schedule

in order to break symmetry, b) we show that this approach allows to efficiently perform blind user decoding,

i.e. determine the number of active users in a slot and recover their messages, c) we suggest an approach

how to deal with the error floor caused by the inaccuracy in the estimation of fading coefficients (Hi,

i = 1, . . . , T ).

VI. NUMERICAL RESULTS AND DISCUSSION

In this section we present the plots of the minimum energy per bit required to achieve a probability

of error ε = 0.12 as a function of Ka for the channel (2). Fig. 2 shows plots of various schemes. The

parameters used for evaluation are frame length n = 30000 and message size k = 100 bits. Next we

describe how each of these curves was obtained.

For T -fold SA using FBL bound, we use the bound for pt given in (26). For each Ka we find the

optimum L (as an optimization over both L and P ) so that we minimize Eb/N0 such that the probability

of error in (6) is less than 0.1. Since directly optimizing the bound is not easy, we approximate PUPE for

the fading channel as [41]

Pe(M,n1, r, LP ) ≈ E

[
Q

(
n1CAWGN(LP

∑r
i=1 |Hi|2)− log2M√

n1VAWGN(LP
∑r

i=1 |Hi|2)

)]
(16)

where CAWGN(x) = log(1+x) and VAWGN(x) = 1− 1
(1+x)2

are the capacity and dispersion of a (complex)

AWGN channel, respectively. We choose L by using (16) in (6). Then we use the spherical codebook, i.e.

codewords uniformly and independently sampled from the (complex) power shell in dimension n1 = bn/Lc

to compute the probability of error according to (6) where Pe(M,n1, r, LP ) is computed using brute-force

2We note that such value of ε is a regime of interest for LP-WANs such as LoRaWAN and Weightless.
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Monte-Carlo simulation of (26) with the choice K1 = K2 = r. Since r ≤ T is small it would not make

sense to drop a user. To this end, we produce 2000 samples, from which we construct the kernel density

approximation of the cumulative distributive function (CDF) of the statistic maxS0⊂[r]
|S0|=t

G(Y, S0, cS0 , t) (given

in (27)) for each t ≤ r. Then this smooth approximation is used to optimize over δ in (6).

For T -fold SA using the iterative coding scheme, we have used (n1, k) LDPC codes with k = 100 and

blocklength n1 ∈ {200, 400}. We note, that two codes are enough to cover the interval 1 ≤ Ka ≤ 250.

For each of these codes, we get PUPE vs Eb/N0 curves and choose the best code (the best code requires

the smallest Eb/N0 in order to achieve PUPE ≤ ε = 0.1) for each value of Ka. Iterative decoder used the

multiple component Gaussian mixture model. Note again, that in LDPC-based scheme we perform honest

blind slot decoding (without assuming the knowledge of user count in a slot). Even though the number of

users in a slot is unknown we never faced with a false alarm problem in our simulations. By false alarm,

we mean a situation in which the output list contains codewords that were not transmitted. To explain

this fact we note that LDPC codes have a large area of inputs for which they report a failure (the decoder

cannot converge to a codeword). Thus we mention that we have Qe(C, r) ≈ 0 (see (5)) within accuracy

of the Monte Carlo for all r ≥ 0. In other words, our decoder does not ever overestimate the number of

active users.

It can be seen from Fig. 2 that the performance of T -fold SA for iterative decoding scheme is very

close to that of T -fold SA with random coding bounds for small Ka. The gap increases with Ka because

of our limited choices of LDPC codes, i.e. due to BPSK modulation, we are constrained by n1 ≥ k. We

refer to Remark 1 again to emphasize that the T -fold SA with the FBL bound is not a true achievability

bound since it assumes that the decoder has knowledge of the number of users in each slot or subframe.

We have also plotted the result of treat interference as noise (TIN) decoding. Here we have used

optimistic capacity approximation for PUPE.

ε ≈ E

Q
nCAWGN

(
P |H1|2

1+P
∑T
i=2 |Hi|2

)
− k√

nVAWGN

(
P |H1|2

1+P
∑T
i=2 |Hi|2

)

 (17)

It is easy to get an actual random coding bound for TIN similar to theorem A.1, but we don’t expect

it to be better than (17).

Also plotted for reference is the Shamai-Bettesh capacity bound from [42]. It is an asymptotic bound
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(n→∞) for the probability of error per-user in the case of symmetric rate and large Ka. The idea is the

following. The joint decoder knows the realization of fading coefficients and users are ranked according

to the strength of their fading coefficients. It first tries to decode all users. If it fails (i.e., the rate vector

is not inside the instantaneous full capacity region), it drops the user with the smallest fading coefficient

and tries to decode the remaining Ka − 1 users. The dropped user forms part of the noise. This process

continues iteratively, and the fraction of users that were not decoded is precisely the outage/probability of

error per-user. Since the case under discussion is for large Ka, the order statistics of the absolute value

of fading coefficients crystallize (i.e., become almost non-random) and hence analytical expressions can

be derived for outage in terms of spectral efficiency (kKa/n) and total power. So for each Ka, we know

our operating spectral efficiency and total power, and hence we can use the asymptotic bound to find the

probability of error. Most importantly observe that even at Ka = 100, the random coding based 4-fold SA

performance is off from the capacity bound of [42] by just 3 dB. Note that Shamai-Bettesh bound is only

an achievable bound (i.e. not guaranteed to be tight) for the capacity under PUPE. It does not apply to our

setting for two reasons: 1) it assumes different codebooks for different users, 2) it assumes asymptotically

large blocklength. Note also that the asymptotics considered in Shamai-Bettesh is as follows: first n is

taken to∞ (under fixed Ka) and second the Ka is taken to infinity too. From our studies of the non-fading

AWGN [20] we are convinced the correct asymptotic is to take Ka and n both tending to infinity at a

given ratio – see Section VII below.

The “Optimal decoder (replica method)” curve is computed by non-rigorously estimating performance

of the optimal decoder applied to a random Gaussian code under the asymptotics Ka, n→∞, Ka/n→ µ

and Mn = 2100Ka. This estimation is based the replica method from statistical physics. See section VII

and appendix B-B for more details.

The converse from (9) and (10) is also plotted. This is in essence a single user3 based converse bound.

The converse presented here illustrates the fact the Eb/N0 requirements are necessarily higher compared

to the AWGN channel in [2].

3We can also derive a Fano type converse, but for the range of parameters we work with, it is worse than the presented one.
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VII. ASYMPTOTICS OF RANDOM-ACCESS

In [2] the authors evaluated a random coding bound for AWGN RAC with n = 30000 and Ka =

1, ..., 300. The most interesting observation was that the bound on energy-per-bit was essentially constant

up until about Ka = 150 and only then started to increase with Ka. To explain this ”phase transition”

behavior a particular asymptotics was postulated in [20], which predicts the phase transition at roughly

the same value of Ka = 150. It turned out that at low Ka the performance was essentially limited by the

minimal energy required for a single user to send k bits over a fixed (but effectively infinite) blocklength.

For larger number of Ka the performance is limited by the multi-user requirement: the total number of

Ka × k bits should not exceed the combined mutual information of n log(1 + PKa). In the present paper

we adopt the very same asymptotics of [2], [20]. Again, we stress that the only ultimately relevant question

is the one at finite blocklength. The asymptotic analysis here is only to get some insight into the possible

regimes. Specifically, we consider scaling of n→∞ with Ka, the number of active users, scaling linearly

with blocklength (similar to the many-access regime [2], [30], [31]) i.e., Ka = µn. At the same time,

the size of the common codebook is also scaling linearly: M = M1Ka. We think of M1 as the effective

payload per user. We also modify the random-access model slightly by requiring that the messages of

active users {W1, ...,WKa} are sampled uniformly from
(
[M ]
Ka

)
i.e., user messages are sampled uniformly

without replacement from [M ]. (In reality, the user messages are distributed iid Unif[M ] which leads to
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around (Ka2 )
M

collisions but for finite length scenarios with M1 = 2100, this is essentially zero, hence we

may ignore collisions in our asymptotic setup and simplify the analysis.) If P denotes the power (per

symbol) of each user, then the energy-per-bit Eb/N0 is defined by

Eb/N0 =
nP

logM1

. (18)

Hence, for finite Eb/N0, we need the total sum-power Ptot = KaP to be constant. Therefore, the

asymptotic energy-per-bit, denoted by E is given by

E =
Ptot

µ logM1

. (19)

We note that Eb/N0 is defined this way for the reason that log
(
M
Ka

)
≈ Ka logM1 for relevant finite-length

values.

Lastly, the error metric is PUPE. We are interested in the trade-off of minimum E required to achieve

a target PUPE with the user density µ as n → ∞. This setup is equivalent to the support recovery in

compressed sensing considered in [27], [43]. Here, we provide a comparison of the fundamental trade-off

of energy-per-bit with user density, for given PUPE and ρ, between our analysis of the projection decoder,

the ML decoder in [27], the optimal decoder based on the true posteriors (see [27, Theorem 8] for instance,

this assumes replica symmetry to hold) and finally a converse. To formally state our results we modify

the definition of (M,n, ε) code for the Ka user channel PY n|Xn given in (2) as follows.

Definition 2. An (M,n, ε) random-access code for the Ka user MAC PY n|Xn is a pair of (possibly

randomized) maps f : [M ]→ X n (the encoder) and g : Yn →
(
[M ]
Ka

)
such that if W1, ...,WKa are sampled

uniformly without replacement from [M ] and Xj = f(Wj) then the average (per-user) probability of error

satisfies

Pe =
1

Ka

Ka∑
j=1

P [Wj /∈ g(Y n)] ≤ ε (20)

where Y n is the channel output.

Define (n,M, ε, E , Ka)–code as an (M,n, ε) random access code (from definition 2) for the Ka–MAC

with codebook C such that ‖c‖2 ≤ nP = E logM1,∀c ∈ C. Then we can define the following fundamental

limit

E∗(M1, µ, ε) = lim sup
n→∞

inf {E : ∃ (n,M = KaM1, ε, E , Ka = µn)− code} . (21)
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In appendix B we sandwich the fundamental limit between an achievability and a converse bound as

follows:

Econv ≤ E∗ ≤ Each . (22)

For particular, quite cumbersome, expressions please refer to Appendix B.

These bounds are plotted in Fig. 3 for two different values of PUPE. The main achievability bound

is from theorem B.1 and is based on the analysis of projection decoding described in appendix A. A

different analysis of this decoder was performed in [27] and the result is plotted as well. We have also

plotted predicted performance of the PUPE-optimal decoder for the iid codebook which is obtained via

a non-rigorous (but highly likely to be correct) replica-method from statistical physics; see appendix

B-B and [27]). The idea is that in the limit considered in this section, given a codebook, the posterior

probability of a particular set of messages being transmitted undergo decoupling and converge to the

posterior P [X 6= 0|Z] of the scalar channel Y = X + σZ where Z ∼ CN (0, 1) and X is CN (0, 1) with

probability 1/M1 and 0 with probability 1− 1/M1 and X ⊥ Z. Here, the value of σ is given by [27]

σ2 = argmin
τ>0

{
1

µM1

log τM1 + log(e)
1

τM1Ptot
+ I(X;X +

√
τZ)

}
. (23)

The above result in [27] was calculated for the compressed sensing (sparse support recovery) problem,

and was based on the calculations in [44] using the replica method. However our setup can be directly

translated to the sparse support recovery setup as can be seen in [20] for instance. Using (23), the PUPE

can be computed as ε = P [P [X 6= 0|Y ] < T |X 6= 0] where T satisfies P [P [X 6= 0|Y ] > T ] = 1/M1.

The “optimal decoder” curves in Fig. 3 correspond to what we believe to be a fundamentally best

achievable performance of a random Gaussian codebook. Unfortunately, at present it is impossible to

rigorously establish this fact. Specifically, while the replica method predictions for the MMSE have been

established rigorously (see [45] and [46]), a similar result about PUPE is not possible to extract from

those works.

The converse bound plotted is based on Fano inequality and the single-user converse for AWGN channel

from [47]. The details are in appendix B-C. A tighter converse (see theorem B.3) bound can be obtained

if we assume that the codebook consists of iid entries of the form C
Ka

where is C is of zero mean and
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Fig. 3. µ vs E for ε ≤ 10−3 (left) and ε ≤ 0.1 (right), M1 = 2100

finite variance. This follows from [43, Theorem 37]. This bound, although only applicable to a special

class of codes (iid codebooks), improves our converse bound by taking into account the penalty incurred

due to absence of knowledge of the channel state information at the decoder (resulting in a need to spend

some of the information on estimating the fading coefficients).

VIII. CONCLUSION AND FUTURE WORK

In this work we considered random access for a quasi-static Rayleigh fading model. We developed

low-complexity iterative decoding scheme using LDPC codes to decode up to T–users in a slot, and using

T -fold SA on top of it gave us a practical achievable scheme whose required Eb/N0 vs Ka trade-off is very

close to that of a potential random coding bound. In terms of future work, one of the most important things

is to figure out how to relax the assumption on the knowledge of the number of users in a slot in T -fold SA

to get a rigorous random coding achievability bound. To be implemented in hardware the complexity of

our algorithm should be significantly reduced. In the further research we are going to investigate a decoder

based on successive interference cancellation which can be considered as a simplified version of our joint

decoder in which the operation in the functional node is replaced with hard subtraction. We also mention

that the subtraction in our setup is not straightforward as we need to know a fading coefficient with high

accuracy. We also plan to consider another classes of codes e.g. polar codes which are better for the short

length regime. Another important factor is frame-synchronization which we have assumed. Our rationale

is that frame-synchronism can be achieved via regularly spaced beacons. However, to reduce complexity

even further it would be interesting to develop a beacon-free (and, hence, frame-asynchronous) schemes.
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Finally, large gains in energy consumption can be attained via the use of MIMO, especially multiple

receive antennas. Quantifying these gains is yet another interesting direction.
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APPENDIX A

FBL ACHIEVABILITY BOUNDS

In this section we state the random coding FBL achievability bounds for the model in (2). But first, we

discuss the encoding and decoding which we use to derive achievability. For encoding, we use random

coding with Gaussian codebook: for each message a CN (0, P ′In) vector is independently generated. That
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is Xi
iid∼CN (0, P ′In) where P ′ ≤ P . For a message Wj of user j, if ‖X(Wj)‖2 > nP then that user sends

0.

A. Projection decoding

Inspired from [36], we use a projection based decoder. The idea is the following. Suppose there was no

additive noise. Then the received vector will lie in the subspace spanned by the sent codewords no matter

what the fading coefficients are. Fix an output list size K1. The decoder outputs a list of K1 codewords

which form the subspace, such that projection of Y onto this subspace is maximum. Formally, let C denote

a set of vectors in Cn. Denote PC as the orthogonal projection operator onto the subspace spanned by C.

Let C denote the common codebook. Then, upon receiving Y from the channel, the decoder outputs g(Y )

given by

g(Y ) = {f−1(c) : c ∈ Ĉ}

Ĉ = arg max
C⊂C:|C|=K1

‖PCY ‖2 (24)

where f is the encoding function.

The projection decoding is also called nearest-subspace decoding, and has been used in the compressed

sensing literature [26]–[29]. One might prefer to view it as a kind of maximum likelihood (ML) decoding

as well (and is called as such), since it is equivalent to

Ĉ = arg max
C⊂C:|C|=K1

max
{Hi:i∈C}

PY |X,H , PY |X,H(y, {xi}, {hi}) =
1

πn
e−‖y−

∑
i hixi‖2 .

It can be shown that for the vanilla Ka–user quasi-static fading MAC (with different codebook and the

usual joint probability of error) with no channel state information, projection decoding achieves ε–capacity

region Cε of the MAC [31].

B. FBL Achievability bounds

Theorem A.1. Fix P ′ < P . Let K1 ≤ K2. Then there exists an (M,n, ε) (with ε ≥ K2−K1

K2
) random access

code for the K2–MAC (2) satisfying power constraint P (see (3)) and

ε ≡ Pe(M,n,K2, P ) ≤
K2 −K1

K2

+
1

K2

K1∑
t=1

K1,tpt + p0 (25)
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with

p0 =

(
K2

2

)
M

+K2P

P ′
2

∑
i∈[2n]

W 2
i > nP

 , Wi
iid∼ N (0, 1),

and

pt ≤ inf
δ>0

(K2

K1,t

)
e−(n−K1)δ + P

 ⋃
S0⊂[K2]
|S0|=K1,t

{G(Y, S0, cS0 , t) ≥ Vn,t}


 (26)

where

G(Y, S0, cS0 , t) =

‖Y ‖2 −maxS2⊂S0
|S2|=t

∥∥∥Pc[S2∪([K2]\S0)]
Y
∥∥∥2

‖Y ‖2 −
∥∥∥Pc[[K2]\S0]

Y
∥∥∥2

(27)

K1,t = K2 −K1 + t (28)

Vn,t = e−Ṽn,t (29)

Ṽn,t = δ +R1 + st (30)

st =
ln
(
n′−1
t−1

)
n−K1

(31)

R1 =
ln
(
M−K2

t

)
n−K1

(32)

n′ = n−K1 + t (33)

and, C = {ci : i ∈ [M ]} denotes the Gaussian codebook, {ci : i ∈ [K2]} are the transmitted codewords,

cS = {ci : i ∈ S}, Y is the received vector.

Further, the right hand side of (26) can be upper bounded as

pt ≤ inf
δ>0
δ1>0

0<δ2<1

[(
K2

K1,t

)(
e−(n−K1)δ + e−n

′fn(δ1) + e−n
′ δ

2
2
2

)
+

P

[
min

1≤i≤K1−t+1

P ′
∑i+t−1

j=i |H(j)|2

1 + P ′
∑K1,t−1+i

j=i+t |H(j)|2
≤

(1 + δ1(1− Vn,t))V −1n,t − 1

1− δ2

]]
(34)
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where

fn(δ1) = δ1 + 1 +
2Vn,t

1− Vn,t
(1 + δ1)−

√
1 +

2Vn,t
1− Vn,t

(1 + δ1)

√
2δ1 + 1 +

2Vn,t
1− Vn,t

(1 + δ1)

and {|H(j)|2 : j ∈ [K2]} denotes the order statistics of fading powers (in decreasing order).

Proof: See appendix C.

Remark 2. We note that (26) in the above theorem holds even in case of random coding with spherical

codebook i.e., codewords distributed uniformly on the (complex) power shell with p0 =
(K2

2 )
M

. But (34)

requires that the codebook is (complex) Gaussian.

To compute (26) we use Monte-Carlo simulation described in section VI for small values of K2. For

moderated values of K2, the computation of the probability of union of a combinatorially large number

of events in (26) is prohibitive. However, there is a computationally tractable bound (which is worse than

(26)) on pt that we present in appendix C.

We make the following observation about K1. When the number of active users K2 is large, it is hard

to decode the message of the user with least fading power, since its expectation is 1
K2

. Consequently, this

user becomes a bottleneck. So, intuitively, it makes sense to drop the users with very bad channel gains

and decode the rest, and the definition of per-user probability of error makes this possible. Indeed, this

was proposed in [42] where the joint multiuser detector drops a fraction of users with smallest gains such

that the rate tuple of the remaining users is inside the (random) capacity region. So for each K2, we can

find the optimum K1 which is the number of messages that are decoded in a frame.

APPENDIX B

ASYMPTOTICS OF RANDOM-ACCESS

In this section, we provide achievability and converse bounds on E∗, defined in (21).

A. Achievability

Theorem B.1. Consider the channel (2) with Ka = µn where µ < 1. Fix M1 > 1 and target PUPE ε.

Let M = KaM1 denote the size of the codebook and Ptot = KaP be the total power. Fix ν ∈ (1− ε, 1].

Let ε′ = ε − (1 − ν). Then if E > Each = sup ε′
ν
<θ≤1 supξ∈[0,ν(1−θ)]

Ptot,ν(θ,ξ)

µ logM1
, there exists a sequence
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of (n,M = KaM1, εn, E , Ka = µn) codes such that lim supn→∞ εn ≤ ε, where, for ε′

ν
< θ ≤ 1 and

ξ ∈ [0, ν(1− θ)],

Ptot,ν(θ, ξ) =
f̂(θ, ξ)

1− f̂(θ, ξ)α (ξ + νθ, ξ + 1− ν(1− θ))
(35)

f̂(θ, ξ) =
f(θ)

α(ξ, ξ + νθ)
(36)

f(θ) =

1+δ∗1(1−Vθ)
Vθ

− 1

1− δ∗2
(37)

Vθ = e−Ṽθ (38)

Ṽθ = δ∗ + µ
(M1 − 1)

1− µν
h

(
θν

M1 − 1

)
+

1− µν(1− θ)
1− µν

h

(
θµν

1− µν(1− θ)

)
(39)

δ∗ =
µh(1− ν(1− θ))

1− µν
(40)

cθ =
2Vθ

1− Vθ
(41)

qθ =
µh(1− ν(1− θ))
1− µν(1− θ)

(42)

δ∗1 = qθ(1 + cθ) +
√
q2θ(c

2
θ + 2cθ) + 2qθ(1 + cθ) (43)

δ∗2 = inf

{
x : 0 < x < 1,− ln(1− x)− x > µh(1− ν(1− θ))

1− µν(1− θ)

}
(44)

α(a, b) = a ln(a)− b ln(b) + b− a. (45)

Hence E∗ ≤ Each.

The proof of the above theorem follows from (34) (theorem A.1) and ideas very similar to [31, Theorem

IV.1]. We omit the details.

B. Optimal decoder

In this section we briefly describe the optimal decoder and its performance assuming replica symmetry.

More details can be found in [27]. Let the codebook be C. The optimal decoder for PUPE is the one

which computes, for c ∈ C, the posteriors Pc|Y n which is the probability, conditional on received vector

Y n, that c is in the list of transmitted codewords. Then, it outputs the list of codewords corresponding to

top Ka posteriors. Further, the system model is slightly modified in that each message is transmitted with

probability p = Ka/M = 1/M1. In the limiting case, assuming replica symmetry, the posteriors converge
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to the posterior P [X 6= 0|Y ] of a scalar channel Y = X + σZ where Z ∼ CN (0, 1), X is CN (0, 1) with

probability p and 0 with probability 1− p and is independent of Z. The value of σ is given by (see [27,

Theorem 8], but modified here for complex case)

σ2 = argmin
τ>0

{
1

µM1

log τM1 + log(e)
1

τM1Ptot
+ I(X;X +

√
τZ)

}
. (46)

The PUPE converges to P [P [X 6= 0|Y ] < T |X 6= 0] where T satisfies P [P [X 6= 0|Y ] > T ] = p. Hence,

we can find the minimum Ptot such that this PUPE of the scalar channel is at most ε, and this gives

another achievability bound (assuming replica symmetry) on E∗.

C. Converse

We present a converse for E∗ based on Fano inequality and using the results from [47], [48]

Theorem B.2. Let M = KaM1 be the codebook size. Given ε ≤ 1 − Ka
M

and µ such that M1 > 2

then E∗(M1, µ, ε) > Econv where Econv = inf Ptot
µ logM1

max{Econv,1, Econv,2} where infimum is taken over all

Ptot > 0 that satisfies the following two bounds

µθ logM1 − εµ log (M1 − 1)− µh2(ε) ≤ log (1 + α(1− θ, 1)Ptot) ,∀θ ∈ [0, 1] (47)

ε ≥ 1− E

[
Q

(
Q−1

(
1

M1

)
−

√
2Ptot
µ
|H|2

)]
(48)

where Q is the complementary CDF function of the standard normal distribution and α is defined in (45).

Proof: The proof of (47) is based of Fano inequality and genie argument.

Tighter converse bounds can be obtained if further assumptions are made on the codebook. For example,

if we assume that each codebook consists of iid entries of the form C
Ka

where C is sampled from a

distribution with zero mean and finite variance, then we have the following converse bound from [43,

Theorem 3] (see [43, Remark 3] as well).

Theorem B.3. Let µ = Ka/n < 1 be the user density and M = KaM1 be the codebook size such that

M1 > 2, and let the common codebook be generated such that each code symbol iid of the form C
Ka

where C is of zero mean and variance Ptot. Then in order for the codebook to achieve PUPE ε with high

probability, the energy-per-bit E should satisfy

E ≥ inf
Ptot

µ logM1

(49)
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where infimum is taken over all Ptot > 0 that satisfies

h2

(
1

M1

)
− 1

M1

h2(ε)−
(
1− 1

M1

)
h2

(
ε

M1 − 1

)
≤
(
V
(

1

µM1

, Ptot

)
− 1

M1

V
(
1

µ
, Ptot

))
log e

where V is given by [43]

V(r, γ) = r ln (1 + γ −F(r, γ)) + ln (1 + rγ −F(r, γ))− F(r, γ)
γ

(50)

F(r, γ) = 1

4

(√
γ
(√

r + 1
)2

+ 1−
√
γ
(√

r − 1
)2

+ 1

)2

(51)

APPENDIX C

PROOF OF THEOREM A.1

In this section, we present the proof of theorem A.1. We remark that (52) and (59) prove (26). Note that

W1, ...,WK2 are sampled independently with replacement from [M ]. We perform a change of measure by

sampling W1, ...,WK2 from [M ] without replacement, and also change the measure of transmitted message

from Xj = cWj
1
{∥∥cWj

∥∥2 ≤ nP
}

to Xj = cWj
. Since Pe is the expectation of a non-negative random

variable bounded by 1, this measure change adds a total variation distance which can bounded by

p0 =

(
K2

2

)
M

+K2P

[
χ2(2n)

2n
>
P

P ′

]
→ 0 as n→∞,

where χ2(d) is the distribution of sum of squares of d iid standard normal random variables (the chi-square

distribution). This follows from the same reasoning used in the main theorem in [2]. Henceforth we only

consider the new measure. Now, Pe can be bounded as

Pe ≤ E

[
1

K2

K2∑
j=1

1[Wj /∈ g(Y )]

]
+ p0 ≤

K2 −K1

K2

+
1

K2

K1∑
t=1

p1,tK1,t + p0 (52)

where K1,t is given by (28) and p1,t = P
[∑K2

j=1 1[Wj /∈ g(Y )] = K1,t

]
.

Let Ft =
{∑K2

j=1 1[Wj /∈ g(Y )] = K1,t

}
. W.l.o.g, we will assume that the transmitted message list is

S = [K2] and hence the corresponding codewords are {c1, c2, ..., cK2}. Let c[S0] ≡ {ci : i ∈ S0} and

H[S0] ≡ {Hi : i ∈ S0}, where S0 ⊂ [K2]. Further, let c[S1][S2] = c[S1∪S2]. Conditioning on c[K2], H[K2] and
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Z, we have (53)

P
[
Ft|c[K2], H[K2], Z

]
≤ P [∃S0 ⊂ [K2] : |S| = K1,t, ∃S1 ⊂ [M ] \ [K2] : |S1| = t :∥∥∥Pc[S1][[K2]\S0]

Y
∥∥∥2 > max

S2⊂S0
|S2|=t

∥∥∥Pc[S2][[K2]\S0]
Y
∥∥∥2
∣∣∣∣∣∣ c[K2], H[K2], Z



≤ P

 ⋃
S0⊂[K2]
|S0|=K1,t

⋃
S1⊂[M ]\[K2]
|S1|=t

F (S0, S
∗
2 , S1, t)| c[K2], H[K2], Z

 , (53)

where F (S0, S
∗
2 , S1, t) =

{∥∥∥Pc[S1][[K2]\S0]
Y
∥∥∥2 > ∥∥∥Pc[S∗2 ][[K2]\S0]

Y
∥∥∥2} , and S∗2 ⊂ S0 is a possibly random (de-

pending only on H[K2]) subset of size t, to be chosen later. Next we will bound P
[
F (S0, S

∗
2 , S1, t)|c[K2], H[K2], Z

]
.

For the sake of brevity, let A0 = c[S∗2 ][[K2]\S0], A1 = c[[K2]\S0] and B1 = c[S1]. We have the following

claim which follows from [31, Claim 1].

Claim 1 ( [31]). For any S1 ⊂ [M ] \ [K2] with |S1| = t, conditioned on c[K2], H[K2] and Z, the law of∥∥∥Pc[S1][[K2]\S0]
Y
∥∥∥2 is same as the law of ‖PA1Y ‖

2 + ‖(I − PA1)Y ‖
2 Beta(t, n−K1) where Beta(a, b) is a

beta distributed random variable with parameters a and b.

Therefore we have,

P
[
F (S0, S

∗
2 , S1, t)|c[K2], H[K2], Z

]
= P

[
Beta(n−K1, t) < GS0|c[K2], H[K2], Z

]
= Fβ (GS0 ;n−K1, t)(54)

where

GS0 =
‖Y ‖2 − ‖PA0Y ‖

2

‖Y ‖2 − ‖PA1Y ‖
2 . (55)

Since t ≥ 1, we have Fβ (GS0 ;n−K1, t) ≤
(
n′−1
t−1

)
Gn−K1
S0

, where n′ is given by (33).

Let us denote
⋃
S0⊂[K2]
|S|=K1,t

as
⋃
S0,K1

; similarly for
∑

and
⋂

for the ease of notation. Using the above

claim, we get,

P
[
Ft|c[K2], H[K2], Z

]
≤
∑
S0,K1

(
M −K2

t

)(
n′ − 1

t− 1

)
Gn−K1
S0

. (56)

Therefore p1,t can be bounded as

p1,t = P [Ft] ≤ E

[
min

{
1,
∑
S0,K1

(
M −K2

t

)(
n′ − 1

t− 1

)
Gn−K1
S0

}]
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= E

[
min

{
1,
∑
S0,K1

e(n−K1)(st+R1)Gn−K1
S0

}]
(57)

where st and R1 are given by (31) and (32) respectively.

For δ > 0, define Vn,t as in (29). Let E1 be the event

E1 =
⋂
S0,K1

{− lnGS0 − st −R1 > δ} =
⋂
S0,K1

{GS0 < Vn,t} . (58)

Let p2,t = P
[⋃

S0,K1
{GS0 > Vn,t}

]
. Then

p1,t ≤ E

[
min

{
1,
∑
S0,K1

e(n−K1)(st+R1)Gn−K1
S0

}
(1[E1] + 1[Ec

1])

]

≤ E

[∑
S0,K1

e−(n−K1)δ

]
+ p2,t =

(
K2

K1,t

)
e−(n−K1)δ + p2,t. (59)

Note: This proves (26). Let us bound p2,t. Let Ẑ = Z +
∑

i∈S0\S∗2
Hici. From [31, Claim 2] we have

Claim 2 ( [31]). p2,t is bounded as

p2,t = P

[ ⋃
S0,K1

{GS0 > Vn,t}

]

≤ P

 ⋃
S0,K1


∥∥∥∥∥∥(1− Vn,t)P⊥A1

Ẑ − Vn,tP⊥A1

∑
i∈S∗2

Hici

∥∥∥∥∥∥
2

≥ Vn,t

∥∥∥∥∥∥P⊥A1

∑
i∈S∗2

Hici

∥∥∥∥∥∥
2
 . (60)

Let χ′2(λ, d) denote the non-central chi-squared distributed random variable with non-centrality λ and

degrees of freedom d. That is, if Wi ∼ N (µi, 1), i ∈ [d] and λ =
∑

i∈[d] µ
2
i , then χ′2(λ, d) has the same

distribution as that of
∑

i∈[d]W
2
i . We have the following claim from [31, Claim 3].

Claim 3 ( [31]). Conditional on H[K2] and A0,∥∥∥∥∥∥P⊥A1

Ẑ − Vn,t
1− Vn,t

∑
i∈S∗2

Hici

∥∥∥∥∥∥
2

∼

1 + P ′
∑

i∈S0\S∗2

|Hi|2
 1

2
χ′2 (2F, 2n

′) (61)

where

F =

∥∥∥ Vn,t
1−Vn,tP

⊥
A1

∑
i∈S∗2

Hici

∥∥∥2(
1 + P ′

∑
i∈S0\S∗2

|Hi|2
) (62)

(63)
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Hence its conditional expectation is µ = n′ + F .

Now let

T =
1

2
χ′2(2F, 2n

′)− µ (64)

U =
Vn,t

(1− Vn,t)

∥∥∥P⊥A1

∑
i∈S∗2

Hici

∥∥∥2(
1 + P ′

∑
i∈S0\S∗2

|Hi|2
) − n′ (65)

U1 =
1

1− Vn,t
(Vn,tWS0 − 1) (66)

where WS0 =

(
1 +

∥∥∥P⊥A1

∑
i∈S∗2

Hici

∥∥∥2
n′
(
1+P ′

∑
i∈S0\S∗2

|Hi|2
)
)

. Notice that U = n′U1 and F = Vn,t
1−Vn,tn

′(1 + U1).Then we

have (67).

RHS of (60) = P

 ⋃
S0,K1


∥∥∥∥∥∥P⊥A1

Ẑ − Vn,t
(1− Vn,t)

P⊥A1

∑
i∈S∗2

Hici

∥∥∥∥∥∥
2

− µ ≥ U


 = P

[ ⋃
S0,K1

{T ≥ U}

]
.(67)

Now, let δ1 > 0, and E2 = ∩S0,K1 {U1 > δ1}. Taking expectations over E1 and its complement, we

have

P

[ ⋃
S0,K1

{T ≥ U}

]
≤
∑
S0,K1

P
[
T > U,U1 > δ1

]
+ P [Ec

2]

=
∑
S0,K1

E
[
P
[
T > U |H[K2], A0

]
1[U1 > δ1]

]
+ P [Ec

2] (68)

which follows from the fact that {U1 > δ1} ∈ σ(H[K2], A0). To bound this term, we use the following

concentration result from [49, Lemma 8.1].

Lemma C.1 ( [49]). Let χ = χ′2(λ, d) be a non-central chi-squared distributed variable with d degrees

of freedom and non-centrality parameter λ. Then ∀x > 0

P
[
χ− (d+ λ) ≥ 2

√
(d+ 2λ)x+ 2x

]
≤ e−x

P
[
χ− (d+ λ) ≤ −2

√
(d+ 2λ)x

]
≤ e−x

(69)

Hence, for x > 0, we have

P [χ− (d+ λ) ≥ x] ≤ e−
1
2(x+d+2λ−

√
d+2λ

√
2x+d+2λ). (70)

and for x < (d+ λ), we have

P [χ ≤ x] ≤ e−
1
4

(d+λ−x)2
d+2λ . (71)
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Observe that, in (70), the exponent is always negative for x > 0 and finite λ due to AM-GM inequality.

When λ = 0, we can get a better bound for the lower tail in (71) by using [27, Lemma 25].

Lemma C.2 ( [27]). Let χ = χ2(d) be a chi-squared distributed variable with d degrees of freedom. Then

∀x > 1

P

[
χ ≤ d

x

]
≤ e−

d
2(lnx+

1
x
−1) (72)

Therefore, from (60), (67), (68) and (70), we have

p2,t ≤
∑
S0,K1

E
[
e−n

′fn(U1)1[U1 > δ1]
]
+ P

[ ⋃
S0,K1

{
U1 ≤ δ1

}]
(73)

where fn is given by (A.1).

Next, from [31, Claim 4] we have that for 0 < Vn,t < 1 and x > 0, fn(x) is a monotonically increasing

function of x. From this, we obtain

p2,t ≤
∑
S0,K1

e−n
′fn(δ1) + p3,t (74)

where p3,t = P [Ec
2].

Note that p3,t = P [Ec
2] = P

[⋃
S0,K1

{Vn,tWS0 − 1 ≤ δ1(1− Vn,t)}
]
.

Conditional on H[K2],
∥∥∥P⊥A1

∑
i∈S∗2

Hici

∥∥∥2 ∼ 1
2
P ′
∑

i∈S∗2
|Hi|2χ

S∗2
2 (2n′), where χ2(2n

′) is a chi-squared

distributed random variable with 2n′ degrees of freedom (here the superscript S∗2 denotes the fact that

this random variable depends on the codewords corresponding to S∗2). For 1 > δ2 > 0, consider the event

E4 =
⋂
S0,K1

{
χ
S∗2
2 (2n′)

2n′
> 1− δ2

}
. Using (72), we can bound p3,t as

p3,t ≤
∑
t

(
K2

K1,t

)
e−n

′(− ln(1−δ2)−δ2) + p4,t (75)

where

p4,t = P [Ec
4] = P

 ⋃
S0,K1

Vn,t
1 +

P ′
∑

i∈S∗2
|Hi|2(1− δ2)(

1 + P ′
∑

i∈S0\S∗2
|Hi|2

)
 ≤ 1 + δ1(1− Vn,t)


 . (76)

We make an important observation here. The union bound over S0 is the minimum over S0, and it can

be seen that optimum S0 i.e, the minimizer should be contiguous amongst the indices arranged according

the decreasing order of fading powers. Then the best upper bound is got by choosing S∗2 to be correspond

to the top t fading powers in S0. Hence, we get

p4 = P

[
min

1≤i≤K1−t+1

P ′
∑i+t−1

j=i |H(j)|2

1 + P ′
∑K1,t−1+i

j=i+t |H(j)|2
≤

(1 + δ1(1− Vn,t))V −1n,t − 1

1− δ2

]
(77)
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Fig. 4. Simulation results for r = 3 (left) and r = 4 (right) users, T = 4.

Finally, combining (52), (59), (74), (75) and (77) , and optimizing over δ, δ1 and δ2, we are done.

APPENDIX D

RESULTS FOR BLIND SLOT DECODING

Here we present the numerical results for blind slot decoding. Let us fix the following parameters:

[400, 100] LDPC code for 4-user case, obtained by PEXIT method in [17]; 25 outer iterations, 50 inner

(LDPC) iterations; T = 4, which means that we can decode at most 4 users in a slot. We present the

curves for 3 and 4 simultaneously active users in a slot, recall, that T = 4 for all the cases. We compare

these curves with the following “ideal” curves: (a) fading channel coefficients are unknown, number of

users is known (i.e. T is selected to be equal to the actual number of users); (b) fading channel coefficients

are known, number of users is known (full CSI). Frame error rate performance for listed above scenarios

are presented in Fig. 4 for r = 3, 4. We see, that the performance curves for our coding scheme coincide

with “ideal” curves and achievability bound and very close (the loss is less than 2 dB) to the converse

bound. So we conclude, that the LDPC-based scheme is good for resolving collisions of small order.

32


