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Abstract—This paper introduces the notion of triangulation
codes, a family of non-linear codes that 1) admit efficient
encoding/decoding 2) their bit error rate deteriorates gracefully
as the quality of the erasure channel degrades. Some coding
theoretic properties of these codes are established. In the case of
transmitting data over the erasure channel, it is shown that, even
with sub-optimal decoding, they can achieve lower bit error rate
than uncoded transmission for any number of received output
symbols.

I. INTRODUCTION

Consider the problem of transmitting data over a memory-

less erasure channel. A message of length k is encoded into

a codeword of length n and sent through the channel. The

channel randomly removes some of the codeword bits and

returns the rest. When the erasure probability is known, one

can optimize n and k so that most input bits, in the limit

of large k, be recovered without error. This can be done, for

instance, with the use of capacity achieving codes. However,

if the capacity of the channels falls slightly below the rate

for such codes, then the error in recovering the input grows

significantly as can be seen in Fig.1. The bit error rate (BER)

is thus too sensitive to noise variations in the channel for such

codes. Roughly speaking, there is a phase transition in the

performance of capacity achieving codes. When the noise level

is below a certain threshold the input can be recovered with

small error. When the noise level exceeds that threshold the

input cannot be recovered with good fidelity.

There are various applications where either the noise level

is not known or long delays cannot be tolerated. Problems

of sequential data recovery in video/audio streaming [1] or

information dispersal are often of this nature [2]. Another

application where delay becomes relevant is control over a

communication channel [3]–[6]. In these applications it is

important for the controller to have access to a recent history

of the state estimates. Thus the messages transmitted over

the channel cannot be too long. It is useful to have a coding

scheme that progressively improves on state estimates as the

observed data streams into the controller.

As another application, consider the problem of one to many

communication. In this case one sender needs to transmit data

to multiple users. Each receiver has access to data through a

different channel depending on the distance, location, time, etc.

In addition, the users may need to access the data with varying

levels of fidelity as well. Rateless codes have been popular in

such settings [7]–[9], but they suffer from a delay problem.

To perfectly decode a k-bit message, they need to observe

k+ o(k) output bits. They have poor recovery if fewer than k
output bits are received. Their behavior thus resembles that of

the LDPC codes as in Fig.1. The number of excess output bits

(beyond k-bits) required to recover (most of) the input data is

known as the overhead. In general, known ratelss codes with

small overhead do not have the graceful degradation propety

[10]. To alleviate this issue, some authors have considered

rateless codes with the unequal protection property [11]. In

these constructions some input bits are given higher priority

and can be retrieved from fewer output observations. However,

this approach merely shifts the phase transition point of the

more important bits at cost of further delay for the less

important bits. Other authors have considered the use of partial

feedback in the encoding process [12]–[18]. The general result

in this area is that, under partial feedback, it is possible to

achieve graceful degradation at the cost of some increase in

the overhead. The reliance on feedback, however, makes the

encoding process more complicated and harder to apply to

certain settings such as that of the multi-cast transmission

disccused above. Furthermore, these codes do not seem to

perform any better than uncoded transmission when the ratio

of received symbols to data size is below 3
4 (see the empirical

results in [12], [18]).

Graceful degradation is a long sought goal in coding theory

[19]. It was reported in [19] that this property does not

exist in usual coding/decoding schemes designed on the basis

of minimum probability of block or bit error. Hence [19]–

[23] considered coding/decoding schemes based on the mean

square error criterion. It was observed in [21] that mean square

decoding can result in graceful degradation in the bit error

sense as well over AWGN channels.

In this work we formulate a version of the graceful degra-

dation problem for the erasure channel. Consider the schemes

shown in Fig.1. One is the repetition code and the other is an

LDPC code. There is a distinct jump in the performance of the

LDPC code as the capacity of the channel degrades below the

rate of the code. This is known as the waterfall phenomenon

in the litarature [24] and is not particular to LDPC codes. For

instance, all LT-type codes that have small overhead suffer

from the same problem [10]. As the rate approaches zero, the

error curve for the capacity achieving code approaches a step

function, while the repetition coding can achieves the curve

shown in Fig.1. Of course, it is possible to juxtapose the two

codes to interpolate between the two curves. This would result
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Fig. 1: Input BER for an LDPC code with 200 data bits and

rate 0.2, and the repetition code with rate 0. The LDPC code

is decoded using maximum likelihood decoding. Here C is

the capacity of the channel and R is the rate of the code.

in a code that can outperform repetition on one side of the

critical point C
R = 1. Here C is the capacity of the channel

and R is the rate of the code. Note that for large k, C
R measures

the ratio of successful transmissions relative to the length of

the input. We ask the following question: do there exist binary

codes with efficient encoding/decoding that can outperform

repetition (or, equivalently, uncoded transmission) for all C
R

as the rate approaches zero? For our purposes, a code with

this property is said to have the graceful degradation property.

In the language of rateless codes, we look for codes that do

better than uncoded transmission for any number of received

symbols.

We introduce the notion of triangulation codes to give an

affirmative answer to the above question. These are non-linear

codes that have smooth input-output distance properties (in a

precise sense defined in section II), admit efficient decoding,

and outperform repetition code even with simple sub-optimal

decoding. To our knowledge, this is the first example of a code

that has the graceful degradation property in the above sense.

Compared to the previous work on rateless codes [12]–[18],

our scheme 1) admits linear time encoding/decoding 2) does

not require feedback 3) outperforms uncoded transmission for

any number of received symbols.

II. BACKGROUND

The (α, β)-property was introduced in [27] as a general-

ization of minimum distance and is closely realted to the

combinatorial Joint Source Channel Coding (JSCC) problem

[28]–[30].

Definition 1. A mapping f : Fk
q → F

n
q is said to be (α, β) if

dH(x, y) > αk =⇒ dH(f(x), f(y)) > βn

where dH denotes the Hamming distance.

We also define

β(α) := inf
dH(x,x′)>αk

dH(f(x), f(x′))− 1

n

and

β∗ := sup
α<1

β(α). (1)

The (α, β)-property is discussed in [27], [28], [31]–[33]. To

achieve graceful degradation, it is desirable to have β(α)
increase monotonically with α and β∗ = 1 [33]. Indeed if

a code has this property, then a small variation in the erasure

noise cannot cause significant distortion in the input. Suppose

x is mapped to f(x) and transmitted through an erasure

channel, where βn coordinates are erased. If f has the (α, β)-
property, then any point in the pre-image of channel output is

distance at most αk away from x. It is thus desirable to have

β(α) increase monotonically with α.

The codes that we construct in this paper can indeed achieve

β∗ = 1, have monotone β(α), and admit efficient decoding.

We remark that these codes do not have positive minimum

distance. It is shown in [33] that, over large alphabets, linear

codes achieving β∗ = 1 cannot have positive minimum

distance.

In the next section, we introduce several constructions for

such maps. We first study their (α, β)-properties and further

prove an upper bound on their BER performance, which is rate

independent as is our construction. In this sense our codes are

rateless. It turns out that these codes have the graceful degrada-

tion property with linear time encoding/decoding complexity.

We will prove in section IV that for any number of received

output bits these codes recover a higher fraction of input bits

compared with uncoded transmission,

III. CONSTRUCTION

We start with a motivation to explain the origin of the term

triangulation in our codes. We first select a set M consisting

of m points p1, · · · , pm in the Hamming cube {0, 1}k. Then

given a point x ∈ {0, 1}k, we encode it by computing distance

f : x → dH(x, pi). Alternatively, one can compute inner

products f : x → (x, p1) over R. In either way, we obtain

a map f : {0, 1}k → ([0, k] ∩ Z)n. This is the motivation for

the term triangulation codes as we try to triangulate a point

by computing its distances to (or inner products with) a set of

fixed points. Then we can compose every coordinate of f with

a map g : {0, · · · , k} → {0, 1}l to obtain a binary code. It is

easy to construct the inner code g to be distance preserving.

Consider for instance the map g : {1, ..., k} → {0, 1}k sending

x → (1x, 0k−x), where 1x is a sequence of x 1’s and 0k−x

is a sequences of k − x 0’s. It is easy to see that this map

preserves the L1 distance, i.e., two points that have L1 distance

d will be send to two points that have Hamming distance

d. Another distance preserving map, which is used below in

our constructions, is to send x to the most significant bit of

its binary representation. This is a one bit quantization of x
and is distance preserving in the sense that two points with

distance larger than k/2 will be mapped to two points that are

maximally apart. Thus, to obtain a binary triangulation map



with good (α, β)-properties, the main step is to make f to be

distance preserving in the L1 sense, that is, we want the L1

distance d1(f(x), f(x
′)) to grow smoothly with the Hamming

distance dH(x, x′). It is easy to see that when dH(x, x′) is

small then d1(f(x), f(x
′)) is small as well. Indeed if x′ is

close to x, then distances dH(x′, pi) (resp. inner products

(x, pi)) cannot be too different from the distance dH(x, pi)
(resp. (x, pi)). The question is if the triangulation points can

be picked in a way that preserve large distances as well. That

is we want d1(f(x), f(x
′)) to be large whenever dH(x, x′) is

large.
We digress at this point to discuss other problems where

triangulation matrices have appeared. When the collection M
is such that the map f sending x �→ xM is injective we call

M to be a binary detection matrix1. It is easy to see that for

such matrices to exist one needs n ≥ k
log k . Erdos and Rényi

[25] prove n ≥ 2k
log k and that random matrices can achieve

n = log2 9k
log k asymptotically. Lindstrom [26] showed that the

constant 2 is optimal and gave an explicit construction with n
approaching 2 k

log k asymptotically. It is thus natural to ask if

these matrices are distance preserving in the above sense?
The answer is, unfortunately, no. Consider for instance a

random triangulation matrices M and let Mi denote its i-
th column. Consider fi = xMi. Two input vectors x, x′

of weight k
2 that are maximally apart, i.e., have Hamming

distance dH(x, x′) = k will be mapped to two integers that

are at most
√
k apart with high probability for large k (see

also the discussion in section III.A below). In other words, the

maps obtained in this way have poor (α, β)-properties and turn

out to have poor BER performance as well. The same problem

exists with Lindstrom matrices. However, it turns out that one

can instead use low weight triangulation points together with 1

bit quantization to obtain good binary codes. This is equivalent

to the following construction.
Given a point x ∈ {0, 1}k and a subset S ⊂ {1, · · · , k}

of coordinates, define majS(x) to be the binary function that

takes the value 1 if x has more 1’s along S than 0’s and

takes value 0 otherwise. For instance, if x = (1, 0, 1, 0) and

S = {1, 2, 3}, then majS(x) = 1. Note that as discussed

above, majS(x) can equivalently be defined as the 1 bit

quantization of the inner product between x and a “triangula-

tion”vector y such that supp(y) = S. Given a collection Σ of

subsets define
fΣ(x) : x �→ (majS(x))S∈Σ

We consider various collection of Σ that give rise to triangu-

lation codes and study their properties.

A. Bernoulli sampling
Here we construct Σ according to a sequence of Ber(q)

processes. That is, we associate an arrival process to each set

S and place the i-th coordinate in S if there is an arrival at

the i-th step. Set |x| = w. Then majS(x) is a random variable

whose law is determined as follows:
P[majS(x) = 1] = P[Bin(w, q) > Bin(k − w, q)]

1Binary detection matrices are used in code-division multiple access
(CDMA)

The above probability is asymptotically 0 if w < 2k and 1
if w > 2k. In other words, it does not vary smoothly with

the weight of x. Thus the corresponding map has poor (α, β)-
properties. Indeed there are vectors with d(x, y) = k − ε for

which d(fΣ(x), fΣ(y)) = 0. This problem can however be

fixed by considering sparse subsets S as is done in the next

section.

B. Poisson sampling

We consider a similar construction as above but this time

the arrival process is Bernoulli of rate l/k where l is fixed.

Asymptotically, this process is equivalent to a Poisson process

X of rate l. However, the majority function now has a law that

varies smoothly with the weight |x| = ωk:

P[majS(x) = 1] = P[X1 > X0]

where X1 ∼ Poi(lω) and X0 ∼ Poi(l(1−ω)). In other words,

we are splitting the arrival process into two processes: one on

supp(x) and the other on its compliment. Alternatively we

can describe the law in the form

P[majS(x) = 1] = P[Z > 0]

where Z is Skellam distributed with parameters lω and l(1−
ω). In constructing S, one may condition on the event that

X > 0 to rule out the empty subset and make the encoding

more efficient. In this case

P[majS(x) = 1] = P[X1 > X0|X0 +X1 > 0]

In the rest of this section all probabilities are conditioned on

the event that there is at least one arrival in the underlying

process. To analyze the (α, β)-properties of f we need to

determine the join distribution of fΣ(x) and fΣ(x
′). For fixed

x, x′ we can split X into four processes X00, X01, X10, X11

where Xij is the process supported on the susbet where x
takes value i and x′ takes value j. Then

P[majS(x) = 1,majS(x) = 0] =

P[X11 +X10 > X00 +X01, X11 +X01 ≤ X10 +X00]

We can rewrite this as

p01 := P[majS(x) = 1,majS(x) = 0]

= P[X11 −X00 > X01 −X10, X11 −X00 ≤ −X01 +X10]

Similarly, we have that

p10 := P[majS(x) = 0,majS(x) = 1]

= P[X11 −X00 ≤ X01 −X10, X11 −X00 > −X01 +X10]

Then

E[d(fΣ(x), fΣ(y))] = (p01 + p10)n

In other words

E[βf (α)] = p01 + p10 (2)

where the expectation is taken over all possible realizations of

f . Let ω1 be the relative weight of x′ on supp(x) and let ω2

be the relative weight of x′ on the complement of supp(x).
Clearly, the d(f(x), f(x′)) depends on ω, ω1, ω2 ad the arrival

rate l. We can vary these parameters and compute the above

integral numerically to determine the set of achievable (α, β)-
pairs. This is done for some special cases in Fig.2.
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Fig. 2: The set of achievable (α, β)-pairs for various arrival

rates l. The dots represent the pairs d(x, x′) as a function

of d(f(x), f(x′)) as ω, ω1, ω2 vary. The alpha-beta curve is

thus the upper envelop of the plotted dots. The construction

of section C can achieve β∗ = 1.

We remark that as l → 0 the (α, β)-spectrum concentrated

around the α = β line. This is indeed the expected (α, β)-
curve. It can be achieved with high probability for small rates

as the following proposition shows.

Proposition 1. For every ε, there exists a triangulation code f
with n = k

ε2 such that d(f(x), f(y))−E[d(f(x), f(y)] ≥ −εn
for all pairs x, y. In other words,

βf (α) ≥ E[βf (α)]− ε

for all α.

Proof. Let fi denote the i-th coordinate of f . Clearly

d(f(x), f(y)) =
∑
i

d(fi(x), fi(y)),

where each d(fi(x), fi(y)) is a Bernoulli p01 + p10 variable

(see Eq.2). By the Hoeffding’s inequality

P(d(f(x), f(y))− E[d(f(x), f(y))] ≤ −εn) ≤ e−2nε2

There are at most 22k pairs of messages at a given distance.

Hence, by the union bound, if

22ke−2nε2 < 1 (3)

there must exist some f for which
d(f(x),f(y))

n is not less than
E[d(f(x),f(y))]

n −ε. Note that Eq.3 can be achieved if n > k
ε2

C. Uniform sampling from a Hamming sphere
One problem with the previous construction, from an (α, β)-

perspective, is that some fraction of the subsets in Σ may

have even cardinality. This prevents the code from achieving

β∗ = 1. It is easy to check that if all S ∈ Σ has odd cardinality

then β∗ = 1.
Here we consider a collection of subsets Σ where each

S ⊂ {1, · · · , k} is the support of a point sampled uniformly

at random from the Hamming sphere of some fixed odd radius

l around the origin. The (α, β)-curves for this collection are

similar to that of the previous section as shown in Fig.2. They

slightly improve on the β(α) and, in particular, can achieve

β∗ = 1. They also seem to have better BER performance than

the codes of section B based on our empirical results. Their

BER curve for l = 3 under linear programming decoding is

shown in Fig.3.

D. Mixing on Hamming spheres
We also consider triangulation codes obtained by sampling

points on spheres of radius l where l is uniformly distributed

on {1, 3}. Each subset S ∈ Σ is the support of such sampled

point. The purpose of this construction is to enable the use of

a peeling type decoder. The weight 1 columns are introduced

to get the decoding started. This is by no means an optimized

construction. However it makes the analysis easier and suffices

to theoretically prove the desired graceful degradation property

of these codes. We obtain an analytic upper bound on the BER

for these codes in the next section through a density evolution

argument. The empirical performance as well as the analytic

bound are shown in Fig.3. It can be seen that these codes

outperform the ∞-fold repetition code for all values of C
R .

E. Linear programming decoding
To (approximately) decode the triangulation codes one can

solve the following linear program
minimize |x|

0 ≤ xi ≤ 1 ∀i,
(x, gj) >

|gj |
2

∀j s.t yj = 1,

(x, gj) ≤ |gj |
2

∀j s.t yj = 0

(4)

The results for the construction in section C with l = 3 and

k = 3000 are demonstrated in Fig.3.



F. Why non-linearity is needed

We discuss briefly here why it is useful to work with non-

linear maps in the context of the problems in hand. Given

a binary vector x denote by supp(x) the set of its non-zero

coordinates. Given two vectors x, y in the Hamming cube, we

say x < y if supp(x) ⊂ supp(y).

Definition 2. A function f : {0, 1}k → {0, 1}n is said to be
monotone if x < y =⇒ f(x) < f(y)

Such function are good candidates to produce maps with

monotonically increasing β(α). For instance, any linear repe-

tition like map is monotone2. A simple observation is that

Proposition 2. Repetition like maps are the unique binary
linear maps that are monotone.

Proof. Every vector in the generator matrix must be of weight

1 for a linear map to be monotone.

It is therefore natural to look for monotone maps that are

non-linear.

IV. BER UNDER ITERATIVE MAJORITY LOGIC DECODING

In this section, we introduce an iterative decoding algorithm

with linear time complexity (in k) and find the corresponding

BER for the triangulation codes of construction III.D . For an

input bit xi, let Δi be the collection of subsets in Σ containing

the i-th coordinate. The decoding consists of two phases:

• A “peeling”phase where the decoder determines some of

the input bits with no error. Let Σ be collection of subsets

associated to the output bits returned by the channel. For

each S, we denote the corresponding output bit by yS .

Initially, we set the set of decoded inputs D := ∅. For

all S ∈ Σ with |S| = 1 we set x̂S := yS and update

D = D ∪ S and Σ = Σ\S. Then, we iteratively go

through all S ∈ Σ and set x̂i := yS for i �∈ D if there

exists j, j′ ∈ S ∩D with x̂j �= x̂j′ and update D = D ∪
{i},Σ = Σ\S. If there exists j, j′ ∈ S ∩D with x̂j = x̂′

j

then simply remove S Σ = Σ\S. We repeat this step

until no further updates are possible in D.

• A second phase where a majority logic decoder estimates

the remaining bits from Σ:

x̂i =

{
0

∑
S∈Δi

yS ≤ |Δi|
2

1 otherwise

where Δi is the collection of subsets that contain i.

We can analyze the performance of this decoding strategy as

follows. The erasure channel with C = xR will return roughly

xk random output bits. Each output bit corresponds to a set

S with |S| = 1 with probability 1
2 . Thus the initial fraction of

the determined bits is expected to be 1− e−
1
2x. Let qt be the

fraction of bits that are not determined after t steps. We have

q0 = e−
1
2x. Then Consider an undiscovered bit xi. There are

Poi( 32x) subsets S with |S| = 3 that contain i. We say that a

subset involving the (unknown) i-th bit is:

2A linear map is said to be repetition like if its generator matrix consists
entirely of vectors with Hamming weight 1.

• very good: if the two other bits are known and are not

equal.

• good: if at least one of the other two bits is not known.

• bad: if the other two bits are known and have the same

value.

The subsets involving i-th bit arrive at a rate of 3
2x and split

into three processes as described above. At the first step, the

very good subsets for the i-th bit arrive according to a Poisson

process of rate λ1 := 3
4 (1− q0)

2. Thus

q1 = q0P(Poi(λ1) = 0) = q0e
−λ1 .

At iteration t, an undecoded bit remains undecoded if no new

very good subset is generated. The probability that a subset

involving an unknown bit becomes very good at the t-th step

is
dq2t−dqt(1−qt−1)

2 , where dqt = qt−1 − qt−2. Indeed a given

subset can be turned into a very good one at step t if it either

involves two bits of opposite values that are discovered at

step t − 1, or involves a bit discovered at step t − 1 and

a previously discovered bit, again of opposite values. Thus

λt =
3x(dq2t−2dqt(1−qt−1))

4 and

qt = qt−1e
−λt .

Once this process converges, we use the good subsets that are

not very good to estimate the remaining bits. Let Δi be the

set of good subsets involving an undecoded bit. Then for each

observed bit yS for S ∈ Δi we have

P(xi �= yS) =
1

4
On the other hand, the events {xi �= yS}S∈Δi

are asymptoti-

cally independent. Indeed for two such events to be dependent

we need for some coordinate j �= i to appear in at least two

different subsets S, S′. A simple counting argument shows that

this event happens with vanishing probability.

Let qt → q∞ and set p∞ = 1−q∞. Then a subset involving

the i-th bit is either bad with probability p2∞/2 or good with

probability q2∞+2q∞p∞. Hence, the good subsets in the limit

arrive at a rate λg
∞ :=

3x(q2∞+2q∞p∞)
2(q2∞+2q∞p∞+p2∞/2) .

Now we can write the probability of error under majority

decoding in the form

pi =
1

2
(P(x̂i = 1|xi = 0) + P(x̂i = 0|xi = 1))

We can upper bound each term as follows

P(x̂i = 1|xi = 0) ≤ 1

2
P(|Δi| = 0)+

P(|Δi| > 20) +

20∑
k=1

P(|Δi| = k)P(Bin(k, 1/4) > k/2)

and

P(x̂i = 0|xi = 1) ≤ 1

2
P(|Δi| = 0)+

P(|Δi| > 20) +

20∑
k=1

P(|Δi| = k)P(Bin(k, 1/4) ≥ k/2)

where P(|Δi| = k) = P(Poi(λg
∞)) = k). Putting the two

decoding phases together, we get the results shown in Fig.3.

We note that in our analysis we only used the fact that



n, k → ∞, but our analysis did not depend on the rate. Hence,

the BER curve of Fig.3 serves as a rate-independent upper

bound on the performance of triangulation codes considered

in this section. We also remark that the uniform sampling

on Hamming sphere under LP decoding has lower BER than

the construction discussed here as can be seen in the figure.

We merely used this construction due to its amenability for

analysis. The empirical performance of the iterative decoding

scheme discussed here agrees with two steps of the density

evolution approach.
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Fig. 3: The BER performance of triangulation code of sections

III.C and III.D for k=3000. The BER curve is rate independent.
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