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Abstract

We present finite-blocklength upper and lower bounds on the maximum coding rate achievable over

a multiple-antenna Rayleigh block-fading channel under the assumption that neither the transmitter nor

the receiver have a priori knowledge of the channel realizations. Numerical evidence suggests that the

bounds delimit tightly the maximum coding rate already for short blocklengths (packets of 168 channel

uses). The bounds allow us to estimate the number of transmit antennas and the degree of time-frequency

diversity that trade off optimally the rate gains resulting from an increase in the number of independent

time-frequency-spatial diversity branches against the corresponding increase in channel estimation overhead.
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Furthermore, a comparison with finite-blocklength maximum coding rate bounds obtained for specific space-

time codes (such as the Alamouti code) allows us to determine when the available transmit antennas should

be used to provide spatial diversity, and when to provide spatial multiplexing. Finally, infinite-blocklength

performance metrics, such as the ergodic and the outage capacity, are shown to predict inaccurately the

maximum coding rate for the short packet sizes considered in this paper. This demonstrates the necessity

of accurate finite-blocklength analyses when studying wireless communications with short packet size.

I. INTRODUCTION

Multi-antenna technology is a fundamental part of most modern wireless communication stan-

dards, due to its ability to provide tremendous gains in both spectral efficiency and reliability. The use

of multiple antennas yields additional spatial degrees of freedom that can be used to lower the error

probability for a given data rate, through the exploitation of spatial diversity, or increase the data

rate for a given error probability, through the exploitation of spatial multiplexing. These two effects

cannot be harvested concurrently and there exists a fundamental tradeoff between diversity and

multiplexing. This tradeoff admits a particularly simple characterization in the high signal-to-noise

ratio (SNR) regime [1].

Current cellular systems operate typically at maximum multiplexing [2]. Indeed, diversity-

exploiting techniques such as space-time codes turn out to be detrimental for low-mobility users,

for which the fading coefficients can be learnt easily at the transmitter and outage events can be

avoided altogether by rate adaptation. Diversity-exploiting techniques are not advantageous for

high-mobility user as well, because of the abundant time and frequency selectivity that is available.

These conclusions have been derived in [2] under the assumptions of long data packets (1000 channel

uses or more) and moderately low packet-error rates (around 10−2), which are relevant for current

cellular systems.

However, as we move towards next generation cellular systems (5G), the two assumptions of long

data packets and moderately low packet error rate may cease to be valid. Indeed, 5G is expected

to support a much wider range of use-case scenarios; emerging applications, such as metering,

traffic safety, and telecontrol of industrial plants, may require the exchange of much shorter packets,

sometimes under stringent latency and reliability constraints [3]–[5]. The question addressed in this

paper is how multiple antennas should be used in this scenario. Is diversity more beneficial than

multiplexing in the regime of short packet length (say 100 channel uses, roughly equal to a LTE

resource block) and ultra-high reliability (packet error rate of 10−5 or lower)? What is the cost of
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learning the fading coefficients, whose knowledge is required to exploit spatial degrees of freedom,

when the packet size is short? Does this cost overcome the benefits of multiple antennas?

Contributions: The tension between reliability, throughput, and channel-estimation overhead

in multiple-antenna communications have been investigated previously in the literature [6]–[11], [2],

[12]. However, as we shall review in Section III, most of the available results are asymptotic either

in the packet length, or in the SNR, or in both. Hence, their relevance in the context of short-packet

communication systems is unclear.

In this paper, we address this issue by presenting a more refined nonasymptotic analysis of the

tradeoff between reliability, throughput, and channel-estimation overhead, which relies on the finite-

blocklength and finite-error-probability bounds on the maximum coding rate developed in [13], [14].

The results in this paper generalize to the multiple-antenna setting the analysis conducted in [15]

for the single-input single-output (SISO) case. Our main contributions are as follows:

• Focusing on the so-called Rayleigh block-fading model [16], [8] and on the scenario where

neither the transmitter nor the receiver have access to a priori channel state information (CSI),

we obtain nonasymptotic achievability and converse bounds on the maximum coding rate that

are explicit in the SNR, the packet size, and the packet reliability. The achievability bound is

based on the dependency test (DT) bound [13, Th. 22] and uses unitary space-time modulation

(USTM) [17] as input distribution in the random coding argument. This distribution is known

to achieve the high-SNR ergodic capacity of Rayleigh block-fading channels in the no CSI

setup when the coherence interval of the channel (i.e., the number of time-frequency slots

over which the channel stays approximately constant) is larger than the sum of transmit and

receive antennas [8], [12]. Since the lower bound involves an optimization over the number of

available antennas, it can be used to estimate the optimal number of transmit antennas to be

used. The converse bound is based on the meta-converse (MC) theorem [13, Th. 31], and uses

the output distribution induced by USTM as auxiliary output distribution.

• We present numerical evidence that the newly derived achievability and converse bounds

delimit tightly the maximum coding rate already for packet lengths of 168 channel uses. The

bounds allow one to coarsely determine the optimal number of transmit antennas to be used as

a function of the available time-frequency diversity, i.e., the ratio of the packet length to the

channel coherence interval.

• Comparison with nonasymptotic maximum coding rate bounds, obtained for specific space-

time inner codes (such as the Alamouti scheme), allows us to determine for which degree of
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time-frequency diversity and for which packet-reliability level, the available transmit antennas

should be used to provide spatial diversity, or spatial multiplexing, or should be partly switched

off to limit the channel-estimation overhead. For example, for the specific case of a 2 × 2

Rayleigh block-fading channel with SNR equal to 6 dB, packet size equal to 168 symbols and

packet error rate of 10−3, Alamouti is to optimal1 within 15% when the channel coherence

interval is above 42 symbols, whereas switching off one of the two transmit antennas is optimal

within 15% when the channel coherence interval is below 12 symbols. For values of coherence

interval between 12 and 42 symbols, transmit diversity should be combined with or replaced

by spatial multiplexing.

In previous works, researchers have drawn inspiration from the structure of the capacity achieving

distribution of MIMO channels to design practical coded-modulation schemes (see e.g., [18]). In

this paper, we go one step further and study how the choice of the input distribution affects the

nonasymptotic achievability bounds and the corresponding converse bounds.

Notation: Upper case letters such asX denote scalar random variables and their realizations are

written in lower case, e.g., x. We use boldface upper case letters to denote random vectors, e.g., X ,

and boldface lower case letters for their realizations, e.g., x. Upper case letters of two special fonts

are used to denote deterministic matrices (e.g., Y) and random matrices (e.g., Y). The superscripts H

and ∗ stand for Hermitian transposition and complex conjugation, respectively and we use tr{·}

and det{·} to denote the trace and the determinant of a given matrix, respectively. The identity

matrix of size a× a is written as Ia. The distribution of a circularly symmetric complex Gaussian

random variable with variance σ2 is denoted by CN (0, σ2). For two functions f(x) and g(x), the

notation f(x) = O(g(x)), x→∞, means that lim supx→∞ |f(x)/g(x)| <∞, and f(x) = o(g(x)),

x→∞, means that limx→∞ |f(x)/g(x)| = 0. Finally, ln(·) indicates the natural logarithm and [a]+

stands for max{a, 0}.

II. SYSTEM MODEL

We consider a Rayleigh block-fading channel with mt transmit antennas and mr receive antennas

that stays constant for nc channel uses. For a frequency-flat narrowband channel, nc is the number of

channel uses in time over which the channel stays constant (coherence time); for a frequency-selective

1We say that a scheme is optimal within 15% if it achieves a rate within 15% of the meta-converse upper bound on the maximum

coding rate.
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channel and under the assumption that orthogonal frequency-division multiplexing (OFDM) is used,

nc is the number of subcarriers over which the channel stays constant (coherence bandwidth). More

generally, nc can be interpreted as the number of “time-frequency slots” over which the channel

does not change.

Within the kth coherence interval, the channel input-output relation can be written as

Yk = XkHk + Wk. (1)

Here, Xk ∈ Cnc×mt and Yk ∈ Cnc×mr are the transmitted and received matrices, respectively; the

entries of the complex fading matrix Hk ∈ Cmt×mr are independent and identically distributed

(i.i.d.) CN (0, 1); Wk ∈ Cnc×mr denotes the additive noise at the receiver and has i.i.d. CN (0, 1)

entries. We assume {Hk} and {Wk} to take on independent realizations over successive coherence

intervals. We further assume that Hk and Wk are independent and that their joint law does not

depend on Xk.

Throughout the paper, we shall focus on the setting where both the transmitter and the receiver

know the distribution of Hk but not its realization. In other words, a priori CSI is not available

at the transmitter and at the receiver. The assumption of no a priori CSI at the transmitter is

reasonable in a high-mobility scenario, where fast channel variations make channel tracking at

the transmitter unfeasible. It is also appropriate for transmission over control channels or for time-

critical applications. Indeed, in both situations it is desirable to avoid the creation of a feedback

link, required to provide CSI at the transmitter. The assumption of no a priori CSI at the receiver

allows one to characterize the information-theoretic cost of learning the channel at the receiver (for

example by pilot transmission followed by channel estimation); see also [15, Sec. I]. As we shall

see, this cost may be relevant when the packet size is limited and the channel is rapidly varying.

III. MAXIMUM CODING RATE

We next introduce the notion of channel code for the channel (1). For simplicity, we shall restrict

ourselves to codes whose blocklength n is an integer multiple of the coherence time nc, i.e., n = lnc

for some l ∈ N.

Definition 1: An (l, nc,M, ε, ρ) code for the channel (1) consists of

• An encoder f : {1, . . . ,M} → Cnc×mtl that maps the message J ∈ {1, . . . ,M} to a codeword

in the set {C1, . . . ,CM}. Since each codeword Cm, m = 1, . . . ,M , spans l coherence intervals,
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it is convenient to express it as the concatenation of l subcodewords

Cm =
[

Cm,1, · · · ,Cm,l
]
. (2)

We require that each subcodeword Cm,k ∈ Cnc×mt satisfies the power constraint

tr
{

CHm,kCm,k
}

= ncρ, m = 1, . . . ,M, k = 1, . . . , l. (3)

Evidently, (3) implies the per-codeword power constraint2

tr
{

CHmCm
}

= lncρ (4)

= nρ. (5)

Since the noise has unit variance, ρ in (4) can be thought as the SNR.

• A decoder g : Cnc×mtl → {1, . . . ,M} satisfying a maximum error probability constraint

max
1≤j≤M

Pr
[
g
(
Yl
)
6= J | J = j

]
≤ ε (6)

where

Yl =
[
Y1, · · · ,Yl

]
(7)

is the channel output induced by the transmitted codeword

Xl =
[

X1, · · · ,Xl

]
= f(j) (8)

according to (1).

The maximal channel coding rate R∗(l, nc, ε, ρ) is defined as the largest rate (lnM)/(lnc) for

which there exists a (l, nc,M, ε, ρ) code. Formally,

R∗(l, nc, ε, ρ) = sup

{
lnM

lnc

: ∃(l, nc,M, ε, ρ) code
}
. (9)

Note that neither the encoder nor the decoder are assumed to have access to side information

about the fading channel. For the case when CSI is available at the receiver R∗(l, nc, ε, ρ) has been

characterized up to second order for specific scenarios in [19]–[21].

2It is more common in information-theoretic analyses to impose a power constraint per codeword and not per coherence interval.

The benefit of the per-codeword power constraint is that it leads to simple closed-form expressions for capacity. However, practical

systems typically operate under constraint (3).
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IV. RELATION TO PREVIOUS RESULTS

Most of the results available in the literature can be interpreted as asymptotic characterizations

of R∗(l, nc, ε, ρ) for l→∞, or nc →∞, or ρ→∞, or a combination of these limits.

Ergodic capacity: For the case when l → ∞ for fixed nc, fixed ρ, and fixed 0 < ε < 1, the

maximum coding rate R∗(l, nc, ε, ρ) converges to the ergodic capacity Cerg(ρ)

lim
l→∞

R∗(l, nc, ε, ρ) = Cerg(ρ) =
1

nc

sup I(X;Y) (10)

where X ∈ Cnc×mt denotes the channel input, Y ∈ Cnc×mr is the corresponding channel output,

obtained through (1), and the supremum in (10) is over all probability distributions on X satisfying

tr{XHX} = ncρ almost surely. Note that, by the strong converse [22], the ergodic capacity Cerg(ρ)

does not depend on ε. Although Cerg(ρ) is not known in closed form for the case when CSI is not

available a priori at the receiver, its high-SNR behavior is well understood [16], [17], [23], [8], [12].

Specifically, Zheng & Tse showed that [8]

Cerg(ρ) = m∗
(

1− m∗

nc

)
ln ρ+O(1), ρ→∞ (11)

where

m∗ = min{mt,mr, bnc/2c}. (12)

We remark that (11) holds also when the maximization in (10) is performed under the less stringent

constraint that E
[
tr{XHX}

]
≤ ncρ. Since Cerg(ρ) = min{mt,mr} ln ρ+O(1) for the case when

the receiver has perfect CSI [6], we see from (11) that the multiplexing (a.k.a. prelog) penalty

due to lack of a priori CSI is equal to (m∗)2/nc (provided that nc ≥ mt + mr). This is roughly

the number of pilots per time-frequency slot needed to learn the channel at the receiver when m∗

transmit antennas are used. The multiplexing penalty vanishes when nc is large.

By tightening the high-SNR expansion (11) [8], [12], one obtains an accurate approximation

of capacity at finite SNR [15], [24]. The input distribution that achieves the first two terms in the

resulting high-SNR expansion of Cerg(ρ) depends on the relationship between nc,mt andmr. When

nc ≥ mt +mr, it is optimal at high SNR to choose X to be a scaled isotropically distributed matrix

that has orthonormal columns [8]. This input distribution is sometimes referred to as USTM. When

nc < mt +mr, Beta-variate space-time modulation (BSTM) should be used instead [12]. In BSTM,

the USTM unitary matrix is multiplied by a diagonal matrix whose nonzero entries are distributed

as the square-root of the eigenvalues of a Beta-distributed random matrix. Throughout this paper,

we shall focus on the case nc ≥ mt +mr.
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Although the ergodic capacity captures the rate penalty due to the need of channel estimation,

and its high-SNR expansion (11) describes compactly how this penalty depends on the channel

coherence interval, its asymptotic nature in the blocklength and its independence on the packet

reliability ε limit its usefulness for the short-packet scenario considered in this paper.

Outage capacity: For the case when nc →∞ for fixed l, ε, and ρ, the maximum coding rate

R∗(l, nc, ε, ρ) converges to the outage capacity Cout(ρ, ε), defined as [25]

lim
nc→∞

R∗(l, nc, ε, ρ) = Cout(ρ, ε)

= sup

{
R : inf

{Qk}lk=1

Pout

(
{Qk}lk=1, R

)
≤ ε

}
. (13)

Here, Pout(·, ·) is the outage probability

Pout

(
{Qk}lk=1, R

)
= Pr

{
1

l

l∑
k=1

ln det(Imr + HH
k QkHk) ≤ R

}
(14)

where, for the Rayleigh-fading case considered in this paper, {Qk}, k = 1, . . . , l, are mt × mt

diagonal matrices with nonnegative entries that satisfy tr{Qk} = ρ, and where the infimum in (13)

is over all {Qk}. For the case l = 1, Telatar [6] conjectured that the optimal diagonal matrix Q1 is

of the form

Q1 =
ρ

m
diag{1, . . . , 1︸ ︷︷ ︸

m

, 0, . . . , 0︸ ︷︷ ︸
mt−m

} (15)

for some m ∈ {1, . . . ,mt}. This conjecture was proved in [26] for the multiple-input single-output

case.

The outage capacity in (13) characterizes in an implicit way the tension between the reliability ε

and the throughput R. Note that (13) holds irrespectively of whether CSI is available at the receiver

or not. Indeed, as the coherent interval nc gets large, the cost of learning the channel at the receiver

vanishes [27, p. 2632], [14]. Consequently, analyses based on outage capacity do not capture the

overhead due to channel estimation, which may be significant for short-packet communications.

Diversity-multiplexing tradeoff: Consider the scenario where l and nc are fixed, CSI is available

at the receiver, and the packet error rate ε vanishes as a function of ρ according to

ε(ρ) = ρ−d l (16)

where d ∈ {0, 1, . . . ,mtmr} is the so-called spatial diversity gain. For the case when nc ≥ mt +

mr − 1, Zheng and Tse proved that [1]

lim
ρ→∞

R∗(nc, l, ε(ρ), ρ)

ln ρ
= r(d) (17)
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where the multiplexing gain r(d) is the piece-wise linear function connecting the points

r
(
(mt − k)(mr − k)

)
= k, k = 0, . . . ,min{mt,mr}. (18)

The condition nc ≥ mt + mr − 1 has been relaxed to nc ≥ mt in [28], where an explicit code

construction that achieves (17) is provided.

For the case when CSI is not available at the receiver and nc ≥ 2m∗+mr + 1, where m∗ is given

in (12), the diversity-multiplexing tradeoff becomes [7], [29]

lim
ρ→∞

R∗(nc, l, ε(ρ), ρ)

ln ρ
=

(
1− m∗

nc

)
r(d). (19)

The expressions in (18) and in (19) describe elegantly and succinctly the tradeoff between diversity

and multiplexing. The price to be paid for such a characterization is its high-SNR nature, which

may limit its significance for the scenarios analyzed in this paper.

Finite-SNR version of the diversity-multiplexing tradeoff have been proposed in [30], [31]. How-

ever, these extensions rely on the outage probability and are, in contrast to the original formulation

in [7], only meaningful asymptotically as the blocklength tends to infinity.

To summarize, the performance metrics developed so far for the analysis of wireless systems, i.e.,

the ergodic capacity, the outage capacity, and the diversity-multiplexing tradeoff have shortcomings

when applied to short-packet wireless communications. We address these shortcomings in the next

section by developing nonasymptotic bounds on R∗(l, nc, ε, ρ).

V. BOUNDS ON THE MAXIMAL CODING RATE

A. Output distribution induced by USTM inputs

Let A be an n ×m (n > m) random matrix. We say that A is isotropically distributed if, for

every deterministic n × n unitary matrix V, the matrix VA has the same probability distribution

as A. A key ingredient of the nonasymptotic bounds on R∗(l, nc, ε, ρ) described in this section is the

following closed-form expression for the probability density function (pdf) induced on the channel

output Yk in (1) when Xk is a scaled isotropically distributed matrix with orthonormal columns.

Such an input distribution is commonly referred to as USTM. It will turn out convenient to consider

a minor modification of the USTM distribution, in which only m̃t out of the available mt transmit

antennas are used.
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Lemma 2: Assume that nc ≥ mt +mr. Let X =
√
ρnc/m̃tU where U ∈ Cnc×m̃t (1 ≤ m̃t ≤ mt)

satisfies UHU = Im̃t and is isotropically distributed. Finally, let Y = XH + W where H ∈ Cm̃t×mr

and W ∈ Cnc×mr are defined as in (1). The pdf of Y is given by

fY(Y) =

nc∏
u=nc−q+1

Γ(u)

πmrnc

m̃t∏
u=1

Γ(u)

(1 + µ)m̃t(nc−m̃t−mr)

µm̃t(nc−m̃t)
ψm̃t(σ

2
1, . . . , σ

2
mr

). (20)

Here, σ1 > · · · > σmr denote the mr nonzero singular values of Y, which are positive and distinct

almost surely [32], q = min{m̃t,mr}, µ = ρnc/m̃t, and

ψm̃t(b1, . . . , bmr) =
det{M}

mr∏
i<j

(bi − bj)

mr∏
k=1

exp
(
−bk/(1 + µ)

)
bnc−mr
k

(21)

where M is a p× p real matrix (p = max{m̃t,mr}) whose entries are given by

[M]ij =



bm̃t−j
i γ̃

(
nc + j − p− m̃t, biµ/(1 + µ)

)
, 1 ≤ i ≤ mr

1 ≤ j ≤ m̃t

exp
(
−biµ/(1 + µ)

) [ ∂m̃t−j

∂δm̃t−j
δnc−i

∣∣∣∣
δ=µ/(1+µ)

]
, mr < i ≤ p

1 ≤ j ≤ m̃t

bnc−j
i exp

(
−biµ/(1 + µ)

)
, 1 ≤ i ≤ mr

m̃t < j ≤ p.

(22)

Here,

γ̃(n, x) =
1

Γ(n)

∫ x

0

tn−1e−tdt (23)

denotes the regularized incomplete Gamma function.

Proof: The proof, which relies on the Itzykson-Zuber integral [33, Eq. (3.2)] and on repeated

use of [34, Lem. 5], can be found, e.g., in [12, App. A] and, more recently, in [35].

Remark 1: A different expression for fY(Y) is reported in [23]. The expression in Lemma 2

appears to be easier to compute and more stable numerically.

B. USTM Dependence Testing (DT) Lower Bound

We first present a lower bound on R∗(l, nc, ε, ρ) that is based on the DT bound [13, Th. 22]

(maximal error probability version) and makes use of the USTM-induced output distribution given

in Lemma 2.
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Theorem 3: Let Λk,m̃t,1 > · · · > Λk,m̃t,mr be the ordered eigenvalues of ZHk Dm̃tZk where {Zk ∈

Cnc×mr}lk=1 are independent complex Gaussian matrices with i.i.d. CN (0, 1) entries, and

Dm̃t = diag

{
1 + ρnc/m̃t, . . . , 1 + ρnc/m̃t︸ ︷︷ ︸

m̃t

, 1, . . . , 1︸ ︷︷ ︸
nc−m̃t

}
(24)

for m̃t ∈ {1, . . . ,mt}. It can be shown that the eigenvalues are positive and distinct almost surely.

Let

Sk,m̃t = m̃t(nc − m̃t) ln
ρnc

m̃t + ρnc

−
nc∑

u=nc−q+1

ln Γ(u) +
m̃t∑
u=1

ln Γ(u)

− tr
{
ZHk Zk

}
− lnψm̃t(Λk,m̃t,1, . . . ,Λk,m̃t,mr) (25)

where q = min{m̃t,mr} and the function ψm̃t : Rmr
+ → R was defined in (21). Finally, let

εub(M) = min
1≤m̃t≤mt

E

exp

−
[

l∑
k=1

Sk,m̃t − ln(M − 1)

]+
 . (26)

We have

R∗(l, nc, ε, ρ) ≥ max

{
lnM

ncl
: εub(M) ≤ ε

}
. (27)

Proof: The transmitter uses only m̃t out of the available mt antennas. This yields an m̃t ×mr

MIMO Rayleigh block-fading channel. Let {Xk =
√
ρnc/m̃tUk}lk=1 where {Uk}lk=1 are indepen-

dent, isotropically distributed nc × m̃t random matrices with orthonormal columns. The induced

channel outputs {Yk =
√
ρnc/m̃tUkHk+Wk}lk=1 are i.i.d. fY-distributed, where fY is given in (20).

Let Ul = [U1, . . . ,Ul]. Since the channel is block-memoryless, the information density [13, Eq. (4)]

can be decomposed as follows:

ı
(
Ul; Yl

)
=

l∑
k=1

ı(Uk; Yk) =
l∑

k=1

ln
fY |U(Yk |Uk)

fY(Yk)
(28)

where

fY |U(Yk |Uk) =
e
− tr

{
YHk (Inc+(ρnc/m̃t)UkUHk )

−1
Yk

}
πmrnc(1 + ρnc/m̃t)m̃tmr

. (29)

We next note that, for every nc × nc unitary matrix V,

fY |U(Y |VHU) = fY |U(VY |U) (30)

and

fY(VY) = fY(Y). (31)
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Consequently, the probability law of the information density ı(Uk;Yk) in (28), (where Yk ∼ fY)

does not depend on Uk. Without loss of generality, we shall then set Uk = Ū, k = 1, . . . , l, with

Ū =

 Im̃t

0nc−m̃t×m̃t

 . (32)

Using [13, Th. 22], we conclude that there exists a (l, nc,M, ε, ρ) code satisfying

ε ≤ E

exp

−
[

l∑
k=1

ı
(
Ū;Yk

)
− ln(M − 1)

]+
 (33)

where the expectation is with respect to Yk ∼ fY |U(· | Ū). Through algebraic manipulations, one can

show that ı
(
Ū;Yk

)
has the same distribution as the random variable Sk,m̃t in (25). Minimizing (33)

over the number of effectively used transmit antennas m̃t, and solving the resulting inequality for

the rate (lnM)/(ncl) yields (27).

C. Meta-converse (MC) Upper Bound

We next give an upper bound on R∗(l, nc, ε, ρ) that is based on the MC theorem for maximal

error probability of error [13, Th. 31] and uses the output distribution induced by the USTM input

distribution (see (20)) as auxiliary output distribution.

Theorem 4: For a fixed m̃t ∈ [1, . . . ,mt], let the random variables {Ȳk}lk=1 be i.i.d. fY-distributed,

with fY, defined in (20), being the output distribution corresponding to an USTM input distribution

over m̃t antennas. Let ∆k,m̃t,1 > · · · > ∆k,m̃t,mr be the ordered eigenvalues of ȲH
k Ȳk, k = 1, . . . , l,

and let

�k,m̃t = diag{∆k,m̃t,1, . . . ,∆k,m̃t,mr}. (34)

It can be shown that the eigenvalues are positive and distinct almost surely. Let {Σk ∈ Rmt×mt}lk=1

be diagonal matrices with nonnegative diagonal entries, satisfying tr{Σk} = ncρ, k = 1, . . . , l and

let

Σ̃k =

Imt + Σk 0

0 Inc−mt

 . (35)

Let {Uk ∈ Cnc×mr}lk=1 be i.i.d. isotropically distributed (truncated) unitary matrices, and let {Z̄k ∈

Cnc×mr}lk=1 be independent complex Gaussian matrices with i.i.d. CN (0, 1) entries. Finally, let

c̄m̃t(Σk) = m̃t(nc − m̃t) ln
ρnc

m̃t

− m̃t(nc − m̃t −mr) ln

(
1 +

ρnc

m̃t

)
−mr ln det Σ̃k −

nc∑
u=nc−p+1

ln Γ(u) +
m̃t∑
u=1

ln Γ(u) (36)
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Tk,m̃t(Σk) = c̄m̃t(Σk)− tr{Uk�k,m̃tUH
k Σ̃−1k )} − lnψm̃t(∆k,m̃t,1, . . . ,∆k,m̃t,mr) (37)

and

S̄k,m̃t(Σk) = c̄m̃t(Σk)− tr{Z̄Hk Z̄k} − lnψm̃t(Λ̄k,m̃t,1, . . . , Λ̄k,m̃t,mr) (38)

where Λ̄k,m̃t,1 > · · · > Λ̄k,m̃t,mr are the ordered eigenvalues of ZHk Σ̃kZk (which are positive and

distinct almost surely), and where p = max{m̃t,mr}, and ψm̃t is defined in (21). Then, for every n

and for every 0 < ε < 1, the maximal channel coding rate R∗(l, nc, ε, ρ) is upper bounded by

R∗(l, nc, ε, ρ) ≤ min
1≤m̃t≤mt

sup
{Σk}lk=1

1

n
ln

1

Pr

{
l∑

k=1

Tk,m̃t(Σk) ≥ γ

} (39)

where γ = γ
(
{Σk}lk=1

)
is the solution of

Pr

{
l∑

k=1

S̄k,m̃t(Σk) ≤ γ

}
= ε. (40)

Remark 2: To facilitate its numerical evaluation, the meta-converse upper bound (39) can be

relaxed by using [13, Eq. (102)], which yields

R∗(l, nc, ε, ρ) ≤ min
1≤m̃t≤mt

sup
{Σk}lk=1

inf
λ

1

n

λ− ln

[Pr

{
l∑

k=1

S̄k,m̃t(Σk) ≤ λ

}
− ε

]+ . (41)

We will use this upper bound in the numerical evaluations reported in Section VII.

Remark 3: As for the outage capacity in (13), the symmetry in (41) suggests that the supremum

over {Σk}lk=1, is achieved when

Σk =
ρ

mk

diag{1, . . . , 1︸ ︷︷ ︸
mk

, 0, . . . , 0︸ ︷︷ ︸
mt−mk

} (42)

for some mk ∈ {1, . . . ,mt}, k ∈ {1, . . . , l}. We can think of (42) as a finite-blocklength extension

of Telatar conjecture. Although far from conclusive, the numerical results reported in Section VII

support the validity of this conjecture.

Remark 4: A converse bound that holds when the per-coherence-interval power constraint (4) is

replaced by the less stringent (and perhaps more common) per-codeword power constraint

tr
{

CHmCm
}
≤ lncρ (43)
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can be obtained by evaluating the supremum in (39) and (41) over all {Σk}lk=1 that satisfy
l∑

k=1

tr{Σk} ≤ lncρ (44)

Proof: Fix 1 ≤ m̃t ≤ mt. To bound R∗(l, nc, ε, ρ), we use the meta-converse theorem for

maximal error probability [13, Th. 31] with auxiliary pdf

qYl(Yl) =
l∏

k=1

fY(Yk) (45)

where fY is the USTM-induced output pdf defined in (20). This yields

R∗(l, nc, ε, ρ) ≤ sup
Xl

1

n
ln

1

β1−ε
(
Xl, qYl

) (46)

where the supremum is over all codewords Xl ∈ Cnc×mtl satisfying the power constraint (3), and

where β1−ε(·, ·) is defined as in [13, Eq. (105)].3 Using the Neyman-Pearson lemma, we have that

β1−ε(Xl, qYl) = Pr
{
ı
(
Xl;Yl

)
≥ γ

}
, Yl ∼ qYl (47)

where γ is the solution of

Pr
{
ı
(
Xl;Yl

)
≤ γ

}
= ε, Yl ∼ fYl |Xl(· |Xl) (48)

and where ı(·; ·) is defined as in (28).

For a given codeword Xl = [X1, . . . ,Xl], let

XkXH
k = VkΣkVH

k , k = 1, . . . , l. (49)

Here, Vk ∈ Cnc×mt contains the eigenvectors of XkXH
k , and Σk ∈ Cmt×mt is a diagonal matrix

with nonnegative entries containing the mt eigenvalues of XH
k Xk. It follows from (30) and (31) that

β1−ε(Xl, qYl) depends on Xl only through the diagonal matrices {Σk}lk=1. Hence, we can replace

the infimum over Xl in (46) by an infimum over {Σk}lk=1.

We continue the proof by noting that when Yl ∼ fYl |Xl(· |Xl) the information density ı
(
Xl;Yl

)
is distributed as

∑l
k=1 S̄k,m̃t , with S̄k,m̃t defined in (38); and when Yl ∼ qYl the information density

is distributed as
∑l

k=1 Tk,m̃t , with Tk,m̃t defined in (37). Finally, (39) follows by minimizing over

m̃t ∈ {1, . . . ,mt}.

3To be precise, the second argument of β1−ε(·, ·) in [13, Eq. (105)] is an arbitrary probability measure. In our case, since the

chosen probability measure is absolutely continuous, it is convenient to let the second argument of β1−ε(·, ·) be a pdf.
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VI. HOW TO USE THE AVAILABLE TRANSMIT ANTENNAS?

Insights on how the available transmit antennas should be used to maximize R∗(l, nc, ε, ρ) can be

obtained by considering a setup where an outer code defined along the same lines as Definition 1 is

combined with a specific space-time inner code. By treating this inner code as part of the channel,

one can obtain achievability and converse bounds similar to the ones reported in Theorems 3 and 4.

In Sections VI-A and VI-B, we provide achievability and converse bound obtained by assuming

that a diversity-exploiting orthogonal space-time inner code is used. We shall focus on the 2× 2

and 4× 4 MIMO configurations.

A. Alamouti

For the 2×2 case, we consider an Alamouti inner space-time code [36]. When CSI is available at

the receiver, this scheme provides a diversity gain of 4 (per coherence interval) but no multiplexing

gain [37, Sec. 9.1.5].

In order to analyze the finite blocklength performance of such a scheme when CSI is not a priori

available at the receiver, we proceed similarly to as in Section V: we first obtain a closed-form

expression for the output distribution induced by the Alamouti scheme, and then use this output

distribution to obtain a DT lower bound and a MC upper bound on the maximum coding rate

obtainable with such a scheme.

We assume that the coherence interval nc is even, and we let the nc × 2 input matrix Xk in (1) be

given by

Xk = [ak e(ak)] (50)

where ak is an nc-dimensional vector satisfying ‖ak‖2 = ρnc/2, and where the function e : Cnc →

Cnc maps an input vector a into the output vector b according to the Alamouti rule [36]:

[b]2l−1 = [e(a)]2l−1 = [a]∗2l, l = 1, 2, . . . , nc/2 (51a)

[b]2l = [e(a)]2l = −[a]∗2l−1, l = 1, 2, . . . , nc/2. (51b)

In Lemma 5 below, we provide the pdf of the channel output Y induced by an input matrix X

constructed as in (50), and whose first column A is uniformly distributed over the hypersphere of

radius
√
ρnc/2 (this corresponds to USTM for the case of a single transmit antenna).

Lemma 5: Assume that mt = mr = 2 and that nc is even and larger or equal to 4. Let

X = [A e(A)] (52)

December 22, 2014 DRAFT



16

where e(·) is defined in (51) and where A =
√
ρnc/2U , with U being an isotropically distributed

unit-norm nc-dimensional complex random vector. Let Y =
[
Y1 Y2

]
= XH+W, where H ∈ C2×2

and W ∈ Cnc×2 are defined similarly as in (1). Furthermore, let

Ŷ = [Y1 e(Y1) Y2 e(Y2)] (53)

and let Σ1 and Σ3 (with realizations σ1 and σ3, respectively) the first and the third largest eigenvalue

of the 4× 4 matrix ρnc/(2 + ρnc)ŶHŶ.4 The pdf of Y is given by

fY(Y) =
exp
(
tr
{

YHY
})

π2nc(1 + ρnc/2)2nc

Γ(nc)

(σ1 − σ3)4
det{M(σ1, σ3)} (54)

where the 4× 4 matrix M is given by

M =


eσ1 γ̃(nc − 5, σ1) (nc − 2)σnc−3

1 (nc − 3)σnc−4
1 (nc − 4)σnc−5

1

eσ1 γ̃(nc − 4, σ1) σnc−2
1 σnc−3

1 σnc−4
1

eσ3 γ̃(nc − 5, σ3) (nc − 2)σnc−3
3 (nc − 3)σnc−4

3 (nc − 4)σnc−5
3

eσ3 γ̃(nc − 4, σ3) σnc−2
3 σnc−3

3 σnc−4
3

 (55)

if nc > 4, and by

M =


eσ1 2σ1 1 0

eσ1 σ2
1 σ1 1

eσ3 2σ3 1 0

eσ3 σ2
3 σ3 1

 (56)

if nc = 4.

Remark 5: Note that although A in (52) is isotropically distributed, the matrix X is not. Hence,

X does not follow a USTM distribution.

Proof: The proof follows along the same lines as the proof of Lemma 2.

Treating the Alamouti space-time inner code as part of the channel, we next report lower and upper

bounds on the maximum coding rate R∗ala(l, nc, ε, ρ) achievable when an Alamouti space-time inner

code is used. These bounds rely on the closed-form expression for fY(·) reported in (54).

4The matrix ŶHŶ has two distinct positive eigenvalues with multiplicity two almost surely.

December 22, 2014 DRAFT



17

1) DT lower bound: We provide first an achievability bound, which is based on the DT bound [13,

Th. 22].

Theorem 6: Let {Zk ∈ Cnc×2}lk=1 be independent complex Gaussian matrices with i.i.d. CN (0, 1)

entries. Let

D = diag

{
1 +

ρnc

2
, 1 +

ρnc

2
, 1, . . . , 1︸ ︷︷ ︸

nc−2

}
(57)

Vk =
[
Vk,1 Vk,2

]
= D1/2Zk, and

V̂k =
[
Vk,1 e(Vk,1) Vk,2 e(Vk,2)

]
(58)

where the function e(·) was defined in (51). Furthermore, let Σk,1 and Σk,3 be the first and third

largest eigenvalue of (ρnc/(2 + ρnc))V̂H
k V̂k (which are positive and distinct almost surely), let

Sk = tr
{
ZHk DZk

}
− tr

{
ZHk Z

}
− ln Γ(nc) + ln det{M(Σk,1,Σk,3)} − 4 ln(Σk,1 − Σk,3) (59)

and let

εala(M) = E

exp

−
[

l∑
k=1

Sk − ln(M − 1)

]+
 . (60)

Then

R∗ala(l, nc, ε, ρ) ≥ max

{
lnM

ncl
: εala(M) ≤ ε

}
. (61)

Proof: The proof follows along the same lines as the proof of Theorem 3.

2) MC upper bound: Using [13, Th. 22] and [13, Eq. (102)] we obtain the following converse

bound on R∗ala(l, nc, ε, ρ).

Theorem 7: Let Sk be defined as in (59). Then

R∗ala(l, nc, ε, ρ) ≤ inf
λ

1

n

[
λ− ln

(
Pr

{
l∑

k=1

Sk ≤ λ

}
− ε

)]
. (62)

Proof: The proof follows along the same lines as the proof of Theorem 4.

B. Frequency Switched Transmit Diversity

Since no generalization of the Alamouti space-time inner code exists beyond the 2× 2 configura-

tion [38], we consider instead for the 4×4 case the combination of Alamouti and frequency-switched

transmit diversity (FSTD) used in LTE [39, Sec. 11.2.2.1]. According to this scheme, in the odd

time-frequency slots only transmit antennas 1 and 2 are used, and in the even time-frequency slots
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only transmit antennas 3 and 4 are used. In each time-frequency slot, an Alamouti space-time inner

code is used for transmission. For example, for the case nc = 4, this scheme results in the following

4× 4 input matrix 
a1 a2 0 0

0 0 b1 b2

−a∗2 a∗1 0 0

0 0 −b∗2 b∗1

 (63)

where |a1|2 + |a2|2 = |b1|2 + |b2|2 = ρ. The combination of Alamouti and FSTD transforms a 4× 4

MIMO channel with coherence interval nc into two parallel 2× 4 MIMO channels with coherence

interval nc/2. Hence, when CSI is available at the receiver, Alamouti combined with FSTD provides

a diversity gain of 8 (per coherence interval) and no multiplexing gain. The finite-blocklength

performance of this scheme can be analyzed using a similar approach as for the 2× 2 case.

VII. NUMERICAL RESULTS

We consider the same setup as in [2], which is based on the 3GPP LTE standard [39]. Specifically,

the packet length is set to n = 168 symbols (14 OFDM symbols each consisting of 12 tones, which

corresponds to an LTE resource block). In typical LTE scenarios, by spreading the tones uniformly

over the available bandwidth of 20 MHz, one can obtain 12 frequency diversity branches [2]. In our

analysis, we shall also consider the case when l > 12. Throughout, we set ρ = 6 dB. We consider

both the case where the packet error rate is ε = 10−3, which may be appropriate for the exchange

of short packets carrying control signaling, and the case ε = 10−5, which may be relevant for the

transmission of critical information, e.g., in traffic-safety applications [3], [5].

Control signaling: In Fig. 1 we plot5 the DT lower bound (27) and the MC upper bound (41) for

the case mt = mr = 2 and ε = 10−3. These bounds delimit R∗(l, nc, ε, ρ) tightly and demonstrate

that R∗(l, nc, ε, ρ) is not monotonic in the coherence interval nc, but that there exists an optimal

value n∗c , or, equivalently, an optimal number l∗ = n/n∗c of time-frequency diversity branches,

that maximizes R∗(l, nc, ε, ρ). A similar observation was reported in [15] for the single-antenna

case. For nc < n∗c , the cost of estimating the channel overcomes the gain due to time-frequency

diversity. For nc > n∗c , the bottleneck is the limited time-frequency diversity offered by the channel.

5The numerical routines used to obtain these results are available at https://github.com/yp-mit/spectre
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Fig. 1. mt = mr = 2, n = 168, ε = 10−3. In the MC upper bound (41) the supremum over {Σk}lk=1 is restricted to {Σk}lk=1 of

the form given in (42) when l > 7, because of computational complexity.

For the parameters considered in Fig. 1, the optimal coherence interval length is n∗c ≈ 24, which

corresponds to about 7 time-frequency diversity branches.

In the figure, we also plot the outage capacity Cout(ρ, ε) in (13) as a function of the number of

time-frequency diversity branches l = n/nc (with n = 168), and a lower bound on the ergodic

capacity Cerg(ρ), as a function of the coherence interval nc. This lower bound on Cerg(ρ), which is

obtained by computing the mutual information on the RHS of (10) for the case when X is USTM

distributed and by optimizing over the number of active transmit antennas, approximates Cerg(ρ)

accurately already at moderate SNR values [24].

As shown in the figure, Cout(ε, ρ) provides a good approximation forR∗(l, nc, ε, ρ) only when l is

small (nc ≈ n), i.e., when the fading channel is essentially constant over the duration of the packet

(quasi-static scenario). Furthermore, Cout(ε, ρ) fails to capture the loss in throughput due to the

channel estimation overhead, which is relevant for small nc. The number of active transmit antennas

m̃t that maximizes the DT achievability bound is m̃t = 2 (both antennas active) for 1 ≤ l ≤ 21,

whereas it is m̃t = 1 (only one antenna active) for l > 21. The lower bound on Cerg(ρ) plotted

in the figure, which also involves a maximization over the number of active antennas, exhibits a

similar behavior (see Table I), although its gap from R∗(l, nc, ε, ρ) is large, especially for small
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l values. We also note that the intersection between Cout(ε, ρ) and Cerg(ρ) predicts coarsely the

optimal number l∗ of time-frequency diversity branches.

The optimal m̃t value for the MC upper bound (41) is again m̃t = 2 for 1 ≤ l ≤ 21 and m̃t = 1

for l > 21. Furthermore, the optimal {Σk}lk=1 take all the same value and are equal to a 2×2 scaled

identity matrix for 1 ≤ l ≤ 14 and for l = 28, and to a 2× 2 diagonal matrix with diagonal entries

equal to ρ and to 0, respectively, for l = 21 and l = 42.

In the same figure, we plot the achievability and the converse bounds for the case when an

Alamouti code is used as inner code. One can see that for small values of l, the Alamouti scheme is

almost optimal, but the gap between the DT lower bound and the Alamouti converse increases as l

grows. This is in agreement with the findings based on an outage-capacity analysis reported in [2].

However, in contrast to what has been observed for outage capacity, for R∗(l, nc, ε, ρ) it is better

to switch off the second transmit antenna when l is large. In this regime, the cost of estimating

the channel resulting from the use of a second antenna overcomes both diversity and multiplexing

gains.

We would like to emphasize that, in contrast to our approach, outage-capacity-based analyses

are inherently insensitive to the cost of estimating the fading parameters and are therefore not

suitable to capture the channel-estimation overhead. Although the high-SNR ergodic capacity

approximation (11) and the noncoherent diversity-multiplexing tradeoff (19) do predict that transmit

antennas must be switched off as l grows large, their predictions are coarse. Indeed, our numerical

results suggest that the second transmit antenna should be switched off when l > 21, or equivalently

nc < 8, whereas both (11) and (19) suggest that the second antenna should be switched off only

when nc ≤ 3.

Note that the gap between the DT lower bound and the MC upper bound in Fig. 1 is largest

around the value of nc (or equivalently l = n/nc) for which the second transmit antenna must be

switched off. One could tighten both the DT and the MC bound by considering a larger class of

input distributions (and the induced class of output distributions in the MC bound). For example,

one could drop the assumption that the input distribution is identical across coherence intervals.

Indeed, using a different number of transmit antennas in different coherence intervals could be

beneficial since it would essentially allow to extend the optimization in both (33) and (41) over

fractional values of m̃t.

In Fig. 2, we present a similar comparison for the case of a 4× 4 system. As shown in the figure,

the gap between the MC upper bound and the DT lower bound is small, allowing for an accurate
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TABLE I

ESTIMATES ON THE OPTIMAL NUMBER OF TRANSMIT ANTENNAS m̃t FOR A 2× 2 MIMO SYSTEM; ρ = 6dB, ε = 10−3 ,

n = 168.

Bound Optimal m̃t Diversity branches l

DT 1 21 < l ≤ 48

2 1 ≤ l ≤ 21

MC 1 21 < l ≤ 48

2 1 ≤ l ≤ 21

USTM bound 1 21 ≤ l ≤ 48

on Cerg 2 1 ≤ l < 21
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Fig. 2. mt = mr = 4, n = 168, ε = 10−3. In the MC upper bound (41), the supremum over {Σk}lk=1 is restricted to {Σk}lk=1 of

the form given in (42), because of computational complexity.

characterization of R∗(l, nc, ε, ρ). In contrast, the gap between the DT lower bound and the FSTD

upper bound is large, which suggests that using all 4 transmit antennas to provide diversity gain is

suboptimal even when the amount of time-frequency diversity is limited (i.e., l is small). As for the

2× 2 case, the transmit antennas should progressively be switched off as l increases, in order to

mitigate the channel-estimation overhead. Specifically, the DT achievability bound is maximized

by using 4 transmit antennas (m̃t = 4) when 1 ≤ l < 12, by using 3 antennas when l = 12, and by
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TABLE II

ESTIMATES ON THE OPTIMAL NUMBER OF TRANSMIT ANTENNAS m̃t FOR A 4× 4 MIMO SYSTEM. ρ = 6dB, ε = 10−3 ,

n = 168.

Bound Optimal m̃t Diversity branches l

DT 2 12 < l ≤ 21

3 l = 12

4 1 ≤ l < 12

MC 2 14 ≤ l ≤ 21

3 7 ≤ l < 14

4 1 ≤ l < 7

USTM bound 2 14 ≤ l ≤ 21

on Cerg 3 7 ≤ l < 14

4 1 ≤ l < 7
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Fig. 3. mt = mr = 2, n = 168, ε = 10−5. In the MC upper bound (41) the supremum over {Σk}lk=1 is restricted to {Σk}lk=1 of

the form given in (42) when l > 7, because of computational complexity.

using only two antennas when 12 < l ≤ 21. Also in this case, the lower bound on Cerg(ρ) and the

MC upper bound exhibit a similar behavior (see Table ).

Ultra-reliable communication: In Fig. 3 and Fig. 4, we consider the case ε = 10−5. We

observe a similar behavior as for the case ε = 10−3, with the difference that the gap between the
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Fig. 4. mt = mr = 4, n = 168, ε = 10−5. In the MC upper bound (41), the supremum over {Σk}lk=1 is performed only over

{Σk}lk=1 values of the form given in (42), because of computational complexity.

optimal schemes and the diversity-based schemes (Alamouti for the 2× 2 configuration, and FSTD

for the 4× 4 case) gets smaller. This comes as no surprise, since the higher reliability requirement

makes the exploitation of transmit diversity advantageous.

VIII. CONCLUSIONS

We presented finite-blocklength bounds on the maximum coding rate achievable over a MIMO

Rayleigh block-fading channel, under the assumption that neither the transmitter nor the receiver

have a priori CSI. Our bounds, which are explicit in the packet error rate ε, the coherence interval nc,

and the number of time-frequency diversity branches l, allow one to determine—for a fixed packet

size n = ncl—the number of time-frequency diversity branches and the number of transmit antennas

that trade optimally the rate gain resulting from the exploitation of the available time-frequency-

spatial resources against the rate loss due to the cost of estimating the channel coefficients over

these resources. The bounds provide also an indication of whether the available transmit antennas

should be used to provide transmit diversity or spatial multiplexing.

For the short-packet size applications that are in focus in this paper, traditional infinite-blocklength

performance metrics such as the outage and the ergodic capacity, are shown to provide inaccurate
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estimates on the maximum coding rate, and also to fail in capturing the fundamental tradeoff

between diversity/multiplexing on the one hand and channel estimation overhead on the other

hand, which occurs in the short-packet size regime. Hence, our results suggest that the optimal

design of the novel low-latency/ultra-reliable services that will be provided by next-generation

(5G) wireless systems, must rely on a more refined analysis of the interplay between packet-

error probability, communication rate, and packet size, than the one offered by traditional infinite-

blocklength performance metrics.
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