On dispersion of compound DMCs

Yury Polyanskiy

Abstract—Code for a compound discrete memoryless channel
(DMC) is required to have small probability of error regardless
of which channel in the collection perturbs the codewords.
Capacity of the compound DMC has been derived classically: it
equals the maximum (over input distributions) of the minimal
(over channels in the collection) mutual information. In this
paper the expression for the channel dispersion of the compound
DMC is derived under certain regularity assumptions on the
channel. Interestingly, dispersion is found to depend on a subtle
interaction between the channels encoded in the geometric
arrangement of the gradients of their mutual informations. It
is also shown that the third-order term need not be logarithmic
(unlike single-state DMCs). By a natural equivalence with
compound DMC, all results (dispersion and bounds) carry over
verbatim to a common message broadcast channel.

I. INTRODUCTION

An abstract compound channel is a triplet: measurable
spaces of inputs A and outputs B and a collection of con-
ditional probability measures Py, x : A +— B indexed by
elements s € S of a measurable space. Let M be a positive
integer and € € [0,1). An (M, €)nocsr code' is a pair of
(possibly randomized) maps f : [M] — A (the encoder) and
g : B — [M] (the decoder), satisfying

Plg(Vs) £ m|X = f(m)] <e  VseSvme[M] (1)

An (M, €)csir code is a pair of (possibly randomized) maps
f : [M] — A (the encoder) and g : BxS — [M] (the decoder
with access to channel state), satisfying

Plg(Ys,s) # m|X =f(m)] <e Vs € S,Vm € [M] (2)

This paper focuses on the case where A and B are n-fold
Cartesian products of finite alphabets A and B, S is a finite
set and transformations Py, x are n-fold i.i.d. products:

n n A - S
Py x(y ") = [T W (yyla;)

Jj=1
where W) . A — B are stochastic matrices, n is the
blocklength. An (M, €) code for the n-fold product is denoted
as (n,M,e) code. Finally, finite-blocklength fundamental
limits for both types of codes are defined to be
M cgr(n,e) 2 max{M : I(n, M, €)nocsi-code}  (3)

n

Mg p(n,€) 2 max{M : I(n, M, e)csir-code} . (4)
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! Abbreviation “noCSI” stands for no channel state information, while
“CSIR” stands for channel state information at the receiver.

A classical result of Blackwell, Breiman and

Thomasian [1] states

n — 00 5)
n — 0o, (6)

log M} cs1(n,€) = nC + o(n),
log Mégrr(n,e) =nC + o(n),

where
— i (s)
C max min I(Px,W'¥). @)
Wolfowitz [2] established a refinement of (5) and (6) showing
that

log M*(n,e) = nC + O(\/n),

n — oo

This note refines this expression further, by providing the
exact coefficient in a y/n-term. Results on O(y/n) have
been classically established for discrete memoryless channels
(DMCs) by Dobrushin and Strassen [3], [4], and other chan-
nels more recently. Motivation for studying 1/n terms comes
from the problem of predicting finite blocklength behavior of
fundamental limits [5]. See [6] for a survey.

We find that the channel dispersion [5] of a compound
DMC is given by:

N

max  min dls(v) —
VY eaa=0 8

V(P W®), (8

where minimum is over states s with I(P%, W ()) = C and
dI, is the differential of the mutual information:

dI,(v) £ 3" v, DWW Py 9)
rzeA

W (y) 2 WO (y)a) (10)

Py (y) 2 Y WO (yle) Py (2) (11)

zeA
(see Section III for more on notation). More precisely, we
prove the following:
Theorem 1: Consider a finite-state compound DMC. As-
sume
1) The capacity achieving input distribution P3 (maxi-
mizer in (7)) is unique.
2) P%(x) >0 forall x € A
3) V(Py,W®))>0foralseS.
Then for any € € (0, %) we have?

log M*(n,€) = nC — VnVQ *(e) + o(v/n),n — oo (12)
for both the noCSI and CSIR codes.

2Q~1(e) is the functional inverse of the Q-function: Q(z) =
2
@2m)"z [T e Tdt



Remarks:

1) Somewhat counter-intuitively, the dispersion V' is not
the maximal (worst) dispersion among channels s at-
taining I(P%, W) = C. Rather it depends on a sub-
tle interaction between channels’ mutual informations
and dispersions.

For two-state channel the expression for V' simplifies:

VI N

2
Wi Py,) )

(14)

2)

Vi+ 13)

az
al + ag

W |P;) T <ZD

z€A

and provided a; # 0 or as # 0. If both are zero then

V = max(Vi, Va). (15)

3) Unlike [5], in this paper we do not provide experimen-
tal validation for the tightness of approximation (12)
at realistic blocklengths. Thus results here are purely
asymptotic although we did attempt to provide bounds
that (we expect) to be quite competitive at finite block-
lengths.

Section IV constructs an example of the channel for
which the o(y/n) term is §(ni) — this is in contrast
to all the known examples of expansions (12) (such as
DMCs, Gaussian channels, etc), for which the o(+/n)
term is known to be O(logn).

It should be noted that for composite channels one
assumes a prior over states S and consequently defines
probability of error as averaged over the state s € S
(as opposed to worst-case definitions (1) and (2)).
For such channels, the capacity becomes a function
of probability of error e. For finite-state channels, the
dispersion term is similar to (12) with argument of Q!
modified, see [7]. However, for the continuum of states
the dispersion term may disappear, a surprising effect
arising for example in (single- or multiple-antenna)
wireless channels, see [8].

Finally, we note that coding for a compound channel
(with CSIR) is equivalent to a problem of common
message broadcast channel. Thus, Theorem 1 and the
rest of this note applies equally well to this question
in multi-user information theory.

4)

5)

6)

II. ABSTRACT ACHIEVABILITY BOUNDS

In this section we present two general achievability bounds
(noCSI and CSIR). Although the proof of Theorem 1 requires
only one of these and only a very special particularization of
it, we prefer to formulate general versions for two reasons:

1) The proof of Theorem 1 reduces noCSI case to CSIR
case by training. This is not possible for infinite al-
phabet/state cases, and hence a direct noCSI bound is
necessary.

2) For numerical evaluations, crude bounds sufficient to
establish (12) will need to be replaced with exact
computation of the theorems in this section.

Given a pair of distributions P and () on common
measurable space W, a randomized test between those two
distributions is defined by a random transformation Pz :
W — {0,1} where 0 indicates that the test chooses Q.
Performance of the best possible hypothesis test (HT) is given
by

2(P.Q) 2 min / P (1) Q(dw)

where the minimum is over all probability distributions Pz|y
satisfying

(16)

The minimum in (16) is guaranteed to be achieved by
the Neyman-Pearson lemma. An abbreviated version of this
definition is:

A7)

inf
E:P[E]>a

A
Ba(P,Q) = QLE].
With this convention we similarly define HT between collec-
tions of distributions as follows:

ﬂa({Ps,SES},{QS,SES/}) inf max Qs[F] .

E:mins Ps[E]>a S’

Theorem 2 (noCSI codes): Fix a distribution Qy on B,
7 € (0,¢) and a subset F C A. There exists an (M, €)nocs1

code with encoder f : [M] — F and
Kr
M > ,
o Bl—e-{-‘r
where
Ba = sup ﬂa(PYS|X:m7QY) (18)
zeF,seS
fir = inf Qy [E] (19)

and infimum in the definition of « is over all sets £ with the

property

V.I'EFHSZPYSD(ZZ[E]ZT- (20)

Proof: The proof is a natural extension of the original

k3 bound [5, Theorem 25] and is omitted. |
Theorem 3 (CSIR codes): Fix distributions Qy,,s € S on
B, 7 € (0,¢) and a subset F C A. There exists an (M, €)csrr

code with encoder f : [M] — F and
M > ) (21)
ﬂl e+T1
where
Boz = Ssup ﬁa (PYS\X:za QYS) (22)
z€F,s€S
Kz = iTElf sup Qy, [E] (23)

seS

and infimum in the definition of k is over all sets £ with the
property (20).



Proof: Again we assume familiarity with the (Feinstein-
type) argument in the proof of [5, Theorem 25]. Suppose
codewords ¢y, ...,cp have already been selected. To each
codeword c¢ there is a collection of sets {E.s,s € S}
satisfying for each s € S

PYS\X:C[EC,S] >1l—e+rT,
QYS [Ec,s] S Bl—e-{-‘r .

The decoder g inspects channel state s, the channel output
Y, and declares the message estimate as follows:

(24)
(25)

A .
g(s,y) =min{j : y € E¢; s}

Suppose that probability of error criterion (2) is satisfied with
this decoder and codebook {ci, ..., cpr}, but that we can not
grow the codebook without violating (2). This means

M

Vads : PYS|X:Z Ew,c\ U Ecj75
j=1

<l-—e€.

Applying the union bound and (24) with ¢ = = we find out

M
Vrds : PYS‘Xzi U Ecj-,s Z T.
Jj=1

Thus by the definition of k. we must have

Sup QYS U Ec],s Z Rt (26)
j=1
But from (25)
Qv, < MpB1—eyr- (27)

Clearly, (26) and (27) imply (21). [ |

In applications computation of «, either requires certain
symmetrization tricks, cf. [5, Appendix D], or the following
method (applicable to finite-state channels only). Suppose
that QQy, in Theorem 3 have the following property:

Qv.[E] = /A Py, x—o[E]Px (dz)

for some distribution Px. In words: Qy, is the distribution
induced by the channel Py, | x under input Px. Then for any
set satisfying (20) we have:

> Py x—.lE

seS

(28)

] > 71g(2)

Averaging this over Px we obtain

> Qv.[E]

seES

Z Tpx[F],

thus implying that

TP X [F]
>_—4l ]

max QvlE = =5
Since the set E was arbitrary we have shown that under

assumption (28) the «, in Theorem 3 is lower-bounded as
TP X [F]

Ky 2>
S|

(29)

Same argument shows that for <, deﬁned in (19), the
lower bound (29) holds when Qy = IS\ Y ses Qv. and
distributions @)y, defined in (28).

III. PROOF
A. Notation

We recall the notation and relevant results from [5]. Let
W be a stochastic matrix, P distribution on .A.

o conditional output distribution Wy (y) = W (y|z)
e output distribution PW PW (y) =
Ywea P@)W(ylz).
o mutual information
%%
=Y Pa)W(ylz)lo Péﬁ’('x; . (30)
zeAyeB Yy
o divergence variance
2
P(z) _ 2
VPIQ) = 3 P() |log 55| — DIPIIQ). (31

zeA
o conditional information variance

=Y P()

zeA

V(W4 ||PW) (32)

o Asymptotic estimate of ,: Let U be a subset of distri-
butions on A with the property that inf pcyy V (P, W) >
0. Then there exists a constant K such that for every
2™ e A" with type P in U we have

log Ba([ [ We, . (PW)") =

—\/aV(P,W)Q !

—nl(P,W) %logn:tK.
(33)

(see [9, Lemma 14]). For all 2™ we have

10g Ba (] [ Wa,, (PW)™) > —nI (P, W)~/ @Hog o
RENER
(see [9, Lemma 15]).
 Functions P — I(P,W) and P +— V (P, W) are smooth
on the interior of the simplex of distributions on A
« Differential of the mutual information at a point P in

the interior:
dpI(v) 2 Z v D
rzeA

o Linear-quadratic property of mutual information: For
each P and direction v the function

t— I(P+tv, W)

(We||[PW)

(35)

is constant if and only if dpI(v) = 0 and v € ker W.
If dpI(v) # 0 then function (35) is upper-bounded by

t— —t-dp[(’l})

3Here and everywhere below, we consider the simplex {P
Y wca P(x) =1, P(x) > 0} as a manifold with boundary. Consequently,
when computing differentials and gradients we should remember that
P(x) = Py are not independent coordinate functions because > dPr =
0.



everywhere in the domain of the definition. If dpI(v) =
0 but v ¢ ker W then the function (35) is upper-bounded
by
2
ts —t2 ) <Z y|x)> (36)

yeEB \zcA

everywhere in the domain of the definition. In the latter
case, the function (35) is also lower-bounded by

2
t KtQZ (Z v W (y|z) ) (37)

yeB \zeA
in some neighborhood of zero with K =
2(min{ PW (y) : PW(y) > 0})~!. These statements
follow from the formula for the Hessian of I, see [5,
(504)].

B. Maximization lemma

Lemma 4: Let U be a compact convex neighborhood of
zero in R%, with R-valued functions fs,9s, s € S defined on
U. Assume

1) S is finite

2) fs are concave and continuous on U, and differentiable

at 0
3) gs are continuous and bounded on U

. N .
4) function fp,;n(x) = ming fs(x) possesses unique max-

imum at 0.
Then as § — 0
maxmin £, () + 69,(2) = fnin(0) + 0G + 0(3),  (38)
where G is a solution to a piecewise-linear program:
G = max min(z, V f5(0)) + g:(0) (39)

minimum taken over s satisfying fs(0) = fmin(0). Further-

more,
msingS(O) <G< msang(O). (40)
Proof: Without loss of generality, assume f,,,(0) = 0.
Also by boundedness of g, for sufficiently small § we may
restrict the minimization over s in (38) to states s achieving
fs(0) = 0. Therefore, we may further assume that f,(0) =0
for all s.
Denote for convenience Ly = V f5(0) and notice that by
uniqueness of the maximum of f,,;, we have

max min(Ls,z) = 0.

rcRd s€S
Therefore, the value GG defined by (39) is finite and sat-
isfies (40). Next, we show that for sufficiently small §
maximum in (38) can be restricted to any compact ball
B C U surrounding 0. Indeed, by continuity of f,;, and
compactness of U we have

SuUp  fmin(z) < —€1
zeU\B

for some €; > 0. Thus, if ¢ is constant lower-bounding all
gs on U we have

sup min fs(z) + dgs(x) < sup  fmin(x) + 0c < _a ,
zeU\B * zeU\B 2

for all sufficiently small §. Therefore, in solving (38) any
choice of x € U \ B is worse than z = 0 for all sufficiently
small 6.

Fix arbitrary € > 0 and select compact ball B C U so that
it includes 0 and

gs(x) < gs(0)+e  VaxeB. 41)
We have then the following chain of estimates:
max rsnln fs(x) +dgs(x) = max rsnln fs(x) +dgs(x)  (42)
< meaé(mm fs(x) + dgs(0) + de (43)
< maécmln(Ls,x) +d95(0) + de (44)
zE
< max Inln(LS, x) + dgs(0) + de (45)
z€ER? s€
= 0G + de (46)

where (42) holds for sufficiently small § by the previous
argument, (43) is by (41), (44) is by concavity of f;, (45) by
extending the domain of maximization and (46) by noticing
that solution of (39) scales linearly with scaling of g,(0) by
0. Finally, by arbitrariness of € > 0 we have shown

max min fs(x) +0gs(x) <0G+ 0(9). 47)
zeU seS
For the lower bound, let * be a solution in (38).
1
hHi)lglf 5 maxmi min f(x) + dgs(z)
> lim inf min — fs(&c )+ gs(dz™) (48)
0—0 s
= min lim inf <—f5(5:17*) + gs(&c*)) (49)
s 6—0 1)
= min(Ls,2™) + g5(0) (50)
=G, (5D

where (48) follows since dx* € U for sufficiently small
d, (49) is by continuity of the minimum of finitely many
arguments, (50) is by differentiability of f; and continuity of
gs at 0, and (51) is by the definition of z*. [ ]

C. Converse part

For the converse part of Theorem 1 we observe that any
(n,M,€)csir code contains an (n, M', €)csrr-subcode of
constant composition P and size

log M' > log M — O(logn) .
Therefore, it is sufficient to show
log M’ <nC —VnVQ (e) +

o(vVn).  (52)



The subcode has maximal probability of error upper-
bounded by € on every constituent DMC W (*). By the meta-
converse method, see [5, Theorem 30], we have

lo M<1nf sup —log31_« WS) n
g o sup —logfii- (JTwWE, Qvn),

Vse S

(53)
where T3 is the n-type of composition P. We will further
relax the bound by selecting Qy~ = (PW ()",

Let U denote the compact neighborhood of P%
on the simplex of distributions on A4 such that
infpeyses V(P,W®)) > 0. If P ¢ U then by uniqueness
assumption on P5 we have

min I[(P,W®) < C — ¢

for some €; > 0 which only depends on U. Thus there exists
some state s such that I(P,WW()) < C — ¢;. Consequently,
from (34) we get

sup —log B . HW(S) (PW S)) ) <nC—ne1+vn

" €TR
(54)
for some K’ > 0. Then (53) and (54) evidently imply (52).
If P € U then by (33) we have

—log (W, (W) <

1
nI(P,W®)) — \/nV(P,WE)Q ™€) + 5 logn + K

(55)

From (53) and the above we get (by minimizing over s)
1
log M’ < —1ogn—|— K
nV(P,W)Q™(e).

Taking maximum over P € U of the second term and
-1
applying Lemma 4 with 6 = QTS) we get (52).

+ minnI(P,W®) — (56)

D. Achievability part

We aim to invoke Theorem 3. However, since the claim
in Theorem 1 is made for noCSI and CSIR codes, we first
notice that for some ¢ > 0

1
\/ﬁ)
Indeed, as a first step the encoder for noCSI channel may
send clogn repetitions of each symbol = € A. The cor-
responding first ¢|.A|logn channel outputs are used by the
decoder to compute empirical estimate of the stochastic
matrix W (), By Chernoff bound the probability that any
row of this estimate deviates by more than § > 0 from
the true W) is at most e~©(°8™) Hence by choosing ¢
sufficiently large and ¢ sufficiently small we may ensure that
the empirical estimate W () is closer to the true W () than to
any other one with probability at least 1 — \/iﬁ The rest of the
communication proceeds using the optimal (n, M, €)csrr
code, whose decoder is fed the estimate of state 5. (The
possible mistake in determining state estimate contributes %
to the right-hand side of (57).)

M¢grr(n,€) < M ,csr(n+ c|Allogn, e+ (57

Thus, for the purpose of establishing a lower bound in (12)
there is no difference between considering CSIR and noCSI
scenarios. We proceed to lower-bounding log M ¢ ¢ then.

Fix (large) blocklength n and a distribution P on A in
a small neighborhood of P*. Let P’ be the closest n-type
approximating P, then ||P — P'[| < O(2), where ||P — P'||
is Euclidean distance (induced by the canonical embedding
of the simplex into RI“). Therefore replacing P with P’ in
expressions like

nI(P,W®)) — \/nV (P, W)Q ™ (e)
incurs an O(1) difference. We therefore may simplify the
reasoning below by pretending that P is an n-type, ignoring
the need to replace P with P’ in certain places.

We set parameters for Theorem 3 as follows:

¢« A= A", B=B", Py x = (W)
* Qy, = (PWW)"
e F = T} — the collection of all strings z"

composition P.
1

o T =
NG
Then by permutation symmetry and (33) we have simultane-
ously for all z” € F and all s € S:

e A" of

log Ba(Py,|x=2m, Qy.) =
—nI(P,W®)) — /nV(P,W)Q ™ (a) + O(logn),

(58)

where O(logn) is uniform in P in a small neighborhood
around P*. Consequently, for the 31_.4, in (22) we have

log f1—ctr = —nR(n, P) + O(logn) (59)
where
(s)
R(n,P) = min I(P, W) — m@*(e)
s n
Since
Px[F] > (1+n)' =

the bound (29) implies
log kr = O(logn)

uniformly in P.
Thus from Theorem 3 we conclude: For every P in a
neighborhood of P* there exists an (n, M, €)csrr code with

log M > nR(n, P) 4+ O(logn)

with O(logn) uniform in P. Maximizing R(n, P) over P
-1
and applying Lemma 4 (with § = QTS)) we conclude

log Mt rr(n,€) > nC — VnVQ ™ (e) + o(v/n)



IV. ON THE o(y/n) TERM
For DMCs it is known that when ¢ < 1/2

log M*(n,€) = nC — VnVQ () + O(logn)

see [4], [5]. For many channels, it has also been established
that the O(logn) term is in fact equal to Jlogn + O(1),
see [3], [5], [9]-[11]. It is natural to ask therefore, whether
the estimate on the remainder term in Theorem 1 can be
improved to O(logn). The answer is negative:

Proposition 5: Let W' and W2 be a pair of stochastic ma-
trices defining a compound DMC satisfying all assumptions
of Theorem 1 and also:

) I(P*,WY) =I(P*,W?)=C

2) P* achieves global maximum of I(P,W1).

3) There exists v € RI4! such that t — I(P +tv, W) is

constant.

4) > ica v V(WL P*W) <0

5) > peale (WZHP*W?) =0 (ie. v L VpI(P,W?))

6) > ,caVaW2(y) # 0 for at least one y € B (ie. v &

ker W?2))

7) Vi > Va where V, 2 V(P*,W®) for s = 1,2.
Then for any € € (0, ) there exists K > 0 s.t.

log M*(n,e) > nC — VaVQ '(e) + Kni + o(ni) (60)

Proof: Tt is instructive to understand what the assump-
tions imply. First, channel 1’s dispersion V; determines the
dispersion of the compound channel (see (13) and assumption
2). However, P*, although optimal from the W!-capacity
point of view, is not optimal from the W!-dispersion point
of view. Thus by deviating very slightly from P* we may
improve slightly the dispersion of the W' channel, while not
affecting too significantly mutual information I(P, W?2).

We proceed to formal proof. By assumption 2 gradient of
I(P,W?') is zero at P* and we get from either (13) or (15)
that

V=W.

Next, choose a sequence of distributions
" c
Pn = P + —11)
nt

with ¢ > 0 to be specified shortly. For the first channel mutual
information I(P,, W) = C and hence we get:

nI(Po, W) — \/0V (P, WHQ L
=nC —VnVQ (e + Kient +0(n4) (61)

with K7 > 0 due to assumption 4. For the second channel,
due to assumptions 5-6 and (37) for all sufficiently large n
we must have

KQC2

NG

I(P,,W?)>C —

for some Ko > 0. Therefore, we get
nI(Pn7W2) - TLV(PH,WQ)Q
> nC — Koc?/n — \/nVQQfl(e) - Kgcn% + o(n%) ,
(62)

for some K5 > 0. Then since V5 < V; we can always select
c small enough so that the minimum of (61) and (62) exceeds

nC —VaVQ (e) + Kni + o(n),

for some K > 0. The rest of the proof proceeds by applying
the x8 bound exactly as in Section III-D. [ ]

Here is an example ensuring assumptions of the Proposi-
tion are satisfiable. Let

o=

o N O
RSN

wh =
L_e¢

N[

1
3 € €

[RSYNNT

9

and let P, be the first row, P; the last row of W' and Py
— the uniform distribution on {1, 2, 3,4}. Then, select e, g €
(0,2) so that

N[
<

(63)
(64)

H(P) = g bit
V(P Py) < V(P4 Py),

where H(-) is the entropy. Existence of such assignment is
easily verified numerically. For the second channel let

w? =

N[ === O
B = O N
= O N =
(e} SIEEUN RO

It is easy to see that W2 is an additive-noise channel
(addition over Z/4Z) with capacity 1/2 bit. The uniform
input distribution also attains the capacity of W': indeed all
conditional entropies for W' are equal (this is due to (63))
and thus maximizing I(P, W) is equivalent to maximizing
the output entropy H(PW1). The latter maximum is evi-
dently attained at H(P;) = 2 bit. Therefore the compound
capacity is

1 .
C = 5 bit
achieved at P* — uniform. Assumptions 1, 2 are verified
then. Assumption 5 holds for every v since P* is a global
maximum of I(P,W?) and thus the gradient at P* is zero.
Assumption 6 holds because ker W2 = {0} (e.g. compute
the determinant). Assumption 7 holds due to (64) and

Vi= SVRIR) + VR  69)
Vo =V (P||Py) (66)
For the assumption 3 take
v=(1 1 -1 -1)
and note that vWW' = 0. For the assumption 4 simply

recall (64).

Finally, it is not hard to show that the estimate of ntin (60)
is order-optimal. Indeed, from (36) the mutual information
I(P,W?) satisfies:

I(P,W?) < C — K |P — P*|]?



in a neighborhood of P. At the same time V (P, W () is
Lipschitz:

V(P,W®) <V, + Kol [P =P, s=1,2. (67)

Thus, by inspecting (56) we can see that in order to not
violate the /n-term estimate of Theorem 1 an optimizing P
must satisfy

K3

Vn

Implying that ||[P — P*|| < n~3. Applying (67) and Taylor
expansion to (56) we conclude that the o(y/n) term is upper-
bounded by K,ni + o(ni) for some K4 > 0.

1P = Pr|* <
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