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Broadcasting on Random

Directed Acyclic Graphs
Anuran Makur, Elchanan Mossel, and Yury Polyanskiy

Abstract

We study the following generalization of the well-known model of broadcasting on trees to the case of directed

acyclic graphs (DAGs). At time 0, a source vertex X sends out a uniform bit along binary symmetric channels (BSCs)

to a set of vertices called layer 1. Each vertex except X is assumed to have indegree d. At time k ≥ 1, vertices at

layer k apply d-input Boolean processing functions to their received bits and send out the results to vertices at layer

k + 1. We say that broadcasting is possible if it is possible to reconstruct the original bit X with probability of error

bounded away from 1
2

using knowledge of the values of all vertices at an arbitrarily deep layer k. This question is

also related to models of reliable computation, reliable storage, and information flow in biological networks.

In this paper, we treat the case of randomly constructed DAGs, for which we show that broadcasting is only

possible if the BSC noise level is below a certain (degree and function dependent) critical threshold. For d ≥ 3, and

random DAGs with layers of size Ω(log(k)) and majority processing functions, we identify the critical threshold.

For d = 2, we establish a similar result for the NAND processing function. We also prove a partial converse result

for odd d ≥ 3 illustrating that the identified thresholds are impossible to improve by selecting different processing

functions if the decoder is restricted to using a single vertex’s value.

Finally, for any BSC noise level, we construct explicit DAGs (using regular bipartite lossless expander graphs)

with bounded degree and layers of size Θ(log(k)) admitting reconstruction. In particular, we show that the first r

layers of such DAGs can be generated in either deterministic quasi-polynomial time or randomized polylogarithmic

time in r. These results portray a doubly-exponential advantage for storing a bit in bounded degree DAGs compared

to trees, where d = 1 but layer sizes need to grow exponentially with depth in order for broadcasting to be possible.
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I. INTRODUCTION

In this paper, we study a generalization of the well-known problem of broadcasting on trees [1]. In the broadcasting

on trees problem, we are given a noisy tree T whose vertices are Bernoulli random variables and edges are

independent binary symmetric channels (BSCs) with common crossover probability δ ∈
(
0, 12
)
. Given that the root

is an unbiased random bit, the objective is to decode the bit at the root from the bits at the kth layer of the tree.

The authors of [1] characterize the sharp threshold for when such reconstruction is possible:

• If (1− 2δ)2 br(T ) < 1, then the minimum probability of error in decoding tends to 1
2 as k →∞,

• If (1− 2δ)2 br(T ) > 1, then the minimum probability of error in decoding is bounded away from 1
2 for all k,

where br(T ) denotes the branching number of the tree, and the condition (1−2δ)2 br(T ) ≶ 1 determines the Kesten-

Stigum threshold in the regular tree setting. A consequence of this result is that reconstruction is impossible for

trees with sub-exponentially many vertices at each layer. Indeed, if Lk denotes the number of vertices at layer k and

limk→∞ L
1/k
k = 1, then it is straightforward to show that br(T ) = 1, which in turn implies that (1−2δ)2 br(T ) < 1.

This result on reconstruction on trees generalizes results from random processes and statistical physics that hold

for regular trees, cf. [2] (which proves achievability) and [3] (which proves the converse), and has had numerous

extensions and further generalizations including [4]–[12]. (We refer readers to [1, Section 2.2] for further references

on the Ising model literature.) Furthermore, reconstruction on trees plays a crucial role in understanding phylogenetic

reconstruction, see e.g. [13]–[16], and in understanding phase transitions for random constraint satisfaction problems,

see e.g. [17]–[20] and follow-up work.

Instead of analyzing trees, we consider the problem of broadcasting on bounded degree directed acyclic graphs

(DAGs). As in the setting of trees, all vertices in our graphs are Bernoulli random variables and all edges are

independent BSCs. Furthermore, variables located at vertices with indegree 2 or more are the values of a function

on their noisy inputs.

Notice that compared to the setting of trees, broadcasting on DAGs has two principal differences: (a) in trees,

layer sizes scale exponentially in depth, while in DAGs they are polynomial; (b) in trees, the indegree of each vertex

is 1, while in DAGs each vertex has several incoming signals. The latter enables the possibility of information fusion

at the vertices and our main goal is to understand whether the benefits of (b) overpower the harm of (a).

This paper has two main contributions. Firstly, by a probabilistic argument, we demonstrate the existence of

bounded degree DAGs with Lk = Ω(log(k)) which permit recovery of the root bit for sufficiently low δ’s. Secondly,

we provide explicit deterministic constructions of such DAGs using regular bipartite lossless expander graphs.

In particular, the constituent expander graphs for the first r layers of such DAGs can be constructed in either

deterministic quasi-polynomial time or randomized polylogarithmic time in r. Together, these results imply that in

terms of economy of storing information, DAGs are doubly-exponentially more efficient than trees.

A. Motivation

The problem of broadcasting on trees is closely related to the problem of reliable computation using noisy circuits,

e.g. [21], [22]. Indeed, it can be thought of in the following way: suppose we want to remember a bit in a noisy
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circuit of depth k. How big should the circuit be? Von Neumann [21] asked this question assuming that we take

multiple clones of the original bit and recursively apply gates in order to reduce the noise. The broadcasting on

trees perspective is to start from a single bit and repeatedly clone it so that one can recover it well from the vertices

at depth k. The model we consider here again starts from a single bit but we are allowed to use bounded degree

gates to reduce noise as well as to duplicate. This leads to much smaller circuits than the tree circuits.

As mentioned earlier, the broadcasting process on trees plays a fundamental role in phylogenetic reconstruction.

The positive results obtained here suggest it might be possible to reconstruct other biological networks, such as

phylogenetic networks (see e.g. [23]) or pedigrees (see e.g. [24], [25]), even if the growth of the network is very

mild. It is interesting to explore if there are also connections between broadcasting on DAGs and random constraint

satisfaction problems. Currently, we are not aware that such connections have been established.

Another motivation for this problem is to understand whether it is possible to propagate information in regular

grids. Inspired by the work on one-dimensional probabilistic cellular automata, cf. [26], our conjecture is that such

propagation is impossible for a two-dimensional grid regardless of the noise level and the choice of processing

function (which is the same for every vertex). Our results towards establishing this conjecture will be the focus of

a forthcoming paper.

B. Outline

We briefly outline the rest of this paper. Since we will use probabilistic arguments to establish the existence of

bounded degree DAGs where reconstruction of root bit is possible, we will prove many of our results for random

DAGs. So, the next subsection I-C formally defines the random DAG model. In section II, we present our three main

results (as well as and some auxiliary results) pertaining to the random DAG model, and discuss several related

results in the literature. Then, we prove these main results in sections III, IV, and V, respectively. In particular,

section III analyzes broadcasting with majority processing functions when the indegree of each vertex is 3 or more,

section IV analyzes broadcasting with AND and OR processing functions when the indegree of each vertex is 2,

and section V illustrates our explicit constructions of DAGs where reconstruction of the root bit is possible using

expander graphs. Finally, we conclude our discussion and list some open problems in section VI.

C. Random DAG Model

A random DAG model consists of an infinite DAG with fixed vertices that are Bernoulli ({0, 1}-valued) random

variables and randomly generated edges which are independent BSCs. We first define the vertex structure of this

model, where each vertex is identified with the corresponding random variable. Let the root (or “source”) random

variable be X0,0 ∼ Bernoulli
(
1
2

)
. Furthermore, we define Xk = (Xk,0, . . . , Xk,Lk−1) as the vector of vertex random

variables at distance (i.e. length of shortest path) k ∈ N , {0, 1, 2, . . . } from the root, where Lk ∈ N\{0} denotes

the number of vertices at distance k. In particular, we have X0 = (X0,0) so that L0 = 1, and we are typically

interested in the regime where Lk →∞ as k →∞.

We next define the edge structure of the random DAG model. For any k ∈ N\{0} and any j ∈ [Lk] , {0, . . . , Lk−

1}, we independently and uniformly select d ∈ N\{0} vertices Xk−1,i1 , . . . , Xk−1,id from Xk−1 (i.e. i1, . . . , id
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are i.i.d. uniform on [Lk−1]), and then construct d directed edges: (Xk−1,i1 , Xk,j), . . . , (Xk−1,id , Xk,j). (Here,

i1, . . . , id are independently chosen for each Xk,j .) This random process generates the underlying DAG structure.

In the sequel, we will let G be a random variable representing this underlying (infinite) random DAG, i.e. G encodes

the random configuration of the edges between the vertices.

To define a Bayesian network (or directed graphical model) on this random DAG, we fix some sequence of

Boolean functions fk : {0, 1}d → {0, 1} for k ∈ N\{0} (that depend on the level index k, but typically not on the

realization of G), and some crossover probability δ ∈
(
0, 12
)

(since this is the interesting regime of δ). Then, for

any k ∈ N\{0} and j ∈ [Lk], given i1, . . . , id and Xk−1,i1 , . . . , Xk−1,id , we define:

Xk,j = fk(Xk−1,i1 ⊕ Zk,j,1, . . . , Xk−1,id ⊕ Zk,j,d) (1)

where ⊕ denotes addition modulo 2, and {Zk,j,i : k ∈ N\{0}, j ∈ [Lk], i ∈ {1, . . . , d}} are i.i.d Bernoulli(δ)

random variables that are independent of everything else. This means that each edge is a BSC with parameter δ,

denoted BSC(δ). Moreover, (1) characterizes the conditional distribution of Xk,j given its parents. In this model,

the Boolean processing function used at a vertex Xk,j depends only on the level index k. A more general model can

be defined where each vertex Xk,j has its own Boolean processing function fk,j : {0, 1}d → {0, 1} for k ∈ N\{0}

and j ∈ [Lk]. However, with the exception of a few converse results, we will mainly analyze instances of the

simpler model in this paper.

Note that although we will analyze this model for convenience, as stated, our underlying graph is really a directed

multigraph rather than a DAG, because we select the parents of a vertex with replacement. It is straightforward to

construct an equivalent model where the underlying graph is truly a DAG. For each vertex Xk,j with k ∈ N\{0}

and j ∈ [Lk], we first construct d intermediate parent vertices {Xi
k,j : i = 1, . . . , d} that live between layers k and

k − 1, where each Xi
k,j has a single edge pointing to Xk,j . Then, for each Xi

k,j , we independently and uniformly

select a vertex from layer k−1, and construct a directed edge from that vertex to Xi
k,j . This defines a valid (random)

DAG. As a result, every realization of G can be perceived as either a directed multigraph or its equivalent DAG.

Furthermore, the Bayesian network on this true DAG is defined as follows: each Xk,j is the output of a Boolean

processing function fk with inputs {Xi
k,j : i = 1, . . . , d}, and each Xi

k,j is the output of a BSC whose input is the

unique parent of Xi
k,j in layer k − 1.

Finally, we define the “empirical probability of unity” at level k ∈ N as:

σk ,
1

Lk

Lk−1∑
m=0

Xk,m (2)

where σ0 = X0,0 is just the root vertex. Observe that given σk−1 = σ, Xk−1,i1 , . . . , Xk−1,id are i.i.d. Bernoulli(σ),

and as a result, Xk−1,i1 ⊕Zk,j,1, . . . , Xk−1,id ⊕Zk,j,d are i.i.d. Bernoulli(σ ∗ δ), where σ ∗ δ , σ(1− δ) + δ(1−σ)

is the convolution of σ and δ. Therefore, Xk,j is the output of fk upon inputting a d-length i.i.d. Bernoulli(σ ∗ δ)

string.

Under this setup, our objective is to determine whether or not the value at the root σ0 = X0,0 can be decoded

from the observations Xk as k → ∞. Since Xk is an exchangeable sequence of random variables given σ0, for
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any x0,0, xk,0, . . . , xk,Lk−1 ∈ {0, 1} and any permutation π of [Lk], we have PXk|σ0
(xk,0, . . . , xk,Lk−1|x0,0) =

PXk|σ0
(xk,π(0), . . . , xk,π(Lk−1)|x0,0). Letting σ = 1

Lk

∑Lk−1
j=0 xk,j , we can factorize PXk|σ0

as:

PXk|σ0
(xk,0, . . . , xk,Lk−1|x0,0) =

(
Lk
Lkσ

)−1
Pσk|σ0

(σ|x0,0) . (3)

Using the Fisher-Neyman factorization theorem [27, Theorem 3.6], this implies that σk is a sufficient statistic of

Xk for performing inference about σ0. Therefore, we restrict our attention to the Markov chain {σk : k ∈ N} in

our achievability proofs, since if decoding is possible from σk, then it is also possible from Xk. Given σk, inferring

the value of σ0 is a binary hypothesis testing problem with minimum achievable probability of error:

P
(
fkML(σk) 6= σ0

)
=

1

2

(
1−

∥∥P+
σk
− P−σk

∥∥
TV

)
(4)

where fkML : {m/Lk : m = 0, . . . , Lk} → {0, 1} is the maximum likelihood (ML) decision rule based on the

empirical probability of unity at level k in the absence of knowledge of the random DAG realization G, P+
σk

and

P−σk
are the conditional distributions of σk given σ0 = 1 and σ0 = 0 respectively, and for any two probability

measures P and Q on the same measurable space (Ω,F), their total variation (TV) distance is defined as:

‖P −Q‖TV , sup
A∈F
|P (A)−Q(A)| = 1

2
‖P −Q‖1 (5)

where ‖·‖1 denotes the L1-norm. We say that reconstruction of the root bit σ0 is possible when:1

lim
k→∞

P
(
fkML(σk) 6= σ0

)
<

1

2
⇔ lim

k→∞

∥∥P+
σk
− P−σk

∥∥
TV

> 0 . (6)

In the sequel, to simplify our analysis when proving that reconstruction is possible, we will sometimes use other

(sub-optimal) decision rules rather than the ML decision rule.

On the other hand, we will consider the Markov chain {Xk : k ∈ N} conditioned on G in our converse proofs.

We say that reconstruction of the root bit X0 is impossible when:

lim
k→∞

P
(
hkML(Xk, G) 6= X0

∣∣G) =
1

2
G-a.s. ⇔ lim

k→∞

∥∥∥P+
Xk|G − P

−
Xk|G

∥∥∥
TV

= 0 G-a.s. (7)

where hkML(·, G) : {0, 1}Lk → {0, 1} is the ML decision rule based on the full state at level k given knowledge of

the random DAG realization G, P+
Xk|G and P−Xk|G denote the conditional distributions of Xk given {X0 = 1, G}

and {X0 = 0, G} respectively, and the notation G-a.s (almost surely) implies that the conditions in (7) hold with

probability 1 with respect to the distribution of the random DAG G. Note that applying the bounded convergence

theorem to the TV distance condition in (7) yields limk→∞ E[‖P+
Xk|G − P

−
Xk|G‖TV] = 0, and employing Jensen’s

inequality here establishes the weaker impossibility result:

lim
k→∞

P
(
hkML(Xk) 6= X0

)
=

1

2
⇔ lim

k→∞

∥∥P+
Xk
− P−Xk

∥∥
TV

= 0 (8)

where hkML : {0, 1}Lk → {0, 1} is the ML decision rule based on the full state at level k in the absence of knowledge

of the random DAG realization G, and P+
Xk

and P−Xk
are the conditional distributions of Xk given X0 = 1 and

1The limits in (6), (7), and (8) exist because P
(
fkML(σk) 6= σ0

)
, P

(
hkML(Xk) 6= X0

)
, and P

(
hkML(Xk, G) 6= X0

∣∣G)
(for any fixed realization

G) are monotone non-decreasing sequences in k that are bounded above by 1
2

. This can be deduced either from the data processing inequality

for TV distance, or from the fact that a randomized decoder at level k can simulate the stochastic transition to level k + 1.
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X0 = 0, respectively. Since σk is a sufficient statistic of Xk for performing inference about σ0 when we average

over G, we have P
(
hkML(Xk) 6= X0

)
= P

(
fkML(σk) 6= σ0

)
(or equivalently,

∥∥P+
Xk
− P−Xk

∥∥
TV

=
∥∥P+

σk
− P−σk

∥∥
TV

),

and the condition in (8) is a counterpart of (6).

II. MAIN RESULTS AND DISCUSSION

In this section, we state our main results, briefly delineate the main techniques or intuition used in the proofs,

and discuss related literature.

A. Results on Random DAG Models

We prove two main results on the random DAG model. The first considers the setting where the indegree of each

vertex (except the root) is d ≥ 3. In this scenario, taking a majority vote of the inputs at each vertex intuitively

appears to have good “local error correction” properties. So, we fix all Boolean functions in the random DAG

model to be the (d-input) majority rule, and prove that this model exhibits a phase transition phenomenon around

a critical threshold of:

δmaj ,
1

2
− 2d−2⌈

d

2

⌉(
d⌈
d
2

⌉) (9)

where d·e denotes the ceiling function. Indeed, the theorem below illustrates that for δ < δmaj, the majority decision

rule Ŝk , 1
{
σk ≥ 1

2

}
can asymptotically decode σ0, but for δ > δmaj, the ML decision rule with knowledge of G

cannot asymptotically decode σ0.

Theorem 1 (Phase Transition in Random DAG Model with Majority Rule Processing). Let C(δ, d) and D(δ, d) be

the constants defined in (37) and (33) in section III. For a random DAG model with d ≥ 3 and majority processing

functions (where ties are broken by outputting random bits), the following phase transition phenomenon occurs

around δmaj:

1) If δ ∈ (0, δmaj), and the number of vertices per level satisfies Lk ≥ C(δ, d) log(k) for all sufficiently large k

(depending on δ and d), then reconstruction is possible in the sense that:2

lim sup
k→∞

P(Ŝk 6= σ0) <
1

2

where we use the majority decoder Ŝk = 1
{
σk ≥ 1

2

}
at level k.

2) If δ ∈
(
δmaj,

1
2

)
, and the number of vertices per level satisfies Lk = o

(
D(δ, d)−k

)
, then reconstruction is

impossible in the sense of (7):

lim
k→∞

∥∥∥P+
Xk|G − P

−
Xk|G

∥∥∥
TV

= 0 G-a.s.

Theorem 1 is proved in section III. Intuitively, the proof considers the conditional expectation function, g :

[0, 1] → [0, 1], g(σ) = E[σk|σk−1 = σ] (see (28) and (29) in section III), which provides the approximate value

of σk given the value of σk−1 for large k. This function turns out to have three fixed points when δ ∈ (0, δmaj),

2Throughout this paper, log(·) and exp(·) denote the natural logarithm and natural exponential (with base e), respectively.
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and only one fixed point when δ ∈
(
δmaj,

1
2

)
. In the former case, σk “moves” to the largest fixed point when

σ0 = 1, and to the smallest fixed point when σ0 = 0. In the latter case, σk “moves” to the unique fixed point of
1
2 regardless of the value of σ0 (see Proposition 5 in section III).3 This provides the guiding intuition for why we

can asymptotically decode σ0 when δ ∈ (0, δmaj), but not when δ ∈
(
δmaj,

1
2

)
.

The recursive (or fixed point) structure of g in the special case where d = 3 and δmaj = 1
6 can be traced back to

the work of von Neumann in [21]. So, it is worth comparing Theorem 1 with von Neumann’s results in [21, Section

8], where the threshold of 1
6 is also significant. In [21, Section 8], von Neumann demonstrates the possibility of

reliable computation by constructing a circuit with successive layers of computation and local error correction using

3-input δ-noisy majority gates (i.e. the gates independently make errors with probability δ). In his analysis, he first

derives a simple recursion that captures the effect on the probability of error after applying a single noisy majority

gate. Then, he uses a “heuristic” fixed point argument to show that as the depth of the circuit grows, the probability

of error asymptotically stabilizes at a fixed point value less than 1
2 if δ < 1

6 , and the probability of error tends to
1
2 if δ ≥ 1

6 . Moreover, he rigorously proves that reliable computation is possible for δ < 0.0073.

As we mentioned in subsection I-A, von Neumann’s approach to remembering a random initial bit entails using

multiple clones of the initial bit as inputs to a noisy circuit with one output, where the output equals the initial bit

with probability greater than 1
2 for “good” choices of noisy gates. It is observed in [28, Section 2] that a balanced

ternary tree circuit, with k layers of 3-input noisy majority gates and 3k inputs that are all equal to the initial bit,

can be used to remember the initial bit. In fact, von Neumann’s heuristic fixed point argument that yields a critical

threshold of 1
6 for reconstruction is rigorous in this scenario. From this starting point, Hajek and Weller prove the

stronger impossibility result that reliable computation is impossible for formulae (i.e. circuits where the output of

each intermediate gate is the input of only one other gate) with general 3-input δ-noisy gates when δ ≥ 1
6 [28,

Proposition 2]. This development can be generalized for any odd d ≥ 3, and [29, Theorem 1] conveys that reliable

computation is impossible for formulae with general d-input δ-noisy gates when δ ≥ δmaj.

The discussion heretofore reveals that the critical thresholds in von Neumann’s circuit for remembering a bit

and in our model in Theorem 1 are both δmaj. It turns out that this is a consequence of the common fixed point

iteration structure of the two problems (as we will explain below). Indeed, the general recursive structure of g for

any odd value of d was analyzed in [29, Section 2]. On a related front, the general recursive structure of g was also

analyzed in [6] in the context of performing recursive reconstruction on periodic trees, where the critical threshold

of δmaj again plays a crucial role. In fact, we will follow the analysis in [6] to develop these recursions in section

III.

We now elucidate the common fixed point iteration structure between von Neumann’s model and our model in

Theorem 1. Suppose d ≥ 3 is odd, and define the function h : [0, 1]→ [0, 1], h(p) , P(majority(Y1, . . . , Yd) = 1)

for Y1, . . . , Yd i.i.d. Bernoulli(p). Consider von Neumann’s balanced d-ary tree circuit with k layers of d-input

δ-noisy majority gates and dk inputs that are all equal to the initial bit. In this model, it is straightforward to verify

3Note, however, that σk → 1
2

almost surely as k →∞ does not imply the impossibility of reconstruction in the sense of (8), let alone (7).

So, a different argument is required to establish such impossibility results.
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that the probability of error (i.e. output vertex 6= initial bit) is f (k)(0), where f : [0, 1] → [0, 1] is given by [29,

Equation (3)]:

f(σ) , δ ∗ h(σ) , (10)

and f (k) denotes the k-fold composition of f with itself. On the other hand, as explained in the brief intuition for

our proof of Theorem 1 earlier, assuming that σ0 = 0, the relevant recursion for our model is given by the repeated

composition g(k)(0) (which captures the average position of σk after k layers). According to (28) in section III,

g(σ) = h(δ ∗ σ), which yields the relation:

∀k ∈ N\{0}, f (k+1)(0) = δ ∗ g(k)(0) (11)

by induction. Therefore, the fixed point iteration structures of f and g are identical, and δmaj is the common critical

threshold that determines when there is a unique fixed point. In particular, the fact that gates (or vertices) are

noisy in von Neumann’s model, while edges (or wires) are noisy in our model, has no bearing on this fixed point

structure.4

Although both the aforementioned models use majority gates and share a common fixed point structure, it is

important to recognize that our overall analysis differs from von Neumann’s analysis in a crucial way. Since our

recursion pertains to conditional expectations of the proportion of 1’s in different layers (rather than the probabilities

of error in von Neumann’s setting), our proof requires exponential concentration inequalities to formalize the intuition

provided by the fixed point analysis.

We now make several other pertinent remarks about Theorem 1. Firstly, reconstruction is possible in the sense

of (6) when δ ∈ (0, δmaj) since the ML decision rule achieves lower probability of error than the majority decision

rule,5 and reconstruction is impossible in the sense of (8) when δ ∈
(
δmaj,

1
2

)
(as explained at the end of subsection

I-C). Furthermore, while part 1 of Theorem 1 only shows that the ML decoder fkML(σk) based on σk is optimal

in the absence of knowledge of the particular graph realization G, part 2 establishes that even if the ML decoder

knows the graph G and has access to the full k-layer state Xk, it cannot beat the δmaj threshold in all but a zero

measure set of DAGs.

Secondly, the following conjecture is still open: In the random DAG model with Lk = O(log(k)) and fixed d ≥ 3,

reconstruction is impossible for all choices of Boolean processing functions when δ ≥ δmaj. A consequence of this

conjecture is that majority processing functions are optimal, i.e. they achieve the δmaj reconstruction threshold. The

results in [6] provide strong evidence that this conjecture is true when all vertices in the random DAG use the same

odd Boolean processing function. Indeed, for fixed δ ∈
(
0, 12
)

and any odd Boolean function gate : {0, 1}d → {0, 1},

let g̃ : [0, 1] → [0, 1] be defined as g̃(σ) , P(gate(Y1, . . . , Yd) = 1) for Y1, . . . , Yd i.i.d. Bernoulli(δ ∗ σ).6 Then,

4We refer readers to [30] for general results on the relation between vertex noise and edge noise.
5It can be seen from monotonicity and symmetry considerations that without knowledge of the random DAG realization G, the ML decision

rule fkML(σk) is equal to the majority decision rule Ŝk . (So, the superior limit in part 1 of Theorem 1 can be replaced by a true limit.) On the

other hand, with knowledge of the random DAG realization G, the ML decision rule fkML(σk, G) based on σk is not the majority decision rule.
6A Boolean function is said to be odd if flipping all its input bits also flips the output bit. The assumption that gate is odd ensures that the

function Rδgate(σ) in [6, Definition 2.1] is precisely equal to the function g̃(σ).
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[6, Lemma 2.4] establishes that g̃(σ) ≤ g(σ) for all σ ≥ 1
2 and g̃(σ) ≥ g(σ) for all σ ≤ 1

2 , where the function g

is given in (28) (and corresponds to the majority rule). Hence, if g has a single fixed point at σ = 1
2 , g̃ also has

a single fixed point at σ = 1
2 . This intuitively suggests that if reconstruction of the root bit is impossible using

majority processing functions, it is also impossible using any odd processing function. Furthermore, our proof of

part 2 of Theorem 1 in section III yields that reconstruction is impossible for all choices of odd and monotone

non-decreasing Boolean processing functions when δ > δmaj, modulo the following conjecture (which we did not

verify): among all odd and monotone non-decreasing Boolean functions, the maximum Lipschitz constant of g̃ is

attained by the majority rule at σ = 1
2 .

Thirdly, the sub-exponential layer size condition Lk = o
(
D(δ, d)−k

)
in part 2 of Theorem 1 is intuitively

necessary. Suppose every Boolean processing function in our random DAG model simply outputs the value of its

first input bit. This effectively sets d = 1, and reduces our problem to one of broadcasting on a random tree model.

If Lk = Ω(E(δ)k) for some large enough constant E(δ), then most realizations of the random tree will have

branching numbers greater than (1 − 2δ)−2. As a result, reconstruction will be possible for most realizations of

the random tree (cf. the Kesten-Stigum threshold delineated at the outset of section I). Thus, when we are proving

impossibility results, Lk (at least intuitively) cannot be exponential in k with a very large base.

Fourthly, it is worth mentioning that for any fixed DAG with indegree d ≥ 3 and sub-exponential Lk, for any

choices of Boolean processing functions, and any choice of decoder, it is impossible to reconstruct the root bit when

δ > 1
2 −

1
2
√
d

. This follows from Evans and Schulman’s result in [22], which we will discuss further in subsection

II-C.

Lastly, in the context of the random DAG model studied in Theorem 1, the ensuing proposition illustrates that

the problem of reconstruction using the information contained in just a single vertex, e.g. Xk,0, exhibits a similar

phase transition phenomenon to that in Theorem 1.

Proposition 1 (Single Vertex Reconstruction). Let C(δ, d) be the constant defined in (37) in section III. For a

random DAG model with d ≥ 3, the following phase transition phenomenon occurs around δmaj:

1) If δ ∈ (0, δmaj), the number of vertices per level satisfies Lk ≥ C(δ, d) log(k) for all sufficiently large k

(depending on δ and d), and all Boolean processing functions are the majority rule (where ties are broken

by outputting random bits), then reconstruction is possible in the sense that:

lim sup
k→∞

P(Xk,0 6= X0,0) <
1

2

where we use a single vertex Xk,0 as the decoder at level k.

2) If δ ∈
[
δmaj,

1
2

)
, d is odd, and the number of vertices per level satisfies limk→∞ Lk = ∞ and Rk ,

infn≥k Ln = O
(
d2k
)
, then for all choices of Boolean processing functions (which may vary between vertices

and be graph dependent), reconstruction is impossible in the sense that:

lim
k→∞

E
[∥∥∥P+

Xk,0|G − P
−
Xk,0|G

∥∥∥
TV

]
= 0

where P+
Xk,0|G and P−Xk,0|G are the conditional distributions of Xk,0 given {X0,0 = 1, G} and {X0,0 = 0, G},

respectively.
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Proposition 1 is proved in Appendix A. In particular, part 2 of Proposition 1 demonstrates that when δ ≥ δmaj, the

ML decoder based on a single vertex Xk,0 (with knowledge of the random DAG realization G) cannot reconstruct

X0,0 in all but a vanishing fraction of DAGs. Thus, if reconstruction is possible in the range δ ≥ δmaj, the decoder

should definitely use more than one vertex. This converse result relies on the aforementioned impossibility results

on reliable computation. Specifically, the exact threshold δmaj that determines whether or not reliable computation

is possible using formulae is known for odd d ≥ 3, cf. [28], [29]. Therefore, we can exploit such results to obtain

a converse for odd d ≥ 3 which holds for all choices of Boolean processing functions and at the critical value

δ = δmaj (although only for single vertex decoding). In contrast, when d ≥ 4 is even, it is not even known whether

such a critical threshold exists (as noted in [29, Section 7]), and hence, we cannot easily prove such converse results

for even d ≥ 4.7

We next present an immediate corollary of Theorem 1 which states that there exist constant indegree deterministic

DAGs with Lk = Ω(log(k)) (i.e. Lk ≥ C(δ, d) log(k) for some large constant C(δ, d) and all sufficiently large k)

such that reconstruction of the root bit is possible. Note that deterministic DAGs refer to Bayesian networks on

specific realizations of G in the sequel. We will use the same notation as subsection I-C to analyze deterministic

DAGs with the understanding that the randomness is engendered by X0,0 and the edge BSCs, but not G. Formally,

we have the following result which is proved in Appendix B.

Corollary 1 (Existence of DAGs where Reconstruction is Possible). For every indegree d ≥ 3, every noise level

δ ∈ (0, δmaj), and every sequence of level sizes satisfying Lk ≥ C(δ, d) log(k) for all sufficiently large k, there

exists a deterministic DAG G with these parameters such that if we use majority rules as our Boolean processing

functions, then there exists ε = ε(δ, d) > 0 (that depends on δ and d) such that the probability of error in ML

decoding is bounded away from 1
2 − ε:

∀k ∈ N, P
(
hkML(Xk,G) 6= X0

)
≤ 1

2
− ε

where hkML(·,G) : {0, 1}Lk → {0, 1} denotes the ML decision rule at level k based on the full k-layer state Xk

(given knowledge of the DAG G).

Since the critical threshold δmaj → 1
2 as d → ∞, a consequence of Corollary 1 is that for any δ ∈

(
0, 12
)
, any

sufficiently large indegree d (that depends on δ), and any sequence of level sizes satisfying Lk ≥ C(δ, d) log(k)

for all sufficiently large k, there exists a deterministic DAG G with these parameters and all majority processing

functions such that reconstruction of the root bit is possible in the sense shown above.

Until now, we have restricted ourselves to the d ≥ 3 case of the random DAG model. Our second main result

considers the setting where the indegree of each vertex (except the root) is d = 2, because it is not immediately

obvious that deterministic DAGs (for which reconstruction is possible) exist for d = 2. Indeed, it is not entirely

clear which Boolean processing functions are good for “local error correction” in this scenario. We choose to fix

7Note, however, that if all Boolean processing functions are the majority rule and the conditions of part 2 of Theorem 1 are satisfied, then

part 2 of Theorem 1 implies (using the data processing inequality for TV distance and the bounded convergence theorem) that single vertex

reconstruction is also impossible in the sense presented in part 2 of Proposition 1.
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all Boolean functions at even levels of the random DAG model to be the AND rule, and all Boolean functions

at odd levels of the model to be the OR rule. We then prove that this random DAG model also exhibits a phase

transition phenomenon around a critical threshold of δandor , 3−
√
7

4 . As before, the next theorem illustrates that for

δ < δandor, the “biased” majority decision rule T̂k , 1{σk ≥ t}, where t ∈ (0, 1) is defined in (53) in section IV,

can asymptotically decode σ0, but for δ > δandor, the ML decision rule with knowledge of G cannot asymptotically

decode σ0. For simplicity, we only analyze this model at even levels.

Theorem 2 (Phase Transition in Random DAG Model with AND-OR Rule Processing). Let C(δ) and D(δ) be the

constants defined in (59) and (49) in section IV. For a random DAG model with d = 2, AND processing functions at

even levels, and OR processing functions at odd levels, the following phase transition phenomenon occurs around

δandor:

1) If δ ∈ (0, δandor), and the number of vertices per level satisfies Lk ≥ C(δ) log(k) for all sufficiently large k

(depending on δ), then reconstruction is possible in the sense that:

lim sup
k→∞

P(T̂2k 6= σ0) <
1

2

where we use the decoder T̂2k = 1{σ2k ≥ t} at level 2k, which recovers the root bit by thresholding at the

value t ∈ (0, 1) in (53).

2) If δ ∈
(
δandor,

1
2

)
, and the number of vertices per level satisfies Lk = o

(
E(δ)−

k
2

)
and lim infk→∞ Lk >

2
E(δ)−D(δ) for any E(δ) ∈ (D(δ), 1) (that depends on δ), then reconstruction is impossible in the sense of

(7):

lim
k→∞

∥∥∥P+
X2k|G − P

−
X2k|G

∥∥∥
TV

= 0 G-a.s.

Theorem 2 is proved in section IV, and many of the remarks pertaining to Theorem 1 as well as the general

intuition for Theorem 1 also hold for Theorem 2. Furthermore, a proposition analogous to part 1 of Proposition 1

and a corollary analogous to Corollary 1 also hold here (but we omit explicit statements of these results for brevity).

It is straightforward to verify that the random DAG in Theorem 2 with alternating layers of AND and OR process-

ing functions is equivalent a random DAG with all NAND processing functions for the purposes of broadcasting.8

Recall that in the discussion following Theorem 1, we noted how the critical threshold δmaj was already known

in the reliable computation literature (because it characterized when reliable computation is possible), cf. [29]. It

turns out that δandor has also appeared in the reliable computation literature in a similar vein. In particular, although

the existence of critical thresholds on δ for reliable computation using formulae of δ-noisy gates is not known for

any even d ≥ 4, the special case of d = 2 has been resolved. Indeed, Evans and Pippenger showed in [31] that

reliable computation using formulae consisting of δ-noisy NAND gates is possible when δ < δandor and impossible

8Indeed, we can introduce pairs of NOT gates into every edge of our DAG that goes from an AND gate to an OR gate without affecting the

statistics of the model. Since an AND gate followed by a NOT gate and an OR gate whose inputs pass through NOT gates are both NAND

gates, we obtain an equivalent model where all processing functions are NAND gates. We remark that analyzing this random DAG model with

NAND processing functions yields a version of Theorem 2 with the same essential characteristics (albeit with possibly weaker conditions on

Lk).
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when δ > δandor. Moreover, Unger established in [32] that reliable computation using formulae with general 2-input

δ-noisy gates is impossible when δ ≥ δandor.

B. Explicit Construction of Deterministic DAGs where Broadcasting is Possible

Although Corollary 1 illustrates the existence of DAGs where broadcasting (i.e. reconstruction of the root bit) is

possible, it does not elucidate the structure of such DAGs. Moreover, Theorem 1 suggests that reconstruction on

such deterministic DAGs should be possible using the algorithmically simple majority decision rule, but Corollary

1 is proved for the typically more complex ML decision rule. In this subsection, we address these deficiencies of

Corollary 1 by presenting an explicit construction of deterministic bounded degree DAGs such that Lk = Θ(log(k))

and reconstruction of the root bit is possible using the majority decision rule.

Our construction is based on regular bipartite lossless expander graphs. Historically, the notion of an expander

graph goes back to the work of Kolmogorov and Barzdin in [33]. Soon afterwards, Pinsker independently discovered

such graphs and coined the term “expander graph” in [34].9 Both [33] and [34, Lemma 1] prove the existence of

expander graphs using probabilistic techniques. On the other hand, the first explicit construction of expander graphs

appeared in [35], and more recently, lossless expander graphs were constructed using simpler ideas in [36]. We

next define a pertinent variant of lossless expander graphs.

Consider a d-regular bipartite graph B = (U, V,E), where U and V are two disjoint sets of vertices such that

|U | = |V | = n ∈ N\{0}, every vertex in U ∪V has degree d ∈ N\{0}, and E is the set of undirected edges between

U and V . Note that we allow multiple edges to exist between two vertices in B. For any subset of vertices S ⊆ U ,

we define the neighborhood of S as:

Γ(S) , {v ∈ V : ∃u ∈ S, {u, v} ∈ E} (12)

which is the set of all vertices in V that are adjacent to some vertex in S. For any fraction α ∈ (0, 1) and any

expansion factor β > 0, B is called an (α, β)-expander graph if for every subset of vertices S ⊆ U , we have:

|S| ≤ αn ⇒ |Γ(S)| ≥ β|S| . (13)

Note that we only require subsets of vertices in U to expand (not V ). Intuitively, such expander graphs are sparse

due to the d-regularity constraint, but have high connectivity due to the expansion property (13). Furthermore, when

α ≤ 1
d , the best expansion factor one can hope for is β as close as possible to d. Hence, (α, (1 − ε)d)-expander

graphs with α ≤ 1
d and very small ε > 0 are known as lossless expander graphs [36, Section 1.1].

We utilize a slightly relaxed version of lossless expander graphs in our construction. In particular, using existing

results from the literature, we establish in Corollary 2 of section V that for large values of the degree d and any

sufficiently large n (depending on d), there exists a d-regular bipartite graph B = (U, V,E) with |U | = |V | = n

such that for every subset of vertices S ⊆ U , we have:

|S| = n

d6/5
⇒ |Γ(S)| ≥ (1− ε) n

d1/5
with ε =

2

d1/5
. (14)

9In fact, expander graphs are called “expanding” graphs in [34].
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Unlike (13), the expansion in (14) only holds for subsets S ⊆ U with cardinality exactly |S| = nd−6/5. However,

we can still (loosely) perceive the graph B as a d-regular bipartite lossless (α, β)-expander graph with α = d−6/5

and β = (1−ε)d. (Strictly speaking, nd−6/5 must be an integer, but we neglect this detail throughout our exposition

for simplicity.) In the remainder of our discussion, we refer to graphs like B that satisfy (14) as d-regular bipartite

lossless (d−6/5, d− 2d4/5)-expander graphs with abuse of standard nomenclature.

A d-regular bipartite lossless (d−6/5, d− 2d4/5)-expander graph B can be construed as representing two consec-

utive levels of a deterministic DAG upon which we are broadcasting. Indeed, we can make every edge in E directed

by making them point from U to V , where U represents a particular level in the DAG and V the next level. In

fact, we can construct deterministic DAGs where broadcasting is possible by concatenating several such d-regular

bipartite lossless expander graphs together. The ensuing theorem details our DAG construction, and illustrates that

reconstruction of the root bit is possible when we use majority Boolean processing functions and the majority

decision rule Ŝk = 1
{
σk ≥ 1

2

}
, where σk is defined in (2).

Theorem 3 (DAG Construction using Expander Graphs). Fix any noise level δ ∈
(
0, 12
)
, any sufficiently large odd

degree d = d(δ) ≥ 5 (that depends on δ) satisfying:

8

d1/5
+ d6/5 exp

(
− (1− 2δ)2(d− 4)2

8d

)
≤ 1

2
, (15)

and any sufficiently large constant N = N(δ) ∈ N (that depends on δ) such that the constant M , exp(N/(4d12/5))

≥ 2 and for every n ≥ N , there exists a d-regular bipartite lossless (d−6/5, d − 2d4/5)-expander graph Bn =

(Un, Vn, En) with |Un| = |Vn| = n that satisfies (14) for every subset S ⊆ Un. Let the sequence of level sizes

{Lk : k ∈ N} be given by L0 = 1, L1 = N , and:

∀m ∈ N, ∀k ∈ N such that Mb2
m−1c < k ≤M2m , Lk = 2mN (16)

where b·c denotes the floor function, and Lk = Θ(log(k)). Then, either in deterministic quasi-polynomial time

O(exp(Θ(log(r) log log(r)))), or if N additionally satisfies (81), in randomized polylogarithmic time O(log(r)

log log(r)) with strictly positive success probability (83), we can construct the constituent expander graphs for

levels 0, . . . , r of an infinite deterministic DAG with level sizes {Lk : k ∈ N} defined above, indegrees bounded by

d, outdegrees bounded by 2d, and the following edge configuration:

1) Every vertex in X1 has one directed edge coming from X0,0.

2) For every pair of consecutive levels k and k+ 1 such that Lk+1 = Lk, the directed edges from Xk to Xk+1

are given by the edges of BLk
, where we identify the vertices in ULk

with Xk and the vertices in VLk
with

Xk+1, respectively.

3) For every pair of consecutive levels k and k+1 such that Lk+1 = 2Lk, we partition the vertices in Xk+1 into

two sets, X1
k+1 = (Xk+1,0, . . . , Xk+1,Lk

) and X2
k+1 = (Xk+1,Lk+1, . . . , Xk+1,Lk+1

), so that the directed

edges from Xk to Xi
k+1 are given by the edges of BLk

for i = 1, 2, where we identify the vertices in ULk

with Xk and the vertices in VLk
with Xi

k+1, respectively, as before.
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Furthermore, for the Bayesian network defined on this infinite deterministic DAG with X0,0 ∼ Bernoulli
(
1
2

)
,

independent BSC(δ) edges, all identity Boolean processing functions in level k = 1, and all majority rule Boolean

processing functions in levels k ≥ 2 (as defined in subsection I-C), reconstruction is possible in the sense that:

lim sup
k→∞

P
(
Ŝk 6= X0

)
<

1

2

where we use the majority decoder Ŝk = 1
{
σk ≥ 1

2

}
at level k.

Theorem 3 is proved in section V. The proof of feasibility of reconstruction follows the same overarching strategy

as the proof of Theorem 1, but obviously makes essential use of the expansion property (14). We emphasize that

Theorem 3 portrays that the constituent expander graphs of a deterministic DAG where broadcasting is possible

can be constructed either in quasi-polynomial time or in randomized polylogarithmic time in the number of levels.

Once the DAG is constructed however, reconstruction of the root bit is guaranteed to succeed using the majority

decoder in the sense presented above. Finally, we note that the question of finding a deterministic polynomial time

algorithm to construct DAGs where reconstruction is possible remains open.

C. Further Discussion and Impossibility Results

In this subsection, we present and discuss some impossibility results pertaining to both deterministic and random

DAGs. The first result illustrates that if Lk ≤ log(k)/(d log(1/(2δ))) for every sufficiently large k (i.e. Lk grows

very “slowly”), then reconstruction is impossible regardless of the choices of Boolean processing functions and the

choice of decision rule.

Proposition 2 (Slow Growth of Layers). For any noise level δ ∈
(
0, 12
)

and indegree d ∈ N\{0}, if the number of

vertices per level satisfies Lk ≤ log(k)/(d log(1/(2δ))) for all sufficiently large k, then for all choices of Boolean

processing functions (which may vary between vertices and be graph dependent), reconstruction is impossible in

the sense that:

1) for a deterministic DAG:

lim
k→∞

∥∥P+
Xk
− P−Xk

∥∥
TV

= 0

where P+
Xk

and P−Xk
denote the conditional distributions of Xk given X0 = 1 and X0 = 0, respectively.

2) for a random DAG:

lim
k→∞

∥∥∥P+
Xk|G − P

−
Xk|G

∥∥∥
TV

= 0 pointwise

which means that the condition holds for every realization of the random DAG G.

This proposition is proved in Appendix C. Part 1 of Proposition 2 illustrates that when Lk is sub-logarithmic,

the ML decoder based on the entire k-layer state Xk with knowledge of the deterministic DAG fails to reconstruct

the root bit. Similarly, part 2 of Proposition 2 shows that reconstruction is impossible for random DAGs even if

the particular DAG realization G is known and the ML decoder can access Xk. Therefore, Proposition 2 illustrates

that our assumption that Lk ≥ C log(k), for some constant C (that depends on δ and d) and all sufficiently large

k, for reconstruction to be possible in Theorems 1 and 2 is in fact necessary.
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In contrast, consider a deterministic DAG with no restrictions (i.e. no bounded indegree assumption) except for

the size of Lk. Then, each vertex at level k of this DAG is connected to all Lk−1 vertices at level k − 1. The

next proposition illustrates that Lk = Θ
(√

log(k)
)

is the critical scaling of Lk in this scenario. In particular,

reconstruction is possible when Lk = Ω
(√

log(k)
)

(i.e. Lk ≥ A(δ)
√

log(k) for some large constant A(δ) and all

sufficiently large k), and reconstruction is impossible when Lk = O
(√

log(k)
)

(i.e. Lk ≤ B(δ)
√

log(k) for some

small constant B(δ) and all sufficiently large k). The proof of this result is deferred to Appendix D.

Proposition 3 (Broadcasting in Unbounded Degree DAG Model). Let A(δ) and B(δ) be the constants defined in

(111) and (112) in Appendix D. Consider a deterministic DAG G such that for every k ∈ N\{0}, each vertex at

level k has one incoming edge from all Lk−1 vertices at level k− 1. Then, for any noise level δ ∈
(
0, 12
)
, we have:

1) If the number of vertices per level satisfies Lk ≥ A(δ)
√

log(k) for all sufficiently large k, and all Boolean

processing function in G are the majority rule (where ties are broken by outputting 1), then reconstruction is

possible in the sense that:

lim sup
k→∞

P(Ŝk 6= X0) <
1

2

where we use the majority decoder Ŝk = 1
{
σk ≥ 1

2

}
at level k.

2) If the number of vertices per level satisfies Lk ≤ B(δ)
√

log(k) for all sufficiently large k, then for all choices

of Boolean processing functions (which may vary between vertices), reconstruction is impossible in the sense

that:

lim
k→∞

∥∥P+
Xk
− P−Xk

∥∥
TV

= 0 .

The last impossibility result we present here is an important result from the reliable computation literature due

to Evans and Schulman [22]. Evans and Schulman studied von Neumann’s noisy computation model (which we

briefly discussed in subsection II-A), and established general conditions under which reconstruction is impossible

in deterministic DAGs due to the decay of mutual information between X0 and Xk. Recall that for two discrete

random variables X ∈ X and Y ∈ Y (where |X |, |Y| < ∞), with joint probability mass function PX,Y and

marginals PX and PY respectively, the mutual information (in bits) between them is defined as:

I(X;Y ) ,
∑
x∈X

∑
y∈Y

PX,Y (x, y) log2

(
PX,Y (x, y)

PX(x)PY (y)

)
(17)

where log2(·) is the binary logarithm, and we assume that 0 log2

(
0
q

)
= 0 for any q ≥ 0, and p log2

(
p
0

)
= ∞

for any p > 0 (due to continuity considerations). We present a specialization of [22, Lemma 2] for our setting

as Proposition 4 below. This proposition portrays that if Lk is sub-exponential and the parameters δ and d satisfy

(1 − 2δ)2d < 1, then reconstruction is impossible in deterministic DAGs regardless of the choices of Boolean

processing functions and the choice of decision rule.

Proposition 4 (Decay of Mutual Information [22, Lemma 2]). For any deterministic DAG model, we have:

I(X0;Xk) ≤ Lk
(
(1− 2δ)2d

)k
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where Lkdk is the total number of paths from X0 to layer Xk, and (1 − 2δ)2k can be construed as the overall

contraction of mutual information along each path. Therefore, if (1−2δ)2d < 1 and Lk = o
(
1/((1− 2δ)2d)k

)
, then

for all choices of Boolean processing functions (which may vary between vertices), we have limk→∞ I(X0;Xk) = 0,

which implies that limk→∞
∥∥P+

Xk
− P−Xk

∥∥
TV

= 0.

We make some pertinent remarks about this result. Firstly, Evans and Schulman’s original analysis assumes that

gates are noisy as opposed to edges (in accordance with von Neumann’s setup), but the re-derivation of [22, Lemma

2] in [37, Corollary 7] illustrates that the result also holds for our model. In fact, the site percolation analysis in

[37, Section 3] (which we will briefly delineate later) improves upon Evans and Schulman’s estimate. Furthermore,

this analysis illustrates that the bound in Proposition 4 also holds for all choices of random Boolean processing

functions.

Secondly, while Proposition 4 holds for deterministic DAGs, we can easily extend it for random DAG models.

Indeed, the random DAG model inherits the inequality in Proposition 4 pointwise:

I(X0;Xk|G = G) ≤ Lk
(
(1− 2δ)2d

)k
(18)

for every realization of the random DAG G = G, where I(X0;Xk|G = G) is the mutual information between X0

and Xk computed using the joint distribution of X0 and Xk given G = G. This implies that if Lk is sub-exponential

and (1−2δ)2d < 1, then reconstruction based on Xk is impossible regardless of the choices of Boolean processing

functions (which may vary between vertices and be graph dependent) and the choice of decision rule even if the

decoder knows the particular random DAG realization, i.e. limk→∞ ‖P+
Xk|G − P

−
Xk|G‖TV = 0 pointwise (which

trivially implies (7)). Taking expectations with respect to G in (18), we get:

I(X0;Xk) ≤ I(X0;Xk|G) ≤ Lk
(
(1− 2δ)2d

)k
(19)

where I(X0;Xk|G) is the conditional mutual information (i.e. the expected value of I(X0;Xk|G = G) with respect

to G), and the first inequality follows from the chain rule for mutual information and the fact that X0 is independent

of G. Since the second inequality in (19) implies (41), invoking the argument at the end of the proof of part 2

of Theorem 1 in section III also yields that reconstruction is impossible in the sense of (7) when Lk is sub-

exponential and (1− 2δ)2d < 1. Thus, limk→∞ I(X0;Xk|G) = 0 is a sufficient condition for (7). In contrast, the

first inequality in (19) only yields the impossibility of reconstruction in the sense of (8) when Lk is sub-exponential

and (1− 2δ)2d < 1.

Thirdly, Evans and Schulman’s result in Proposition 4 provides an upper bound on the critical threshold of δ

above which reconstruction of the root bit is impossible. Indeed, the condition, (1−2δ)2d < 1, under which mutual

information decays can be rewritten as (cf. the discussion in [22, p.2373]):

δES(d) ,
1

2
− 1

2
√
d
< δ <

1

2
(20)

and reconstruction is impossible for deterministic or random DAGs in this regime of δ provided Lk is sub-

exponential. As a sanity check, we can verify that δES(2) = 0.14644... > 0.08856... = δandor in the context

of Theorem 2, and δES(3) = 0.21132... > 0.16666... = δmaj in the context of Theorem 1 with d = 3. Although
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δES(d) is a general upper bound on the critical threshold for reconstruction, in this paper, it is not particularly useful

because we analyze explicit processing functions and decision rules, and derive specific bounds that characterize

the corresponding thresholds.

Fourthly, it is worth comparing δES(d) (which comes from a site percolation argument, cf. [37, Section 3]) to

an upper bound on the critical threshold for reconstruction derived from bond percolation. To this end, consider

the random DAG model, and recall that the BSC(δ)’s along each edge generate independent bits with probability

2δ (as shown in the proof of Proposition 2 in Appendix C). So, we can perform bond percolation so that each

edge is independently “removed” with probability 2δ. It can be shown by analyzing this bond percolation process

that reconstruction is impossible (in a certain sense) when 1
2 −

1
2d < δ < 1

2 . Therefore, the Evans-Schulman upper

bound of δES(d) is tighter than the bond percolation upper bound: δES(d) < 1
2 −

1
2d .

Finally, we briefly delineate how the site percolation approach in [37, Section 3] allows us to prove that

reconstruction is impossible in the random DAG model for the (1−2δ)2d = 1 case as well. Consider a site percolation

process where each vertex Xk,j (for k ∈ N\{0} and j ∈ [Lk]) is independently “open” with probability (1−2δ)2, and

“closed” with probability 1−(1−2δ)2. (Note that X0,0 is open almost surely.) For every k ∈ N\{0}, let pk denote the

probability that there is an “open connected path” from X0 to Xk (i.e. there exist j1 ∈ [L1], . . . , jk ∈ [Lk] such that

(X0,0, X1,j1), (X1,j1 , X2,j2), . . . , (Xk−1,jk−1
, Xk,jk) are directed edges in the random DAG G and X1,j1 , . . . , Xk,jk

are all open). It can be deduced from [37, Theorem 5] that for any k ∈ N\{0}:

I(X0;Xk|G) ≤ pk . (21)

Next, for each k ∈ N, define the random variable:

λk ,
1

Lk

∑
j∈[Lk]

1{Xk,j is open and connected} (22)

which is the proportion of open vertices at level k that are connected to the root by an open path. (Note that

λ0 = 1.) It is straightforward to verify (using Bernoulli’s inequality) that for any k ∈ N\{0}:

E[λk|λk−1] = (1− 2δ)2
(
1− (1− λk−1)d

)
≤ (1− 2δ)2dλk−1 . (23)

Observe that by Markov’s inequality and the recursion from (23), E[λk] ≤ (1− 2δ)2dE[λk−1], we have:

pk = P
(
λk ≥

1

Lk

)
≤ LkE[λk] ≤ Lk

(
(1− 2δ)2d

)k
(24)

which recovers Evans and Schulman’s result (Proposition 4) in the context of the random DAG model. Indeed, if

(1−2δ)2d < 1 and Lk = o
(
1/((1− 2δ)2d)k

)
, then limk→∞ pk = 0, and as a result, limk→∞ I(X0;Xk|G) = 0 by

(21). On the other hand, when (1− 2δ)2d = 1, taking expectations and applying Jensen’s inequality to the equality

in (23) produces:

E[λk] ≤ (1− 2δ)2
(
1− (1− E[λk−1])d

)
. (25)
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This implies that E[λk] ≤ F−1(k) for every k ∈ N using the estimate in [38, Appendix A], where F : [0, 1] →

R+, F (t) =
∫ 1

t
1

f(τ) dτ with f : [0, 1] → [0, 1], f(t) = t − (1 − 2δ)2
(
1− (1− t)d

)
, and F−1 : R+ → [0, 1] is

well-defined. Since f(t) ≥ d−1
2 t2 for all t ∈ [0, 1], it is straightforward to show that:

E[λk] ≤ F−1(k) ≤ 2

(d− 1)k
. (26)

Therefore, the Markov’s inequality argument in (24) illustrates that if (1 − 2δ)2d = 1 and Lk = o(k), then

limk→∞ pk = 0 and reconstruction is impossible in the random DAG model due to (21). Furthermore, the condition

on Lk can be improved to Lk = O(k log(k)) using a more sophisticated Borel-Cantelli type of argument.

III. ANALYSIS OF MAJORITY RULE PROCESSING IN RANDOM DAG MODEL

In this section, we prove Theorem 1. To this end, we first make some pertinent observations. Recall that we

have a random DAG model with d ≥ 3, and all Boolean functions are the majority rule, i.e. fk(x1, . . . , xd) =

majority(x1, . . . , xd) for every k ∈ N\{0}. Note that when the number of 1’s is equal to the number of 0’s, the

majority rule outputs an independent Bernoulli
(
1
2

)
bit.10 Suppose we are given that σk−1 = σ for any k ∈ N\{0}.

Then, for every j ∈ [Lk], Xk,j = majority(Y1, . . . , Yd) where Y1, . . . , Yd are i.i.d. Bernoulli(p) random variables

with p = σ ∗ δ. Define the function g : [0, 1]→ [0, 1] as follows:

g(σ) , E[majority(Y1, . . . , Yd)] = P

(
d∑
i=1

Yi >
d

2

)
+

1

2
P

(
d∑
i=1

Yi =
d

2

)
(27)

=



d∑
i= d

2+1

(
d

i

)
(σ ∗ δ)i(1− σ ∗ δ)d−i +

1

2

(
d
d
2

)
(σ ∗ δ) d

2 (1− σ ∗ δ)
d
2 , d even

d∑
i= d+1

2

(
d

i

)
(σ ∗ δ︸︷︷︸

p

)i(1− σ ∗ δ︸ ︷︷ ︸
1−p

)d−i , d odd

(28)

which implies that Xk,j are i.i.d. Bernoulli(g(σ)) for j ∈ [Lk], and Lkσk ∼ binomial(Lk, g(σ)), since we have:

P(Xk,j = 1|σk−1 = σ) = E[σk|σk−1 = σ] = g(σ) . (29)

To compute the first derivative of g, we follow the analysis in [6, Section 2]. Recall that a Boolean function h :

{0, 1}d → {0, 1} is monotone non-decreasing (respectively, non-increasing) if its value either increases (respectively,

decreases) or remains the same whenever any of its input bits is flipped from 0 to 1. For any such monotone function

h : {0, 1}d → {0, 1}, the Margulis-Russo formula states that [39], [40] (alternatively, see [41, Section 4.1]):

d

dp
E[h(Y1, . . . , Yd)] =

d∑
i=1

E[h(Y1, . . . , Yi−1, 1, Yi+1, . . . , Yd)− h(Y1, . . . , Yi−1, 0, Yi+1, . . . , Yd)] . (30)

10Although generating a random bit is a natural approach to breaking ties in the majority rule, this means that the rule is no longer purely

deterministic when d is even.
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Hence, since h = majority is a non-decreasing function, g′ : [0, 1]→ R+ is given by:

g′(σ) =
dp

dσ

d

dp
E[h(Y1, . . . , Yd)]

= (1− 2δ)

d∑
i=1

E[h(Y1, . . . , Yi−1, 1, Yi+1, . . . , Yd)− h(Y1, . . . , Yi−1, 0, Yi+1, . . . , Yd)]

= (1− 2δ) dE[h(1, Y2, . . . , Yd)− h(0, Y2, . . . , Yd)]

= (1− 2δ) dP(h(1, Y2, . . . , Yd) = 1, h(0, Y2, . . . , Yd) = 0) (31)

=


(1− 2δ)

d

2

(
P

(
d∑
i=2

Yi =
d

2
− 1

)
+ P

(
d∑
i=2

Yi =
d

2

))
, d even

(1− 2δ) dP

(
d∑
i=2

Yi =
d− 1

2

)
, d odd

=


(1− 2δ)

d

2

((
d− 1
d
2 − 1

)
p

d
2−1(1− p) d

2 +

(
d− 1
d
2

)
p

d
2 (1− p) d

2−1
)

, d even

(1− 2δ) d

(
d− 1
d−1
2

)
p

d−1
2 (1− p)

d−1
2 , d odd

=


(1− 2δ)

d

4

(
d
d
2

)
(p(1− p)) d

2−1 , d even

(1− 2δ)
d+ 1

2

(
d
d+1
2

)
(p(1− p))

d−1
2 , d odd

=


(1− 2δ)

d

4

(
d
d
2

)
((σ ∗ δ)(1− σ ∗ δ)) d

2−1 , d even

(1− 2δ)
d+ 1

2

(
d
d+1
2

)
((σ ∗ δ)(1− σ ∗ δ))

d−1
2 , d odd

(32)

where the second equality follows from dp/dσ = 1− 2δ and (30), the third equality holds because h = majority is

symmetric in its input bits, the fourth equality holds because h = majority is non-decreasing, and the fifth equality

follows from the definition of the majority rule. Since p 7→ p(1 − p) is increasing on
[
0, 12
]

and decreasing on[
1
2 , 1
]
, and p = σ ∗ δ is linear in σ with derivative 1− 2δ > 0 such that p = 1

2 when σ = 1
2 , it is straightforward

to verify from (32) that g′ is positive on [0, 1], increasing on
[
0, 12
]
, and decreasing on

[
1
2 , 1
]
. As a result, g is

increasing on [0, 1], convex on
[
0, 12
]
, and concave on

[
1
2 , 1
]
. Furthermore, the Lipschitz constant of g over [0, 1],

or equivalently, the maximum value of g′ over [0, 1] is:

D(δ, d) , max
σ∈[0,1]

g′(σ) = g′
(

1

2

)
= (1− 2δ)

(
1

2

)d−1 ⌈
d

2

⌉(
d⌈
d
2

⌉) (33)

regardless of whether d is even or odd.

There are two regimes of interest when we consider the contraction properties and fixed point structure of g.

As defined in (9), let δmaj be the critical noise level such that the Lipschitz constant g′
(
1
2

)
is equal to 1.11 Then,

in the δ ∈ (0, δmaj) regime, the Lipschitz constant g′
(
1
2

)
is greater than 1. Furthermore, since g

(
1
2

)
= 1

2 and

g(1 − σ) = 1 − g(σ) (which are straightforward to verify from (28)), the aforementioned properties of g imply

11We can also view δmaj as the critical value such that the d-input majority gate with independent BSC(δ)’s at each input is an amplifier if

and only if δ < δmaj. We refer readers to [42] for more information about amplifiers, and in particular, the relationship between amplifiers and

reliable computation.
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that g has three fixed points at σ = 1− σ̂, 12 , σ̂, where the largest fixed point of g is some σ̂ ∈
(
1
2 , 1
)

that depends

on δ (e.g. σ̂ =
(
1 +

√
(1− 6δ)/(1− 2δ)3

)
/2 when d = 3). In contrast, in the δ ∈

(
δmaj,

1
2

)
regime, the Lipschitz

constant g′
(
1
2

)
is less than 1, and the only fixed point of g is σ = 1

2 . (We also mention that when δ = δmaj, g has

only one fixed point at σ = 1
2 .)

Using these observations, we now prove Theorem 1.

Proof of Theorem 1. We begin by constructing a useful “monotone Markovian coupling” that will help establish

both achievability and converse directions (see [43, Chapter 5] for basic definitions of Markovian couplings). Let

{X+
k : k ∈ N} and {X−k : k ∈ N} denote versions of the Markov chain {Xk : k ∈ N} (i.e. with the same transition

kernels) initialized at X+
0 = 1 and X−0 = 0, respectively. In particular, the marginal distributions of X+

k and X−k
are P+

Xk
and P−Xk

, respectively. The monotone Markovian coupling {(X−k , X
+
k ) : k ∈ N} between the Markov

chains {X+
k : k ∈ N} and {X−k : k ∈ N} is generated as follows. First, condition on any random DAG realization

G = G. Recall that each edge BSC(δ) of G either copies its input bit with probability 1 − 2δ, or produces an

independent Bernoulli
(
1
2

)
bit with probability 2δ (as demonstrated in the proof of Proposition 2 in Appendix C).

Next, couple {X+
k : k ∈ N} and {X−k : k ∈ N} so that along any edge BSC of G, say (Xk,j , Xk+1,i), X+

k,j and

X−k,j are either both copied with probability 1 − 2δ, or a shared independent Bernoulli
(
1
2

)
bit is produced with

probability 2δ that becomes the value of both X+
k+1,i and X−k+1,i. In other words, {X+

k : k ∈ N} and {X−k : k ∈ N}

“run” on the same underlying DAG G and have common BSCs. Hence, after averaging over all realizations of G,

it is straightforward to verify that the Markovian coupling {(X−k , X
+
k ) : k ∈ N} has the following properties:

1) The “marginal” Markov chains are {X+
k : k ∈ N} and {X−k : k ∈ N}.

2) For every k ∈ N, X+
k+1 is conditionally independent of X−k given X+

k , and X−k+1 is conditionally independent

of X+
k given X−k .

3) For every k ∈ N and every j ∈ [Lk], X+
k,j ≥ X−k,j almost surely—this is the monotonicity property of the

coupling.

In particular, the third property holds because 1 = X+
0,0 ≥ X

−
0,0 = 0 is true by assumption, each edge BSC preserves

monotonicity (whether it copies its input or generates a new shared bit), and the majority processing functions are

symmetric and monotone non-decreasing. In the sequel, probabilities of events that depend on the coupled vertex

random variables {(X−k,j , X
+
k,j) : k ∈ N, j ∈ [Lk]} are defined with respect to this Markovian coupling. Note

that this coupling also induces a monotone Markovian coupling {(σ+
k , σ

−
k ) : k ∈ N} between the Markov chains

{σ+
k : k ∈ N} and {σ−k : k ∈ N} (where {σ+

k : k ∈ N} and {σ−k : k ∈ N} denote versions of the Markov chain

{σk : k ∈ N} initialized at σ+
0 = 1 and σ−0 = 0, respectively) such that:

1) The “marginal” Markov chains are {σ+
k : k ∈ N} and {σ−k : k ∈ N}.

2) For every j > k ≥ 1, σ+
j is conditionally independent of σ−0 , . . . , σ

−
k , σ

+
0 , . . . , σ

+
k−1 given σ+

k , and σ−j is

conditionally independent of σ+
0 , . . . , σ

+
k , σ

−
0 , . . . , σ

−
k−1 given σ−k .

3) For every k ∈ N, σ+
k ≥ σ

−
k almost surely.

Part 1: We first prove that δ ∈ (0, δmaj) implies lim supk→∞ P(Ŝk 6= σ0) < 1
2 . To this end, we start by showing
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that there exists ε = ε(δ, d) > 0 (that depends on δ and d) such that:

∀k ∈ N\{0}, P
(
σ+
k ≥ σ̂ − ε

∣∣σ+
k−1 ≥ σ̂ − ε, Ak,j

)
≥ 1− exp

(
−2Lkγ(ε)2

)
(34)

where γ(ε) , g(σ̂ − ε)− (σ̂ − ε) > 0, and Ak,j with 0 ≤ j < k is the non-zero probability event defined as:

Ak,j ,

 {σ
−
j ≤ 1− σ̂ + ε} , 0 ≤ j = k − 1

{σ+
k−2 ≥ σ̂ − ε, . . . , σ

+
j ≥ σ̂ − ε} ∩ {σ

−
j ≤ 1− σ̂ + ε} , 0 ≤ j ≤ k − 2

.

Since g′(σ̂) < 1 and g(σ̂) = σ̂, g(σ̂ − ε) > σ̂ − ε for sufficiently small ε > 0. Fix any such ε > 0 (which depends

on δ and d because g depends on δ and d) such that γ(ε) > 0. Recall that Lkσk ∼ binomial(Lk, g(σ)) given

σk−1 = σ. This implies that for every k ∈ N\{0} and every 0 ≤ j < k:

P
(
σ+
k < g

(
σ+
k−1
)
− γ(ε)

∣∣σ+
k−1 = σ,Ak,j

)
= P(σk < g(σk−1)− γ(ε)|σk−1 = σ) ≤ exp

(
−2Lkγ(ε)2

)
where the equality follows from property 2 of our Markovian coupling {(σ+

k , σ
−
k ) : k ∈ N}, and the inequality

follows from (29) and Hoeffding’s inequality [44, Theorem 1]. As a result, we have:

∑
σ≥σ̂−ε

P
(
σ+
k < g

(
σ+
k−1
)
− γ(ε)

∣∣σ+
k−1 = σ,Ak,j

)
P
(
σ+
k−1 = σ

∣∣Ak,j)
≤ exp

(
−2Lkγ(ε)2

) ∑
σ≥σ̂−ε

P
(
σ+
k−1 = σ

∣∣Ak,j)
P
(
σ+
k < g

(
σ+
k−1
)
− γ(ε), σ+

k−1 ≥ σ̂ − ε
∣∣Ak,j) ≤ exp

(
−2Lkγ(ε)2

)
P
(
σ+
k−1 ≥ σ̂ − ε

∣∣Ak,j)
P
(
σ+
k < g

(
σ+
k−1
)
− γ(ε)

∣∣σ+
k−1 ≥ σ̂ − ε, Ak,j

)
≤ exp

(
−2Lkγ(ε)2

)
.

Finally, notice that σ+
k < σ̂ − ε = g(σ̂ − ε)− γ(ε) implies that σ+

k < g(σ+
k−1)− γ(ε) when σ+

k−1 ≥ σ̂ − ε (since g

is non-decreasing and g(σ+
k−1) ≥ g(σ̂ − ε)). This produces:

P
(
σ+
k < σ̂ − ε

∣∣σ+
k−1 ≥ σ̂ − ε, Ak,j

)
≤ exp

(
−2Lkγ(ε)2

)
which in turn establishes (34).

Now fix any τ > 0, and choose a sufficiently large value K = K(ε, τ) ∈ N (that depends on ε and τ ) such that:

∞∑
m=K+1

exp
(
−2Lmγ(ε)2

)
≤ τ . (35)

Note that such K exists because
∑∞
m=1 1/m2 = π2/6 < +∞, and for all sufficiently large m (depending on δ

and d), we have:

exp
(
−2Lmγ(ε)2

)
≤ 1

m2
⇔ Lm ≥

log(m)

γ(ε)2
. (36)

In (36), we use the assumption that Lm ≥ C(δ, d) log(m) for all sufficiently large m (depending on δ and d),

where we define the constant C(δ, d) as:

C(δ, d) ,
1

γ(ε(δ, d))2
> 0 . (37)
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Using the continuity of probability measures, observe that:

P

( ⋂
k>K

{
σ+
k ≥ σ̂ − ε

} ∣∣∣∣∣σ+
K ≥ σ̂ − ε, σ

−
K ≤ 1− σ̂ + ε

)
=
∏
k>K

P
(
σ+
k ≥ σ̂ − ε

∣∣σ+
k−1 ≥ σ̂ − ε, Ak,K

)
≥
∏
k>K

1− exp
(
−2Lkγ(ε)2

)
≥ 1−

∑
k>K

exp
(
−2Lkγ(ε)2

)
≥ 1− τ

where the first inequality follows from (34), the second inequality is straightforward to establish using induction,

and the final inequality follows from (35). Therefore, we have for any k > K:

P
(
σ+
k ≥ σ̂ − ε

∣∣σ+
K ≥ σ̂ − ε, σ

−
K ≤ 1− σ̂ + ε

)
≥ 1− τ . (38)

Likewise, we can also prove mutatis mutandis that for any k > K:

P
(
σ−k ≤ 1− σ̂ + ε

∣∣σ+
K ≥ σ̂ − ε, σ

−
K ≤ 1− σ̂ + ε

)
≥ 1− τ (39)

where the choices of ε, τ , and K in (39) are the same as those in (38) without loss of generality.

We need to show that lim supk→∞ P(Ŝk 6= σ0) < 1
2 , or equivalently, that there exists λ > 0 such that for all

sufficiently large k ∈ N:

P
(
Ŝk 6= σ0

)
=

1

2
P
(
Ŝk 6= σ0

∣∣∣σ0 = 1
)

+
1

2
P
(
Ŝk 6= σ0

∣∣∣σ0 = 0
)
≤ 1− λ

2

⇔ P
(
σk <

1

2

∣∣∣∣σ0 = 1

)
+ P

(
σk ≥

1

2

∣∣∣∣σ0 = 0

)
≤ 1− λ

⇔ P
(
σ+
k ≥

1

2

)
− P

(
σ−k ≥

1

2

)
≥ λ .

To this end, let E =
{
σ+
K ≥ σ̂ − ε, σ

−
K ≤ 1− σ̂ + ε

}
, and observe that for all k > K:

P
(
σ+
k ≥

1

2

)
− P

(
σ−k ≥

1

2

)
= E

[
1

{
σ+
k ≥

1

2

}
− 1

{
σ−k ≥

1

2

}]
≥ E

[(
1

{
σ+
k ≥

1

2

}
− 1

{
σ−k ≥

1

2

})
1{E}

]
= E

[
1

{
σ+
k ≥

1

2

}
− 1

{
σ−k ≥

1

2

}∣∣∣∣E]P(E)

=

(
P
(
σ+
k ≥

1

2

∣∣∣∣E)− P
(
σ−k ≥

1

2

∣∣∣∣E))P(E)

≥
(
P
(
σ+
k ≥ σ̂ − ε

∣∣E)− P
(
σ−k > 1− σ̂ + ε

∣∣E))P(E)

≥ (1− 2τ)P(E) , λ > 0

where the first inequality holds because 1
{
σ+
k ≥

1
2

}
− 1

{
σ−k ≥

1
2

}
≥ 0 almost surely due to the monotonicity

(property 3) of the Markovian coupling {(σ+
k , σ

−
k ) : k ∈ N}, the second inequality holds because 1− σ̂+ ε < 1

2 <

σ̂ − ε (since ε > 0 is small), and the final inequality follows from (38) and (39). This completes the proof for the

δ ∈ (0, δmaj) regime.
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Part 2: We next prove that δ ∈
(
δmaj,

1
2

)
implies (7). First, notice that conditioned on any realization of the

random DAG G, we have X+
k,j ≥ X−k,j almost surely for every k ∈ N and j ∈ [Lk] (by construction of our

coupling). Hence, conditioned on G, we obtain:∥∥∥P+
Xk|G − P

−
Xk|G

∥∥∥
TV
≤ P

(
X+
k 6= X−k

∣∣G)
= P

(
∃j ∈ [Lk], X+

k,j 6= X−k,j

∣∣∣G)
≤
Lk−1∑
j=0

P
(
X+
k,j 6= X−k,j

∣∣∣G)

= E

Lk−1∑
j=0

X+
k,j −X

−
k,j

∣∣∣∣∣∣G


= Lk E
[
σ+
k − σ

−
k

∣∣G]
where the first inequality follows from Dobrushin’s maximal coupling representation of TV distance [43, Chapter

4.2], the third inequality follows from the union bound, and the fourth equality holds because P(X+
k,j 6= X−k,j |G) =

P(X+
k,j − X

−
k,j = 1|G) = E[X+

k,j − X
−
k,j |G] due to the monotonicity of our coupling. Then, taking expectations

with respect to G yields:

E
[∥∥∥P+

Xk|G − P
−
Xk|G

∥∥∥
TV

]
≤ Lk E

[
σ+
k − σ

−
k

]
. (40)

We can bound E
[
σ+
k − σ

−
k

]
as follows. Firstly, we use the Lipschitz continuity of g (with Lipschitz constant

D(δ, d)) and the monotonicity of our coupling to get:

0 ≤ E
[
σ+
k − σ

−
k

∣∣σ+
k−1, σ

−
k−1
]

= g
(
σ+
k−1
)
− g
(
σ−k−1

)
≤ D(δ, d)

(
σ+
k−1 − σ

−
k−1
)
.

Then, we can take expectations with respect to
(
σ+
k−1, σ

−
k−1
)

on both sides of this inequality (and use the tower

property on the left hand side) to obtain:

0 ≤ E
[
σ+
k − σ

−
k

]
≤ D(δ, d)E

[
σ+
k−1 − σ

−
k−1
]
.

Therefore, we recursively have:

0 ≤ E
[
σ+
k − σ

−
k

]
≤ D(δ, d)k

where we use the fact that E
[
σ+
0 − σ

−
0

]
= 1. Using (40) with this bound, we get:

E
[∥∥∥P+

Xk|G − P
−
Xk|G

∥∥∥
TV

]
≤ LkD(δ, d)k

where letting k →∞ yields:

lim
k→∞

E
[∥∥∥P+

Xk|G − P
−
Xk|G

∥∥∥
TV

]
= 0 (41)

because Lk = o(D(δ, d)−k) by assumption. (It is worth mentioning that although Lk = o(D(δ, d)−k) in this regime,

it can diverge to infinity because the Lipschitz constant D(δ, d) < 1.)

Finally, observe that ‖P+
Xk|G − P

−
Xk|G‖TV ∈ [0, 1] forms a non-increasing sequence in k for every realization of

the random DAG G (since {Xk : k ∈ N} forms a Markov chain given G, and the data processing inequality for

TV distance yields the desired monotonicity). Hence, the pointwise limit (over realizations of G) random variable,
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limk→∞ ‖P+
Xk|G − P

−
Xk|G‖TV ∈ [0, 1], has mean E[limk→∞ ‖P+

Xk|G − P
−
Xk|G‖TV] = 0 due to (41) and the bounded

convergence theorem. Since a non-negative random variable that has zero mean must be equal to zero almost surely,

we have (7):

lim
k→∞

∥∥∥P+
Xk|G − P

−
Xk|G

∥∥∥
TV

= 0 G-a.s.

This completes the proof. �

Finally, the next proposition portrays that the Markov chain {σk : k ∈ N} converges almost surely when

δ ∈
(
δmaj,

1
2

)
, Lk = ω(log(k)), and all processing functions are majority.

Proposition 5 (Majority Random DAG Model Almost Sure Convergence). If δ ∈
(
δmaj,

1
2

)
and Lk = ω(log(k)),

then limk→∞ σk = 1
2 almost surely.

Proposition 5 is proved in Appendix E. It can be construed as a “weak” impossibility result since it demonstrates

that the average number of 1’s tends to 1
2 in the δ ∈

(
δmaj,

1
2

)
regime regardless of the initial state of the Markov

chain {σk : k ∈ N}.

IV. ANALYSIS OF AND-OR RULE PROCESSING IN RANDOM DAG MODEL

In this section, we prove Theorem 2. As before, we begin by making some pertinent observations. Recall that we

have a random DAG model with d = 2, and all Boolean functions at even levels are the AND rule, and all Boolean

functions at odd levels are the OR rule, i.e. fk(x1, x2) = x1 ∧ x2 for every k ∈ 2N\{0}, and fk(x1, x2) = x1 ∨ x2
for every k ∈ N\2N. Suppose we are given that σk−1 = σ for any k ∈ N\{0}. Then, for every j ∈ [Lk]:

Xk,j =

 Bernoulli(σ ∗ δ) ∧ Bernoulli(σ ∗ δ) , if k even

Bernoulli(σ ∗ δ) ∨ Bernoulli(σ ∗ δ) , if k odd
(42)

for two i.i.d. Bernoulli random variables. Since we have:

P(Xk,j = 1|σk−1 = σ) =

 (σ ∗ δ)2 , if k even

1− (1− σ ∗ δ)2 , if k odd
(43)

= E[σk|σk−1 = σ] , (44)

Xk,j are i.i.d. Bernoulli(gk (mod 2)(σ)) for j ∈ [Lk], and Lkσk ∼ binomial(Lk, gk (mod 2)(σ)), where we define

g0 : [0, 1]→ [0, 1] as g0(σ) , (σ ∗ δ)2, and g1 : [0, 1]→ [0, 1] as g1(σ) , 1− (1− σ ∗ δ)2 = 2(σ ∗ δ)− (σ ∗ δ)2.

The derivatives of g0 and g1 are:

g′0(σ) = 2(1− 2δ)(σ ∗ δ) ≥ 0 , (45)

g′1(σ) = 2(1− 2δ)(1− σ ∗ δ) ≥ 0 . (46)

Consider the composition of g0 and g1, g , g0 ◦ g1 : [0, 1] → [0, 1], g(σ) =
((

2(σ ∗ δ)− (σ ∗ δ)2
)
∗ δ
)2

, which

has derivative g′ : [0, 1]→ R+ given by:

g′(σ) = g′0(g1(σ))g′1(σ)

= 4(1− 2δ)2(g1(σ) ∗ δ)(1− σ ∗ δ) ≥ 0 . (47)
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This is a cubic function of σ with maximum value:

D(δ) , max
σ∈[0,1]

g′(σ) =

 g′
(

1−δ
1−2δ −

√
1−δ

3(1−2δ)3

)
, δ ∈

(
0, 9−

√
33

12

]
g′(0) , δ ∈

(
9−
√
33

12 , 12

) (48)

=


(

4(1−δ)(1−2δ)
3

) 3
2

, δ ∈
(

0, 9−
√
33

12

]
4δ(1− δ)2(1− 2δ)2(3− 2δ) < 1 , δ ∈

(
9−
√
33

12 , 12

) (49)

which follows from standard calculus and algebraic manipulations, and Wolfram Mathematica computations. Hence,

D(δ) in (49) is the Lipschitz constant of g over [0, 1]. Since 4(1− δ)(1− 2δ)/3 ∈ (0, 1)⇔ δ ∈ ((3−
√

7)/4, (9−
√

33)/12], D(δ) < 1 if and only if δ ∈ ((3−
√

7)/4, 1/2). Moreover, D(δ) > 1 if and only if δ ∈ (0, (3−
√

7)/4)

(and D(δ) = 1 when δ = (3−
√

7)/4).

We next summarize the fixed point structure of g. Solving the equation g(σ) = σ in Wolfram Mathematica

produces:

σ =
1− 6δ + 4δ2 ±

√
1− 12δ + 8δ2

2(1− 2δ)2
,

3− 6δ + 4δ2 ±
√

5− 12δ + 8δ2

2(1− 2δ)2
(50)

where the first pair is real when δ ∈ [0, (3 −
√

7)/4], and the second pair is always real. From these solutions, it

is straightforward to verify that the only fixed points of g in the interval [0, 1] are:

t0 ,
2(1− δ)(1− 2δ)− 1−

√
4(1− δ)(1− 2δ)− 3

2(1− 2δ)2
(valid when δ ∈

(
0,

3−
√

7

4

]
) (51)

t1 ,
2(1− δ)(1− 2δ)− 1 +

√
4(1− δ)(1− 2δ)− 3

2(1− 2δ)2
(valid when δ ∈

(
0,

3−
√

7

4

]
) (52)

t ,
2(1− δ)(1− 2δ) + 1−

√
4(1− δ)(1− 2δ) + 1

2(1− 2δ)2
(53)

which satisfy t0 = t1 = t when δ = (3−
√

7)/4, and t0 = 0, t1 = 1 when δ = 0. Furthermore, observe that:

t1 − t =

√
a+
√
a+ 4− 2

2(1− 2δ)2
> 0 and t− t0 =

√
a−
√
a+ 4 + 2

2(1− 2δ)2
> 0 (54)

where a = 4(1 − δ)(1 − 2δ) − 3 > 0 for δ ∈ (0, (3 −
√

7)/4), t1 − t > 0 because x 7→
√
x is strictly increasing

(⇒
√
a +
√
a+ 4 > 2), and t − t0 > 0 because x 7→

√
x is strictly subadditive (⇒

√
a + 2 >

√
a+ 4). Hence,

0 < t0 < t < t1 < 1 when δ ∈ (0, (3−
√

7)/4).

Therefore, there are again two regimes of interest. Define the critical threshold δandor , 3−
√
7

4 . In the regime

δ ∈ (0, δandor), g has three fixed points 0 < t0 < t < t1 < 1, and D(δ) > 1. In contrast, in the regime δ ∈
(
δandor,

1
2

)
,

g has only one fixed point at t ∈ (0, 1), and D(δ) < 1.

We now prove Theorem 2. (The proof closely resembles the proof of Theorem 1 in section III.)

Proof of Theorem 2. As in the proof of Theorem 1, we begin by constructing a monotone Markovian coupling

{(X−k , X
+
k ) : k ∈ N} between the Markov chains {X+

k : k ∈ N} and {X−k : k ∈ N} (which are versions of

the Markov chain {Xk : k ∈ N} initialized at X+
0 = 1 and X−0 = 0, respectively), and this coupling induces a

monotone Markovian coupling {(σ+
k , σ

−
k ) : k ∈ N} between the Markov chains {σ+

k : k ∈ N} and {σ−k : k ∈ N}

(which are versions of the Markov chain {σk : k ∈ N} initialized at σ+
0 = 1 and σ−0 = 0, respectively). This

monotone Markovian coupling satisfies the following properties:
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1) The “marginal” Markov chains are {X+
k : k ∈ N} and {X−k : k ∈ N}.

2) For every k ∈ N, X+
k+1 is conditionally independent of X−k given X+

k , and X−k+1 is conditionally independent

of X+
k given X−k .

3) For every j > k ≥ 1, σ+
j is conditionally independent of σ−0 , . . . , σ

−
k , σ

+
0 , . . . , σ

+
k−1 given σ+

k , and σ−j is

conditionally independent of σ+
0 , . . . , σ

+
k , σ

−
0 , . . . , σ

−
k−1 given σ−k .

4) For every k ∈ N and every j ∈ [Lk], X+
k,j ≥ X

−
k,j almost surely.

5) Due to the previous property, σ+
k ≥ σ

−
k almost surely for every k ∈ N.

As before, the fourth property above holds because 1 = X+
0,0 ≥ X−0,0 = 0 is true by assumption, each edge BSC

preserves monotonicity, and the AND and OR processing functions are symmetric and monotone non-decreasing.

Part 1: We first prove that δ ∈ (0, δandor) implies lim supk→∞ P(T̂2k 6= σ0) < 1
2 . To this end, we start by

establishing that there exists ε = ε(δ) > 0 (that depends on δ) such that:

∀k ∈ N\{0}, P
(
σ+
2k ≥ t1 − ε

∣∣σ+
2k−2 ≥ t1 − ε, Ak,j

)
≥ 1− 4 exp

(
− (L2k ∧ L2k−1)γ(ε)2

8

)
(55)

where ∧ denotes the minimum operation (not to be confused with the AND operation), γ(ε) , g(t1−ε)−(t1−ε) > 0,

and Ak,j with 0 ≤ j < k is the non-zero probability event defined as:

Ak,j ,

 {σ
−
2j ≤ t0 + ε} , 0 ≤ j = k − 1

{σ+
2k−4 ≥ t1 − ε, σ

+
2k−6 ≥ t1 − ε, . . . , σ

+
2j ≥ t1 − ε} ∩ {σ

−
2j ≤ t0 + ε} , 0 ≤ j ≤ k − 2

.

Since g′(t1) = 4δ(3− 2δ) < 1 and g(t1) = t1, g(t1 − ε) > t1 − ε for sufficiently small ε > 0. Fix any such ε > 0

(which depends on δ because g depends on δ) such that γ(ε) > 0. Observe that for every k ∈ N\{0} and ξ > 0,

we have:

P(|σ2k − g(σ2k−2)| > ξ|σ2k−2 = σ)

≤ P(|σ2k − g0(σ2k−1)|+ |g0(σ2k−1)− g0(g1(σ2k−2))| > ξ|σ2k−2 = σ)

≤ P(|σ2k − g0(σ2k−1)|+ 2(1− δ)(1− 2δ)|σ2k−1 − g1(σ2k−2)| > ξ|σ2k−2 = σ)

≤ P
({
|σ2k − g0(σ2k−1)| > ξ

2

}
∪
{

2(1− δ)(1− 2δ)|σ2k−1 − g1(σ2k−2)| > ξ

2

}∣∣∣∣σ2k−2 = σ

)
≤ P

(
|σ2k − g0(σ2k−1)| > ξ

2

∣∣∣∣σ2k−2 = σ

)
+ P

(
|σ2k−1 − g1(σ2k−2)| > ξ

4(1− δ)(1− 2δ)

∣∣∣∣σ2k−2 = σ

)
≤ E

[
P
(
|σ2k − g0(σ2k−1)| > ξ

2

∣∣∣∣σ2k−1)∣∣∣∣σ2k−2 = σ

]
+ 2 exp

(
− L2k−1ξ

2

8(1− δ)2(1− 2δ)2

)
≤ 2 exp

(
−L2kξ

2

2

)
+ 2 exp

(
− L2k−1ξ

2

8(1− δ)2(1− 2δ)2

)
≤ 4 exp

(
− (L2k ∧ L2k−1)ξ2

8

)
(56)

where the first inequality follows from the triangle inequality and the fact that g = g0 ◦ g1, the second inequality

holds because the Lipschitz constant of g0 on [0, 1] is maxσ∈[0,1] g
′
0(σ) = g′0(1) = 2(1− δ)(1− 2δ) using (45), the

fourth inequality follows from the union bound, the fifth and sixth inequalities follow from the Markov property
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and Hoeffding’s inequality (as well as the fact that Lkσk ∼ binomial(Lk, gk (mod 2)(σ)) given σk−1 = σ), and the

final inequality holds because (1− δ)2(1− 2δ)2 ≤ 1. Hence, for any k ∈ N\{0} and any 0 ≤ j < k, we have:

P
(
σ+
2k < g

(
σ+
2k−2

)
− γ(ε)

∣∣σ+
2k−2 = σ,Ak,j

)
= P(σ2k < g(σ2k−2)− γ(ε) |σ2k−2 = σ)

≤ P(|σ2k − g(σ2k−2)| > γ(ε)|σ2k−2 = σ)

≤ 4 exp

(
− (L2k ∧ L2k−1)γ(ε)2

8

)
where the first equality follows from property 3 of the Markovian coupling, and the final inequality follows from

(56). As shown in the proof of Theorem 1, this produces:

P
(
σ+
2k < g

(
σ+
2k−2

)
− γ(ε)

∣∣σ+
2k−2 ≥ t1 − ε, Ak,j

)
≤ 4 exp

(
− (L2k ∧ L2k−1)γ(ε)2

8

)
P
(
σ+
2k < t1 − ε

∣∣σ+
2k−2 ≥ t1 − ε, Ak,j

)
≤ 4 exp

(
− (L2k ∧ L2k−1)γ(ε)2

8

)
where the second inequality follows from the first because σ+

2k < t1 − ε = g(t1 − ε) − γ(ε) implies that σ+
2k <

g(σ+
2k−2)− γ(ε) when σ+

2k−2 ≥ t1 − ε (since g is non-decreasing and g(σ+
2k−2) ≥ g(t1 − ε)). This proves (55).

Now fix any τ > 0, and choose a sufficiently large even integer K = K(ε, τ) ∈ 2N (that depends on ε and τ )

such that:

4

∞∑
m=K

2 +1

exp

(
− (L2m ∧ L2m−1)γ(ε)2

8

)
≤ τ . (57)

Note that such K exists because
∑∞
m=1 1/(2m− 1)2 ≤ 1 +

∑∞
m=2 1/(2m− 2)2 = 1 + (π2/24) < +∞, and for

sufficiently large m (depending on δ), we have:

exp

(
− (L2m ∧ L2m−1)γ(ε)2

8

)
≤ 1

(2m− 1)2
⇔ L2m ∧ L2m−1 ≥

16 log(2m− 1)

γ(ε)2
. (58)

As before, in (58), we use the assumption that Lm ≥ C(δ) log(m) for all sufficiently large m (depending on δ),

where we define the constant C(δ) as:

C(δ) ,
16

γ(ε(δ))2
> 0 . (59)

Using the continuity of probability measures, observe that:

P

 ⋂
k>K

2

{
σ+
2k ≥ t1 − ε

} ∣∣∣∣∣∣σ+
K ≥ t1 − ε, σ

−
K ≤ t0 + ε

 =
∏
k>K

2

P
(
σ+
2k ≥ t1 − ε

∣∣∣σ+
2k−2 ≥ t1 − ε, Ak,K2

)

≥
∏
k>K

2

1− 4 exp

(
− (L2k ∧ L2k−1)γ(ε)2

8

)

≥ 1− 4
∑
k>K

2

exp

(
− (L2k ∧ L2k−1)γ(ε)2

8

)

≥ 1− τ

where the first inequality follows from (55), and the final inequality follows from (57). Therefore, we have for any

k > K
2 :

P
(
σ+
2k ≥ t1 − ε

∣∣σ+
K ≥ t1 − ε, σ

−
K ≤ t0 + ε

)
≥ 1− τ . (60)
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Likewise, we can also prove mutatis mutandis that for any k > K
2 :

P
(
σ−2k ≤ t0 + ε

∣∣σ+
K ≥ t1 − ε, σ

−
K ≤ t0 + ε

)
≥ 1− τ (61)

where ε, τ , and K in (61) can be chosen to be the same as those in (60) without loss of generality.

Finally, we let E =
{
σ+
K ≥ t1 − ε, σ

−
K ≤ t0 + ε

}
, and observe that for all k > K

2 :

P
(
σ+
2k ≥ t

)
− P

(
σ−2k ≥ t

)
≥ E

[(
1
{
σ+
2k ≥ t

}
− 1

{
σ−2k ≥ t

})
1{E}

]
=
(
P
(
σ+
2k ≥ t

∣∣E)− P
(
σ−2k ≥ t

∣∣E))P(E)

≥
(
P
(
σ+
2k ≥ t1 − ε

∣∣E)− P
(
σ−2k > t0 + ε

∣∣E))P(E)

≥ (1− 2τ)P(E) > 0

where the first inequality holds because 1
{
σ+
2k ≥ t

}
− 1

{
σ−2k ≥ t

}
≥ 0 almost surely due to the monotonicity

(property 5) of our Markovian coupling, the second inequality holds because t0 + ε < t < t1 − ε (since ε > 0 is

small), and the final inequality follows from (60) and (61). As argued in the proof of Theorem 1, this illustrates

that lim supk→∞ P(T̂2k 6= σ0) < 1
2 .

Part 2: We next prove that δ ∈
(
δandor,

1
2

)
implies:

lim
k→∞

∥∥∥P+
X2k|G − P

−
X2k|G

∥∥∥
TV

= 0 G-a.s. (62)

Following the proof of Theorem 1, we can show that:

E
[∥∥∥P+

X2k|G − P
−
X2k|G

∥∥∥
TV

]
≤ L2k E

[
σ+
2k − σ

−
2k

]
. (63)

In order to bound E
[
σ+
2k − σ

−
2k

]
, we proceed as follows. Firstly, for any k ∈ N\{0}, we have:

E
[
σ+
2k − σ

−
2k

∣∣σ+
2k−2, σ

−
2k−2

]
= E

[
E
[
σ+
2k − σ

−
2k

∣∣σ+
2k−1, σ

−
2k−1

]∣∣σ+
2k−2, σ

−
2k−2

]
= E

[
g0
(
σ+
2k−1

)
− g0

(
σ−2k−1

)∣∣σ+
2k−2, σ

−
2k−2

]
(64)

where the first equality follows from the tower and Markov properties, and the second equality holds because

L2kσ2k ∼ binomial(L2k, g0(σ)) given σ2k−1 = σ. Then, recalling that g0(σ) = (σ ∗ δ)2 = (1 − 2δ)2σ2 + 2δ(1 −

2δ)σ + δ2, we can compute:

E
[
g0
(
σ+
2k−1

)∣∣σ+
2k−2, σ

−
2k−2

]
= E

[
g0
(
σ+
2k−1

)∣∣σ+
2k−2

]
= E

[
(1− 2δ)2σ+ 2

2k−1 + 2δ(1− 2δ)σ+
2k−1 + δ2

∣∣σ+
2k−2

]
= (1− 2δ)2

(
VAR

(
σ+
2k−1

∣∣σ+
2k−2

)
+ E

[
σ+
2k−1

∣∣σ+
2k−2

]2)
+ 2δ(1− 2δ)E

[
σ+
2k−1

∣∣σ+
2k−2

]
+ δ2

= (1− 2δ)2g1
(
σ+
2k−2

)2
+ 2δ(1− 2δ)g1

(
σ+
2k−2

)
+ δ2

+ (1− 2δ)2
g1
(
σ+
2k−2

)(
1− g1

(
σ+
2k−2

))
L2k−1

= g
(
σ+
2k−2

)
+ (1− 2δ)2

g1
(
σ+
2k−2

)(
1− g1

(
σ+
2k−2

))
L2k−1

(65)
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where the first equality uses property 3 of the monotone Markovian coupling, and the fourth equality uses the fact

that L2k−1σ2k−1 ∼ binomial(L2k−1, g1(σ)) given σ2k−2 = σ. Using (64) and (65), we get:

E
[
σ+
2k − σ

−
2k

∣∣σ+
2k−2, σ

−
2k−2

]
= g
(
σ+
2k−2

)
− g
(
σ−2k−2

)
+ (1− 2δ)2

(
g1
(
σ+
2k−2

)(
1− g1

(
σ+
2k−2

))
− g1

(
σ−2k−2

)(
1− g1

(
σ−2k−2

))
L2k−1

)

= g
(
σ+
2k−2

)
− g
(
σ−2k−2

)
+ (1− 2δ)2

g1(σ+
2k−2

)
− g1

(
σ−2k−2

)
−
(
g1
(
σ+
2k−2

)2 − g1(σ−2k−2)2)
L2k−1


≤ g
(
σ+
2k−2

)
− g
(
σ−2k−2

)
+ (1− 2δ)2

(
g1
(
σ+
2k−2

)
− g1

(
σ−2k−2

)
L2k−1

)

≤
(
D(δ) +

2(1− δ)(1− 2δ)3

L2k−1

)(
σ+
2k−2 − σ

−
2k−2

)
≤
(
D(δ) +

2

L2k−1

)(
σ+
2k−2 − σ

−
2k−2

)
(66)

where the first inequality holds because g1
(
σ+
2k−2

)2− g1(σ−2k−2)2 ≥ 0 almost surely (since g1 is non-negative and

non-decreasing by (46), and σ+
2k−2 ≥ σ−2k−2 almost surely by property 5 of the monotone Markovian coupling),

the second inequality holds because σ+
2k−2 ≥ σ

−
2k−2 almost surely and g and g1 have Lipschitz constants D(δ) and

maxσ∈[0,1] g
′
1(σ) = 2(1 − δ)(1 − 2δ) respectively, and the final inequality holds because (1 − δ)(1 − 2δ)3 ≤ 1.

Then, as in the proof of Theorem 1, we can take expectations in (66) to obtain:

0 ≤ E
[
σ+
2k − σ

−
2k

]
≤
(
D(δ) +

2

L2k−1

)
E
[
σ+
2k−2 − σ

−
2k−2

]
which recursively produces:

0 ≤ E
[
σ+
2k − σ

−
2k

]
≤

k∏
i=1

(
D(δ) +

2

L2i−1

)
where we use the fact that E

[
σ+
0 − σ

−
0

]
= 1.

Next, using (63) with this bound, we get:

E
[∥∥∥P+

X2k|G − P
−
X2k|G

∥∥∥
TV

]
≤ L2k

k∏
i=1

(
D(δ) +

2

L2i−1

)
. (67)

Recall that Lk = o
(
E(δ)−

k
2

)
and lim infk→∞ Lk >

2
E(δ)−D(δ) for some E(δ) ∈ (D(δ), 1) (that depends on δ).

Hence, there exists K = K(δ) ∈ N (that depends on δ) such that for all i > K, L2i−1 ≥ 2
E(δ)−D(δ) . This means

that we can further upper bound (67) as follows:

∀k > K, E
[∥∥∥P+

X2k|G − P
−
X2k|G

∥∥∥
TV

]
≤ L2k E(δ)k−K

K∏
i=1

(
D(δ) +

2

L2i−1

)
and letting k →∞ produces:

lim
k→∞

E
[∥∥∥P+

X2k|G − P
−
X2k|G

∥∥∥
TV

]
= 0 . (68)

Finally, as in the proof of Theorem 1, ‖P+
X2k|G − P

−
X2k|G‖TV ∈ [0, 1] forms a non-increasing sequence in k for

every realization of the random DAG G, and the pointwise limit random variable, limk→∞ ‖P+
X2k|G − P

−
X2k|G‖TV ∈
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[0, 1], has mean E[limk→∞ ‖P+
X2k|G − P

−
X2k|G‖TV] = 0 due to (68) and the bounded convergence theorem. There-

fore, we must have (62), which completes the proof. �

We remark that when δ ∈
(
δandor,

1
2

)
and the condition lim infk→∞ Lk >

2
E(δ)−D(δ) cannot be satisfied by any

E(δ), if Lk satisfies the condition of Proposition 2 (in subsection II-C), then part 2 of Proposition 2 still yields the

desired converse result. Finally, the next proposition demonstrates that the Markov chain {σ2k : k ∈ N} converges

almost surely when δ ∈
(
δandor,

1
2

)
, Lk = ω(log(k)), all processing functions at even levels are the AND rule, and

all processing functions at odd levels are the OR rule.

Proposition 6 (AND-OR Random DAG Model Almost Sure Convergence). If δ ∈
(
δandor,

1
2

)
and Lk = ω(log(k)),

then limk→∞ σ2k = t almost surely.

Proposition 6 is proved in Appendix F, and much like Proposition 5, it can also be construed as a “weak”

impossibility result.

V. DETERMINISTIC QUASI-POLYNOMIAL TIME AND RANDOMIZED POLYLOGARITHMIC TIME

CONSTRUCTIONS OF DAGS WHERE BROADCASTING IS POSSIBLE

In this section, we prove Theorem 3 by constructing deterministic bounded degree DAGs with Lk = Θ(log(k))

where broadcasting is possible. As mentioned in subsection II-B, our construction is based on d-regular bipartite

lossless (d−6/5, d − 2d4/5)-expander graphs. So, we first verify that such graphs actually exist. Recall that we

represent a d-regular bipartite graph as B = (U, V,E), where U and V are disjoint sets of vertices and E is the set

of undirected edges. The next proposition is a specialization of [45, Proposition 1, Appendix II] which illustrates

that randomly generated regular bipartite graphs are good expanders with high probability.

Proposition 7 (Random Expander Graph [34, Lemma 1], [45, Proposition 1, Appendix II]). Fix any fraction

α ∈ (0, 1) and any degree d ∈ N\{0}. Then, for every sufficiently large n (depending on α and d), the randomly

generated d-regular bipartite graph B = (U, V,E) with |U | = |V | = n satisfies:

P
(
∀S ⊆ U with |S| = αn, |Γ(S)| ≥ n

(
1− (1− α)d −

√
2dαH(α)

))
> 1−

(
n

nα

)
exp(−nH(α))

≥ 1− e

2π
√
α(1− α)n

where H(α) , −α log(α)− (1− α) log(1− α) is the binary entropy function.

We note that the probability measure P in Proposition 7 is defined by the random d-regular bipartite graph B,

whose vertices U and V are fixed and edges E are random. In particular, B is generated as follows (cf. configuration

model in [46, Section 2.4]):

1) Fix a complete bipartite graph B̂ = (Û , V̂ , Ê) such that |Û | = |V̂ | = dn.

2) Randomly and uniformly select a perfect matching M ⊆ Ê in B̂.

3) Group sets of d consecutive vertices in Û , respectively V̂ , to generate a set of n super-vertices U , respectively

V .
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4) This yields a random d-regular bipartite graph B = (U, V,E), where every edge in E is an edge between

super-vertices in M.

Note that we allow for the possibility that two vertices in B have multiple edges between them. The first inequality

in Proposition 7 is proved in [45, Appendix II]. On the other hand, the second inequality in Proposition 7 is a

straightforward consequence of estimating the binomial coefficient using precise Stirling’s formula bounds, cf. [47,

Chapter II, Section 9, Equation (9.15)]:

∀n ∈ N\{0},
√

2πn
(n
e

)n
≤ n! ≤ e

√
n
(n
e

)n
. (69)

The second inequality portrays that the probability in Proposition 7 tends to 1 as n→∞. Moreover, strictly speaking,

αn must be an integer, but we will neglect this detail throughout our exposition for simplicity (as in subsection

II-B). We next use this proposition to establish the existence of pertinent regular bipartite lossless expander graphs.

Corollary 2 (Lossless Expander Graph). Fix any ε ∈ (0, 1) and any degree d ≥
(
2
ε

)5
. Then, for every sufficient

large n (depending on d), the randomly generated d-regular bipartite graph B = (U, V,E) with |U | = |V | = n

satisfies:

P
(
∀S ⊆ U with |S| = n

d6/5
, |Γ(S)| ≥ (1− ε)d|S|

)
> 1− e

2π
√
d−6/5

(
1− d−6/5

)
n
.

Hence, for every sufficient large n (depending on d), there exists a d-regular bipartite lossless (d−6/5, (1 − ε)d)-

expander graph B = (U, V,E) with |U | = |V | = n such that for every subset of vertices S ⊆ U , we have:

|S| = n

d6/5
⇒ |Γ(S)| ≥ (1− ε)d|S| = (1− ε) n

d1/5
.

Corollary 2 is proved in Appendix G. We remark that explicit constructions of bipartite lossless expander graphs

B where only the vertices in U are d-regular can be found in the literature, cf. [36], but we require the vertices in

V to be d-regular in our construction.

As we discussed in subsection II-B, d-regular bipartite lossless expander graphs can be concatenated to produce

a DAG where broadcasting is possible. To formally establish this, we first argue that a single d-regular bipartite

lossless expander graph, when perceived as two successive layers of a deterministic DAG, exhibits a “one-step

broadcasting” property. Fix any crossover probability δ ∈
(
0, 12
)
, and choose any sufficiently large odd degree

d = d(δ) (that depends on δ) such that (15) (reproduced below) holds:

8

d1/5
+ d6/5 exp

(
− (1− 2δ)2(d− 4)2

8d

)
≤ 1

2
(70)

where the left hand side tends to 0 as d → ∞ for fixed δ, and the minimum value of d satisfying this inequality

increases as δ → 1
2

−. Then, Corollary 2 demonstrates that for any sufficiently large n (depending on d), there exists

a d-regular bipartite lossless (d−6/5, d − 2d4/5)-expander graph B = (U, V,E) with |U | = |V | = n such that the

expansion property in (14) (reproduced below) holds:

∀S ⊆ U, |S| = n

d6/5
⇒ |Γ(S)| ≥ (1− ε) n

d1/5
with ε =

2

d1/5
. (71)

Note that in the statements of Lemma 1 (see below) and Theorem 3, we assume the existence of such d-regular

bipartite lossless (d−6/5, d − 2d4/5)-expander graphs without proof due to Corollary 2. Let us assume that the



32 IEEE TRANSACTIONS ON INFORMATION THEORY

undirected edges in E are actually all directed from U to V , and construe B as two consecutive levels of a

deterministic DAG upon which we are broadcasting (as in subsection II-B). In particular, let the Bernoulli random

variable corresponding to any vertex v ∈ U ∪ V be denoted by Xv , and suppose each (directed) edge of B is

an independent BSC(δ) as before. Furthermore, let the Boolean processing function at each vertex in V be the

majority rule, which is always well-defined as d is odd. This defines a Bayesian network on B, and the ensuing

lemma establishes the feasibility of “one-step broadcasting” down this Bayesian network.

Lemma 1 (One-Step Broadcasting in Expander DAG). For any noise level δ ∈
(
0, 12
)
, any sufficiently large odd

degree d = d(δ) ≥ 5 (that depends on δ) satisfying (15), and any sufficiently large n (depending on d), consider

the Bayesian network, with independent BSC(δ) noise on the edges and majority Boolean processing functions at

the vertices, defined above on a d-regular bipartite lossless (d−6/5, d−2d4/5)-expander graph B = (U, V,E) such

that |U | = |V | = n. Then, for every input distribution on {Xu : u ∈ U}, we have:

P

(∑
v∈V

Xv >
n

d6/5

∣∣∣∣∣∑
u∈U

Xu ≤
n

d6/5

)
≤ exp

(
− n

2d12/5

)
.

Proof. We begin with some useful definitions. For any vertex v ∈ V , let pa(v) denote the multiset of vertices in

U that are parents of v. (Note that pa(v) is a multiset because there may be multiple edges between two vertices,

and |pa(v)| = d.) Let S , {u ∈ U : Xu = 1} ⊆ U denote the subset of vertices in U that take value 1, which

implies that |S| =
∑
u∈U Xu. Furthermore, for any vertex v ∈ V , let Nv ,

∑
u∈pa(v)Xu denote the number of

parents of v in S that have value 1 (counting with repetition). Finally, let T , {v ∈ V : Nv ≥ t} ⊆ V denote the

subset of vertices in V with at least t ∈ N\{0, 1} parents in S. We will assign an appropriate value to t below.

Suppose |S| =
∑
u∈U Xu ≤ n/d6/5 (which is the event we condition upon in the lemma statement). Consider

the case where |S| = n/d6/5. Then, applying the expansion property in (14) yields (the “vertex counting” bound):

|Γ(S)| = |T |+ |Γ(S)\T | ≥ (1− ε) n

d1/5
(72)

where T ⊆ Γ(S) by definition of T , and ε = 2d−1/5. Moreover, we also have the “edge counting” bound:

t|T |+ |Γ(S)\T | ≤ d|S| = n

d1/5
(73)

since each vertex in T has at least t edges from S, each vertex in Γ(S)\T has at least 1 edge from S, and the total

number of outgoing edges from S is d|S|. Combining (72) and (73) produces:

(1− ε) n

d1/5
− |T | ≤ |Γ(S)\T | ≤ n

d1/5
− t|T |

which implies that:

|T | ≤ nε

d1/5(t− 1)
=

2n

d2/5(t− 1)
. (74)

On the other hand, in the the case where |S| < n/d6/5, if we flip the values of vertices in U\S to 1 and

subsequently increase the cardinality of S, then the cardinality of T also increases or remains the same. Hence, if

|S| =
∑
u∈U Xu ≤ n/d6/5, then (74) also holds.
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Now, for any input distribution on {Xu : u ∈ U}, observe that:

P

(∑
v∈V

Xv >
n

d6/5

∣∣∣∣∣∑
u∈U

Xu ≤
n

d6/5

)

= P

∑
v∈T

Xv +
∑

v∈V \T

Xv >
n

d6/5

∣∣∣∣∣∣ |S| ≤ n

d6/5


≤ P

 ∑
v∈V \T

Xv >
n

d6/5
− |T |

∣∣∣∣∣∣ |S| ≤ n

d6/5


≤ P

 ∑
v∈V \T

Xv >
n

d6/5
− 2n

d2/5(t− 1)

∣∣∣∣∣∣ |S| ≤ n

d6/5


= E

P
 ∑
v∈V \T

Xv >
n

d6/5
− 2n

d2/5(t− 1)

∣∣∣∣∣∣V \T, {Nv : v ∈ V \T}

∣∣∣∣∣∣|S| ≤ n

d6/5

 (75)

≤ E

P
 ∑
v∈V \T

Xv >
n

d6/5
− 2n

d2/5(t− 1)

∣∣∣∣∣∣V \T, {∀v ∈ V \T, Nv = t− 1}

∣∣∣∣∣∣|S| ≤ n

d6/5


= E

[
P
(
binomial(|V \T |,P(Xv = 1|Nv = t− 1)) >

n

d6/5
− 2n

d2/5(t− 1)

∣∣∣∣V \T)∣∣∣∣|S| ≤ n

d6/5

]
≤ P

(
binomial(n,P(Xv = 1|Nv = t− 1)) >

n

d6/5
− 2n

d2/5(t− 1)

)
≤ P

(
binomial

(
n, exp

(
−2d(1− 2δ)2

(
1

2
− t− 1

d

)2))
>

n

d6/5
− 2n

d2/5(t− 1)

)
(76)

where the steps hold due to the following reasons:

1) In the first equality, T and V \T are random sets.

2) The second inequality holds because Xv ∈ {0, 1} for all v ∈ T .

3) The third inequality follows from (74).

4) The fourth equality uses the fact that {Xv : v ∈ V \T} are conditionally independent of the event {|S| ≤

n/d6/5} given V \T and {Nv : v ∈ V \T}, and the conditional expectation in the fourth equality is over the

random set V \T and the random variables {Nv : v ∈ V \T}.

5) The fifth inequality holds because Nv ≤ t− 1 for every v ∈ V \T , and a straightforward monotone coupling

argument shows that the distribution PXv|Nv=t−1 stochastically dominates the distribution PXv|Nv=k for any

k < t− 1. Furthermore, the conditional expectation in the fifth inequality is only over the random set V \T .

6) The sixth equality holds because {Xv : v ∈ V \T} are conditionally i.i.d. given V \T and the event {∀v ∈

V \T, Nv = t− 1}.

7) The seventh inequality holds because |V \T | ≤ n, and a simple monotone coupling argument establishes that

a binomial(n,P(Xv = 1|Nv = t− 1)) random variable stochastically dominates a binomial(|V \T |,P(Xv =

1|Nv = t− 1)) random variable.

8) The eighth inequality holds because a binomial(n, p) random variable stochastically dominates a binomial(n, q)
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random variable when p ≥ q (again via a monotone coupling argument), and Hoeffding’s inequality yields:

P(Xv = 1|Nv = t− 1) = P

t−1∑
i=1

Zi +

d−t+1∑
j=1

Yj >
d

2


≤ exp

(
−2d(1− 2δ)2

(
1

2
− t− 1

d

)2)
(77)

where Zi are i.i.d. Bernoulli(1 − δ), Yj are i.i.d. Bernoulli(δ), {Zi : i ∈ {1, . . . , t − 1}} and {Yj : j ∈

{1, . . . , d − t + 1}} are independent, we assume that t−1
d < 1

2 , and we use the fact that Xv is the majority

of its parents’ values after passing them through independent BSC(δ)’s.

Finally, applying Hoeffding’s inequality once more to (76) yields:

P

(∑
v∈V

Xv >
n

d6/5

∣∣∣∣∣∑
u∈U

Xu ≤
n

d6/5

)

≤ exp

−2n

(
1

d6/5
− 2

d2/5(t− 1)
− exp

(
−2d(1− 2δ)2

(
1

2
− t− 1

d

)2))2
 (78)

where we assume that:

1

d6/5
− 2

d2/5(t− 1)
> exp

(
−2d(1− 2δ)2

(
1

2
− t− 1

d

)2)
. (79)

Next, let t = 1 +
⌈
d
4

⌉
so that:12

1

4
≤ t− 1

d
≤ 1

4
+

1

d
.

Since we have assumed in the lemma statement that d ≥ 5, the upper bound on t−1
d illustrates that t−1d < 1

2 , which

ensures that (77) is valid. Furthermore, using both the upper and lower bounds on t−1
d , notice that (79) is also valid

if we have:

1

d6/5
− 8

d7/5
> exp

(
− (1− 2δ)2(d− 4)2

8d

)
⇔ 1 >

8

d1/5
+ d6/5 exp

(
− (1− 2δ)2(d− 4)2

8d

)
which is true by our assumption in (15). In fact, a simple computation shows that:

1

d6/5
− 2

d2/5(t− 1)
− exp

(
−2d(1− 2δ)2

(
1

2
− t− 1

d

)2)

≥ 1

d6/5
− 8

d7/5
− exp

(
− (1− 2δ)2(d− 4)2

8d

)
≥ 1

2d6/5

where the second inequality is equivalent to (15). Therefore, we have from (78):

P

(∑
v∈V

Xv >
n

d6/5

∣∣∣∣∣∑
u∈U

Xu ≤
n

d6/5

)
≤ exp

(
− n

2d12/5

)
which completes the proof. �

Intuitively, Lemma 1 parallels (34) in the proof of Theorem 1 in section III. The lemma portrays that if the

proportion of 1’s is small in a given layer, then it remains small in the next layer with high probability when the

edges between the layers are defined by a regular bipartite lossless expander graph. We next prove Theorem 3

12The choice t is arbitrary and we could have chosen any t such that 0 < t−1
d

< 1
2

.
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by constructing deterministic bounded degree DAGs with Lk = Θ(log(k)) and showing using Lemma 1 that the

root bit can be reconstructed using the majority decision rule Ŝk = 1
{
σk ≥ 1

2

}
. In particular, we delineate two

simple algorithms to construct the constituent expander graphs of such DAGs: a deterministic quasi-polynomial

time algorithm and a randomized polylogarithmic time algorithm.

Proof of Theorem 3. Fix any δ ∈
(
0, 12
)
, any sufficiently large d = d(δ) ≥ 5 satisfying (15), and any sufficiently

large constant N = N(δ) ∈ N such that M = exp(N/(4d12/5)) ≥ 2 and for every n ≥ N , there exists a d-regular

bipartite lossless (d−6/5, d − 2d4/5)-expander graph Bn = (Un, Vn, En) with |Un| = |Vn| = n that satisfies (14)

for every subset S ⊆ Un. Furthermore, fix the level sizes so that L0 = 1, L1 = N , and {Lk : k ∈ N\{0, 1}}

are defined by (16). It is straightforward to verify that Lk = Θ(log(k)) (for fixed δ). The remainder of the proof

is split into three parts. We first present two simple algorithms to generate the constituent expander graphs of the

deterministic DAG described in the theorem statement, and then argue that broadcasting is possible on the resulting

DAG.

Deterministic Quasi-Polynomial Time Algorithm: We will require two useful facts:

1) For fixed sets of labeled vertices Un and Vn with |Un| = |Vn| = n, the total number of d-regular bipartite

graphs Bn = (Un, Vn, En) is given by the multinomial coefficient:(
nd

d, d, . . . , d

)
=

(nd)!

(d!)n
≤ nnd = exp(dn log(n))

where we allow multiple edges between two vertices, and the inequality follows from e.g. [48, Lemma 2.2].

To see this, first attach d edges to each vertex in Un, and then successively count the number of ways to

choose d edges for each vertex in Vn.13

2) Checking whether a given d-regular bipartite graph Bn = (Un, Vn, En) with |Un| = |Vn| = n satisfies (14)

for all subsets S ⊆ Un using brute force takes O(n2 exp(nH(d−6/5))) time. To see this, note that there are(
n

nd−6/5

)
≤ exp(nH(d−6/5)) (cf. [48, Lemma 2.2]) subsets S ⊆ Un with |S| = nd−6/5, and verifying (14)

takes O(n2) time for each such subset S.

Consider any level M2m−1

< r ≤ M2m with some associated m ∈ N\{0}. We show that the distinct expander

graphs making up levels 0, . . . , r of the deterministic DAG in the theorem statement can be constructed in quasi-

polynomial time in r. In particular, we need to generate m+1 d-regular bipartite lossless (d−6/5, d−2d4/5)-expander

graphs BN , B2N , . . . , B2mN . So, for each i ∈ {0, . . . ,m}, we generate B2iN by exhaustively enumerating over

the all possible d-regular bipartite graphs with |U2iN | = |V2iN | = 2iN until we find one that satisfies the desired

expansion condition. (Note that such expander graphs are guaranteed to exist due to Corollary 2.) Using the

aforementioned facts 1 and 2, generating all m+ 1 desired graphs takes running time:

O((m+ 1)L2
r exp(LrH(d−6/5)) exp(dLr log(Lr))) = O(exp(Θ(log(r) log log(r)))) (80)

13Since the vertices in Un and Vn are labeled, the total number of non-isomorphic d-regular bipartite graphs is smaller than (nd)!/(d!)n.

However, it is larger than (nd)!/((2n)!(d!)n), and the quasi-polynomial nature of our running time does not change with a more careful

calculation of the number of non-isomorphic d-regular bipartite graphs.
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where we use the facts that Lr = 2mN = Θ(log(r)) and m = Θ(log log(r)) since M2m−1

< r ≤ M2m .14

Therefore, we can construct the constituent expander graphs in levels 0, . . . , r of our DAG in quasi-polynomial

time with brute force. Note that we neglect details of how intermediate graphs are represented in our analysis.

Moreover, we are not concerned with optimizing the quasi-polynomial running time.

Randomized Polylogarithmic Time Algorithm: We will require another useful fact:

3) A random d-regular bipartite graph B = (Un, Vn,E) with |Un| = |Vn| = n can be generated according to

the distribution described after Proposition 7 in O(n) time. To see this, as outlined after Proposition 7, we

must first generate a uniform random perfect matching in a complete bipartite graph B̂ = (Ûdn, V̂dn, Ê)

such that |Ûdn| = |V̂dn| = dn. Observe that the edges in a perfect matching can be written as a permutation

of the sequence (1, 2, . . . , dn), because each index and its corresponding value in the (permuted) sequence

encodes an edge. So, perfect matchings in B̂ are in bijective correspondence with permutations of the sequence

(1, 2, . . . , dn). Therefore, we can generate a uniform random perfect matching by generating a uniform random

permutation of (1, 2, . . . , dn) in O(dn), or equivalently O(n), time using the Fisher-Yates-Durstenfeld-Knuth

shuffle, cf. [49, Section 3.4.2, p.145] and the references therein. (Note that we do not take the running time

of the random number generation process into account.) All that remains is to create super-vertices, which

can also be done in O(n) time.

Suppose that the constant N = N(δ) also satisfies the additional condition:

N >
e2(

6− 4
√

2
)
π2d−6/5

(
1− d−6/5

) (81)

where N still depends only on δ (through the dependence of d on δ). Consider any level M2m−1

< r ≤ M2m

with some associated m ∈ N\{0}. We present a Monte Carlo algorithm that constructs the distinct expander

graphs making up levels 0, . . . , r of the deterministic DAG in the theorem statement with strictly positive success

probability (that depends on δ but not on r) in polylogarithmic time in r. As in the previous algorithm, we ideally

want to output m + 1 d-regular bipartite lossless (d−6/5, d − 2d4/5)-expander graphs BN , B2N , . . . , B2mN . So,

using the aforementioned fact 3, for each i ∈ {0, . . . ,m}, we can generate a random d-regular bipartite graph

B = (U2iN , V2iN ,E) with |U2iN | = |V2iN | = 2iN according to the distribution in Corollary 2 in at most O(2mN)

time. The total running time of the algorithm is thus:

O((m+ 1)2mN) = O(log(r) log log(r)) (82)

since 2mN = Θ(log(r)) and m = Θ(log log(r)) as before. Furthermore, by Corollary 2, the outputted random

graphs satisfy (14) for all relevant subsets of vertices with probability at least:

m∏
i=0

1− e

2π
√
d−6/5

(
1− d−6/5

)
2iN

 ≥ 1− e

2π
√
d−6/5

(
1− d−6/5

)
N

m∑
i=0

(
1√
2

)i

14In our descriptions and analyses of the two algorithms, the big-O and big-Θ asymptotic notation conceal constants that depend on the fixed

crossover probability parameter δ.
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≥ 1− e

2π
√
d−6/5

(
1− d−6/5

)
N

∞∑
i=0

(
1√
2

)i
= 1− e(

2−
√

2
)
π
√
d−6/5

(
1− d−6/5

)
N

> 0 (83)

where the first inequality is easily proved by induction, and the quantity in the final equality is strictly positive by

assumption (81). Hence, our Monte Carlo algorithm constructs the constituent expander graphs in levels 0, . . . , r of

our DAG with strictly positive success probability in polylogarithmic time. Once again, note that we neglect details

of how intermediate graphs are represented in our analysis. Moreover, we do not account for the running time of

actually printing out levels 0, . . . , r of the DAG.

Finally, the aforementioned fact 2 conveys that testing whether the m+ 1 d-regular random bipartite graphs our

Monte Carlo algorithm generates are lossless (d−6/5, d− 2d4/5)-expander graphs takes polynomial running time:

O
(

(m+ 1)22mN2 exp(2mNH(d−6/5)
)

= O
(

log log(r) log(r)2r8d
12/5H(d−6/5)

)
(84)

where we use the fact that 2mN < 2N log(r)/log(M) = 8d12/5 log(r) since r > M2m−1

and log(M) =

N/(4d12/5). Therefore, by repeatedly running our Monte Carlo algorithm until a valid set of m + 1 d-regular

bipartite lossless (d−6/5, d − 2d4/5)-expander graphs is produced, we obtain a Las Vegas algorithm that runs in

expected polynomial time O
(

log log(r) log(r)2r8d
12/5H(d−6/5)

)
.

Feasibility of Broadcasting: We now prove that broadcasting is possible on the Bayesian network defined on

the DAG constructed in the theorem statement. As before, we follow the proof of Theorem 1 in section III. So, we

first construct a monotone Markovian coupling {(X−k , X
+
k ) : k ∈ N} between the Markov chains {X+

k : k ∈ N}

and {X−k : k ∈ N} (which denote versions of the Markov chain {Xk : k ∈ N} initialized at X+
0 = 1 and X−0 = 0,

respectively) such that along any edge BSC of the deterministic DAG, say (Xk,j , Xk+1,i), X+
k,j and X−k,j are either

both copied with probability 1− 2δ, or a shared independent Bernoulli
(
1
2

)
bit is produced with probability 2δ that

becomes the value of both X+
k+1,i and X−k+1,i. This coupling satisfies the three properties delineated at the outset of

the proof of Theorem 1 in section III. Furthermore, let σ+
k and σ−k for k ∈ N be random variables with distributions

Pσk|σ0=1 and Pσk|σ0=0, respectively (which means that σ+
0 = 1 and σ−0 = 0).

Notice that Lemma 1 implies the following result:

P
(
σ−k ≤

1

d6/5

∣∣∣∣σ−k−1 ≤ 1

d6/5

)
≥ 1− exp

(
− Lk−1

2d12/5

)
(85)

for every pair of consecutive levels k − 1 and k such that Lk = Lk−1. Moreover, for every pair of consecutive

levels k − 1 and k such that Lk = 2Lk−1, we have:

P
(
σ−k >

1

d6/5

∣∣∣∣σ−k−1 ≤ 1

d6/5

)

= P

 1

Lk−1

Lk−1∑
i=0

X−k,i +
1

Lk−1

Lk∑
j=Lk−1+1

X−k,j >
2

d6/5

∣∣∣∣∣∣σ−k−1 ≤ 1

d6/5


= P

 1

Lk−1

Lk−1∑
i=0

X−k,i >
1

d6/5

∪
 1

Lk−1

Lk∑
j=Lk−1+1

X−k,j >
1

d6/5


∣∣∣∣∣∣σ−k−1 ≤ 1

d6/5


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≤ P

 1

Lk−1

Lk−1∑
i=0

X−k,i >
1

d6/5

∣∣∣∣∣∣σ−k−1 ≤ 1

d6/5

+ P

 1

Lk−1

Lk∑
j=Lk−1+1

X−k,j >
1

d6/5

∣∣∣∣∣∣σ−k−1 ≤ 1

d6/5


≤ 2 exp

(
− Lk−1

2d12/5

)
where the first inequality follows from the union bound, and the final inequality follows from Lemma 1 and the

construction of our DAG (recall that two separate d-regular bipartite lossless (d−6/5, d − 2d4/5)-expander graphs

make up the edges between Xk−1 and X1
k , and between Xk−1 and X2

k , respectively). This implies that:

P
(
σ−k ≤

1

d6/5

∣∣∣∣σ−k−1 ≤ 1

d6/5

)
≥ 1− 2 exp

(
− Lk−1

2d12/5

)
(86)

for every pair of consecutive levels k − 1 and k such that Lk = 2Lk−1, as well as for every pair of consecutive

levels k− 1 and k such that Lk = Lk−1 (by slackening the bound in (85)). Hence, the bound in (86) holds for all

levels k ≥ 2.

Now fix any τ > 0, and choose a sufficiently large value K = K(δ, τ) ∈ N (that depends on δ and τ ) such that:

2

∞∑
k=K+1

exp

(
− Lk−1

2d12/5

)
≤ τ . (87)

Note that such K exists because 2
∑∞
k=1 1/k2 = π2/3 < +∞, and for every m ∈ N and every Mb2

m−1c < k ≤

M2m , we have:

exp

(
− Lk

2d12/5

)
≤ 1

k2
⇔ k ≤ exp

(
2mN

4d12/5

)
= M2m

where the right hand side holds due to the construction of our deterministic DAG. Using the continuity of probability

measures, observe that:

P

( ⋂
k>K

{
σ−k ≤

1

d6/5

} ∣∣∣∣∣σ+
K ≥ 1− 1

d6/5
, σ−K ≤

1

d6/5

)
=
∏
k>K

P
(
σ−k ≤

1

d6/5

∣∣∣∣σ−k−1 ≤ 1

d6/5
, Ak

)

≥
∏
k>K

1− 2 exp

(
− Lk−1

2d12/5

)

≥ 1− 2
∑
k>K

exp

(
− Lk−1

2d12/5

)
≥ 1− τ

where Ak for k > K is the non-zero probability event defined as:

Ak ,


{
σ+
K ≥ 1− 1

d6/5

}
, k = K + 1{

σ−k−2 ≤
1

d6/5
, . . . , σ−K ≤

1
d6/5

}
∩
{
σ+
K ≥ 1− 1

d6/5

}
, k ≥ K + 2

,

the first inequality follows from (86), and the final inequality follows from (87). When using (86) in the calculation

above, we can neglect the effect of the conditioning event Ak, because a careful perusal of the proof of Lemma

1 (which yields (86) as a consequence) shows that (86) continues to hold when we condition on events like Ak.

Indeed, in step (75) of the proof, the random variables {Xv : v ∈ V \T} are conditionally independent of the σ-

algebra generated by random variables in previous layers of the DAG given V \T and {Nv : v ∈ V \T}. Moreover,
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this observation extends appropriately to the current Markovian coupling setting. We have omitted these details

from Lemma 1 for the sake of clarify. Therefore, we have for any k > K:

P
(
σ−k ≤

1

d6/5

∣∣∣∣σ+
K ≥ 1− 1

d6/5
, σ−K ≤

1

d6/5

)
≥ 1− τ . (88)

Likewise, due to the symmetry of the role of 0’s and 1’s in our deterministic DAG model, we can also prove mutatis

mutandis that for any k > K:

P
(
σ+
k ≥ 1− 1

d6/5

∣∣∣∣σ+
K ≥ 1− 1

d6/5
, σ−K ≤

1

d6/5

)
≥ 1− τ (89)

where τ and K in (89) can be chosen to be the same as those in (88) without loss of generality.

Finally, define the event E =
{
σ+
K ≥ 1− 1

d6/5
, σ−K ≤

1
d6/5

}
, and observe that for all k > K:

P
(
σ+
k ≥

1

2

)
− P

(
σ−k ≥

1

2

)
≥ E

[(
1

{
σ+
k ≥

1

2

}
− 1

{
σ−k ≥

1

2

})
1{E}

]
=

(
P
(
σ+
k ≥

1

2

∣∣∣∣E)− P
(
σ−k ≥

1

2

∣∣∣∣E))P(E)

≥
(
P
(
σ+
k ≥ 1− 1

d6/5

∣∣∣∣E)− P
(
σ−k >

1

d6/5

∣∣∣∣E))P(E)

≥ (1− 2τ)P(E) > 0

where the first inequality holds because 1
{
σ+
k ≥

1
2

}
− 1

{
σ−k ≥

1
2

}
≥ 0 almost surely due to the monotonicity of

our Markovian coupling, the second inequality holds because 1
d6/5

< 1
2 < 1 − 1

d6/5
(since d ≥ 5), and the final

inequality follows from (88) and (89). As argued in the proof of Theorem 1 in section III, this illustrates that

lim supk→∞ P(Ŝk 6= X0) < 1
2 , which completes the proof. �

VI. CONCLUSION

To conclude, we recapitulate the main contributions of this work. For random DAG models with indegree d ≥ 3,

we considered the intuitively reasonable setting where all Boolean processing functions are the majority rule. We

proved in Theorem 1 that reconstruction of the root bit for this model is possible using the majority decision rule

when δ < δmaj and Lk = Ω(log(k)), and impossible using the ML decision rule in all but a zero measure set of

DAGs when δ > δmaj and Lk is sub-exponential. On the other hand, when the indegree d = 2 so that the choices

of Boolean processing functions are unclear, we derived a similar phase transition in Theorem 2 for random DAG

models with AND processing functions at all even levels and OR processing functions at all odd levels. These main

results on random DAG models established the existence of deterministic DAGs where broadcasting is possible via

the probabilistic method. For example, we conveyed in Corollary 1 that for any indegree d ≥ 3, any noise level

δ < δmaj, and Lk = Θ(log(k)), there exists a deterministic DAG with all majority processing functions such that

reconstruction of the root bit is possible. In fact, Proposition 2 showed that the scaling Lk = Θ(log(k)) is optimal

for such DAGs where broadcasting is possible. Finally, for any δ ∈
(
0, 12
)

and any sufficiently large bounded

indegrees and outdegrees, we constructed explicit deterministic DAGs with Lk = Θ(log(k)) and all majority

processing functions such that broadcasting is possible in Theorem 3. Our construction utilized regular bipartite

lossless expander graphs between successive layers of the DAGs, and we showed that the constituent expander
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graphs can be generated in either deterministic quasi-polynomial time or randomized polylogarithmic time in the

number of levels.

We close our discussion with a brief list of open problems that could serve as compelling directions for future

research:

1) We conjectured in subsection II-A that in the random DAG model with Lk = O(log(k)) and fixed d ≥ 3,

reconstruction is impossible for all choices of Boolean processing functions when δ ≥ δmaj. Naturally, the

analogous question for d = 2 is also open. Based on the reliable computation literature (see the discussion in

II-A), we can conjecture that majority processing functions are optimal for odd d ≥ 3, and alternating levels

of AND and OR processing is optimal for d = 2, but it is not obvious which processing functions are optimal

for general even d ≥ 4.

2) We provided some evidence for the previous conjecture in the odd d ≥ 3 case in part 2 of Proposition 1. A

potentially simpler open question is to extend the proof of part 2 of Proposition 1 in Appendix A to show the

impossibility of reconstruction using two (or more) vertices in the odd d ≥ 3 case regardless of the choices

of Boolean processing functions.

3) It is unknown whether a result similar to part 2 of Proposition 1 holds for even d ≥ 2. For the d = 2 setting,

a promising direction is to try and exploit the potential function contraction approach in [32] instead of the

TV distance contraction approach in [28], [29].

4) As mentioned in subsection II-B, it is an open problem to find a deterministic polynomial time algorithm

to construct deterministic DAGs with sufficiently large d and Lk = Θ(log(k)) given some δ for which

broadcasting is possible. Indeed, the deterministic algorithm in Theorem 3 takes quasi-polynomial time.

5) As indicated above, for fixed δ, Theorem 3 can only construct deterministic DAGs with sufficiently large d

such that broadcasting is possible. However, Corollary 1 elucidates that such deterministic DAGs exist for

every d ≥ 3 as long as δ < δmaj. It is an open problem to efficiently construct deterministic DAGs with

Lk = Θ(log(k)) for arbitrary d ≥ 3 and δ < δmaj, or d = 2 and δ < δandor, such that broadcasting is possible.

APPENDIX A

PROOF OF PROPOSITION 1

Proof. In this proof, we assume familiarity with the development and notation in section III and the proof of

Theorem 1.

Part 1: We first prove part 1. Observe that for any k ∈ N\{0}:

P(Xk,0 6= X0,0) =
1

2
P
(
X+
k,0 = 0

)
+

1

2
P
(
X−k,0 = 1

)
=

1

2
E
[
P
(
X+
k,0 = 0

∣∣∣σ+
k

)]
+

1

2
E
[
P
(
X−k,0 = 1

∣∣∣σ−k )]
=

1

2
E
[
1− σ+

k

]
+

1

2
E
[
σ−k
]

=
1

2

(
1− E

[
σ+
k − σ

−
k

])
(90)
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where the third equality holds because Xk,0 ∼ Bernoulli(σ) given σk = σ. To see this, recall the relation (3) from

subsection I-C. Using this relation, it is straightforward to verify that Xk is conditionally independent of X0,0 given

σk. Moreover, the conditional distribution PXk|σk
can be computed using (3), and this yields the desired conditional

distribution PXk,0|σk
mentioned above. (We omit these calculations because it is intuitively obvious that random

bits at level k can be generated by first generating σk, then setting a uniformly and randomly chosen subset of

vertices in Xk of size Lkσk to be 1, and finally setting the remaining vertices in Xk to be 0.)

Due to (90), it suffices to prove that lim infk→∞ E
[
σ+
k − σ

−
k

]
> 0. To this end, recall from the proof of Theorem 1

that for any sufficiently small ε = ε(δ, d) > 0 (that depends on δ and d) and any τ > 0, there exists K = K(ε, τ) ∈ N

(that depends on ε and τ ) such that for all k > K, (38) and (39) (which are reproduced below) hold:

P(A|E) ≥ 1− τ (91)

P(B|E) ≥ 1− τ (92)

where the events are A =
{
σ+
k ≥ σ̂ − ε

}
, B =

{
σ−k ≤ 1− σ̂ + ε

}
, and E =

{
σ+
K ≥ σ̂ − ε, σ

−
K ≤ 1− σ̂ + ε

}
,

respectively. Now notice that for all k > K:

E
[
σ+
k − σ

−
k

]
= E

[
σ+
k − σ

−
k

∣∣E]P(E) + E
[
σ+
k − σ

−
k

∣∣Ec]P(Ec)

≥ E
[
σ+
k − σ

−
k

∣∣E]P(E)

= P(E)
(
E
[
σ+
k

∣∣E,A]P(A|E) + E
[
σ+
k

∣∣E,Ac]P(Ac|E)− E
[
σ−k
∣∣E])

≥ P(E)
(
E
[
σ+
k

∣∣E,A]P(A|E)− E
[
σ−k
∣∣E])

= P(E)
(
E
[
σ+
k

∣∣E,A]P(A|E)− E
[
σ−k
∣∣E,B]P(B|E)− E

[
σ−k
∣∣E,Bc]P(Bc|E)

)
≥ P(E)

(
E
[
σ+
k

∣∣E,A]P(A|E)− E
[
σ−k
∣∣E,B]− P(Bc|E)

)
≥ P(E)

(
E
[
σ+
k

∣∣E,A] (1− τ)− E
[
σ−k
∣∣E,B]− τ)

≥ P(E) ((σ̂ − ε)(1− τ)− (1− σ̂ + ε)− τ)

= P(E) (σ̂ − (1− σ̂)− 2ε− τ(1 + σ̂ − ε)) > 0

where the second line holds because σ+
k ≥ σ

−
k almost surely (monotonicity), the fourth line holds because σ+

k ≥ 0

almost surely, the sixth line holds because σ−k ≤ 1 almost surely, the seventh line follows from (91) and (92), the

eighth line follows from the definitions of A and B, and the quantity in the ninth line does not depend on k and

is strictly positive for sufficiently small ε and τ (which now depends on δ and d) because σ̂ > 1 − σ̂. Therefore,

lim infk→∞ E
[
σ+
k − σ

−
k

]
> 0, which completes the proof of part 1.

Part 2: We next prove part 2. We begin with a few seemingly unrelated observations that will actually be quite

useful later. Recall that Rk = infn≥k Ln for every k ∈ N and Rk = O
(
d2k
)
. Hence, there exists a constant

α = α(δ, d) > 0 (that depends on δ and d) such that for all sufficiently large k (depending on δ and d), we have:

Rk ≤ αd2k . (93)
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Let β = log(α)
6 log(d) , and define the sequence {m(k) ∈ N} (indexed by k) as:

m = m(k) ,

⌊
log
(
Rb(2k/3)−βc

)
4 log(d)

⌋
(94)

where b·c denotes the floor function, and 2k
3 ≥ β for all sufficiently large k (depending on δ and d) so that the

sequence is eventually well-defined. This sequence satisfies the following conditions:

lim
k→∞

m(k) =∞ , (95)

lim
k→∞

d2m

Rk−m
= 0 . (96)

The first limit (95) holds because limk→∞Rk = lim infk→∞ Lk =∞ (by assumption), and the second limit (96)

is true because for all sufficiently large k (depending on δ and d):

d2m

Rk−m
≤
√
Rb(2k/3)−βc

Rk−m
≤
√
Rb(2k/3)−βc

Rb(2k/3)−βc
=

1√
Rb(2k/3)−βc

where the first inequality follows from (94), and the second inequality holds because {Rk : k ∈ N} is non-decreasing,

and m ≤
(
log
(
αd(4k/3)−2β

))
/(4 log(d)) = k

3 + β for all sufficiently large k using (93) and (94).

We next establish that a small portion of the random DAG G above the vertex Xk,0 is a directed tree with high

probability. To this end, for any sufficiently large k ∈ N (depending on δ and d) such that k − m ≥ 0, let Gk

denote the (random) induced subgraph of the random DAG G consisting of all vertices in levels k−m, . . . , k that

have a path to Xk,0, where m = m(k) is defined in (94). (Note that Xk,0 always has a path to itself.) Moreover,

define the event Tk , {Gk is a directed tree}. Now, for any sufficiently large k (depending on δ and d) such that

d2r ≤ Rk−r ≤ Lk−r for every r ∈ {1, . . . ,m} (which is feasible due to (96), and ensures that the ensuing steps

are valid), notice that:

P(Tk) =

m∏
r=1

dr−1∏
s=0

(
1− s

Lk−r

)

≥
m∏
r=1

(
1− 1

Lk−r

dr−1∑
s=0

s

)

=

m∏
r=1

(
1− dr(dr − 1)

2Lk−r

)

≥ 1− 1

2

m∑
r=1

dr(dr − 1)

Lk−r

≥ 1− 1

2Rk−m

m∑
r=1

d2r

= 1− 1

2Rk−m

(
d2(d2m − 1)

d2 − 1

)
≥ 1−

(
d2

2(d2 − 1)

)
d2m

Rk−m
(97)

where the first equality holds because the edges of G are chosen randomly and independently and we must ensure

that the parents of every vertex in Gk are distinct, the second and fourth inequalities are straightforward to prove by

induction, and the third and sixth equalities follow from arithmetic and geometric series computations, respectively.
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The bound in (97) conveys that limk→∞ P(Tk) = 1 due to (96), i.e. Gk is a directed tree with high probability for

large k.

We introduce some useful notation for the remainder of this proof. First, condition on any realization of the

random DAG G such that the event Tk occurs (for sufficiently large k such that (97) holds). This also fixes the

choices of Boolean processing functions at the vertices (which may vary between vertices and be graph dependent).

For any vertex Xn,j in the tree Gk with n < k, let X̃n,j denote the output of the edge BSC(δ) with input Xn,j in

Gk. (Hence, X̃n,j is the input of a Boolean processing function at a single vertex in level n + 1 of Gk.) On the

other hand, let X̃k,0 be the output of an independent BSC(δ) channel (which is not necessarily in G) with input

Xk,0. Since Gk is a tree, the random variables {X̃n,j : Xn,j is a vertex of Gk} describe the values at the gates of

a noisy formula G̃k, where the Boolean functions in Gk correspond to d-input δ-noisy gates in G̃k (and we think

of the independent BSC errors as occurring at the gates rather than the edges). Next, in addition to conditioning on

G and Tk, we also condition on one of two realizations Xk−m = x0 or Xk−m = x1 for any x0, x1 ∈ {0, 1}Lk−m .

In particular, corresponding to any binary random variable Y in G̃k, define the following 2-tuple in [0, 1]2, cf. [28],

[29]:

λY ,
(
P(Y 6= 0|Xk−m = x0, G, Tk),P(Y 6= 1|Xk−m = x1, G, Tk)

)
. (98)

Lastly, for any constant a ∈ [0, 1], let S(a) ⊆ [0, 1]2 be the convex hull of the points {(a, a), (1 − a, 1 −

a), (0, 1), (1, 0)}, cf. [28], [29]. With these definitions, we can state a version of the pivotal lemma in [29, Lemma

2], which was proved in the d = 3 case in [28].

Lemma 2 (TV Distance Contraction in Noisy Formulae [29, Lemma 2]). If d ≥ 3 is odd and δ ≥ δmaj, then for

every possible d-input δ-noisy gate in G̃k with inputs Y1, . . . , Yd and output Y , we have:

λY1 , . . . , λYd ∈ S(a) with a ∈
[
0,

1

2

]
⇒ λY ∈ S(f(a))

where the function f : [0, 1]→ [0, 1] is defined in (10).

We remark that Lemma 2 differs from [29, Lemma 2] in the definition of the 2-tuple λY for any binary

random variable Y in the noisy formula. Since [29, Lemma 2] is used to yield the impossibility results on reliable

computation discussed in subsection II-A, [29, Section III] defines λY for this purpose as λY = (P(Y 6= X|X =

0),P(Y 6= X|X = 1)), where X is a single relevant binary input random variable of the noisy formula (and all

other inputs are fixed). In contrast, we define λY in (98) by conditioning on any two realizations of the random

variables Xk−m. This ensures that the inputs, say X̃n,j1 , . . . , X̃n,jd for some k−m ≤ n < k and j1, . . . , jd ∈ [Ln],

of every d-input δ-noisy gate in the noisy formula G̃k are conditionally independent given Xk−m, which is a crucial

property required by the proof of [29, Lemma 2]. We omit the proof of Lemma 2 because it is virtually identical

to the proof of [29, Lemma 2] in [29, Sections IV and V]. (The reader can verify that every step in the proofs in

[29, Sections IV and V] continues to hold with our definition of λY .)

Lemma 2 indeed demonstrates a strong data processing inequality style of contraction for TV distance, cf. [32,

Equation (1)]. To see this, observe that (x, y) ∈ S(a) with a ∈
[
0, 12
]

if and only if a ≤ ax+ (1−a)y ≤ 1−a and
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a ≤ ay + (1 − a)x ≤ 1 − a. This implies that a ≤ x+y
2 ≤ 1 − a, and hence, |1 − x − y| ≤ 1 − 2a. Furthermore,

for any binary random variable Y in G̃k, we have using (5):∥∥PY |G,Tk,Xk−m=x1
− PY |G,Tk,Xk−m=x0

∥∥
TV

= |1− P(Y 6= 0|Xk−m = x0, G, Tk)

− P(Y 6= 1|Xk−m = x1, G, Tk)|
(99)

where PY |G,Tk,Xk−m=x denotes the conditional distribution of Y given {Xk−m = x,G, Tk} for any x ∈ {0, 1}Lk−m .

Thus, if λY ∈ S(a) with a ∈
[
0, 12
]
, then we get:∥∥PY |G,Tk,Xk−m=x1

− PY |G,Tk,Xk−m=x0

∥∥
TV
≤ 1− 2a .

Now notice that λX̃k−m,j ∈ S(0) for every random variable X̃k−m,j in G̃k, where j ∈ [Lk−m]. As a result,

a straightforward induction argument using Lemma 2 (much like that in the proof in [29, Section III]) yields

λX̃k,0 ∈ S(f (m)(0)). This implies that:15∥∥∥PX̃k,0|G,Tk,Xk−m=x1
− PX̃k,0|G,Tk,Xk−m=x0

∥∥∥
TV
≤ 1− 2f (m)(0) = 1− 2

(
δ ∗ g(m−1)(0)

)
(100)

where the function g : [0, 1]→ [0, 1] is given in (28) in section III, and the equality follows from (11). Moreover,

since P(X̃k,0 6= y|G,Tk, Xk−m = x) = δ ∗ P(Xk,0 6= y|G,Tk, Xk−m = x) for any y ∈ {0, 1} and any x ∈

{0, 1}Lk−m , a simple calculation using (99) shows that:∥∥∥PX̃k,0|G,Tk,Xk−m=x1
− PX̃k,0|G,Tk,Xk−m=x0

∥∥∥
TV

= (1− 2δ)
∥∥PXk,0|G,Tk,Xk−m=x1

− PXk,0|G,Tk,Xk−m=x0

∥∥
TV

which, using (100), produces:∥∥PXk,0|G,Tk,Xk−m=x1
− PXk,0|G,Tk,Xk−m=x0

∥∥
TV
≤

1− 2
(
δ ∗ g(m−1)(0)

)
1− 2δ

(101)

for any x0, x1 ∈ {0, 1}Lk−m . The inequality in (101) conveys a contraction of the TV distance on the left hand

side. Since g has only one fixed point at 1
2 when δ ≥ δmaj (see section III), and (95) holds, the fixed point theorem

gives us limk→∞ g(m−1)(0) = 1
2 (where g(m−1)(0) increases to 1

2 ). Hence, the upper bound in (101) decreases to

0 as k →∞. Furthermore, note that (101) holds for all choices of Boolean processing functions (which may vary

between vertices and be graph dependent), because Lemma 2 is agnostic to the particular gates used in G̃k.

Finally, recall that the Dobrushin contraction coefficient of any Markov transition kernel PZ|W with input alphabet

W and output alphabet Z , such that 2 ≤ |W|, |Z| < +∞, is defined as [50]:

ηTV
(
PZ|W

)
, sup

PW ,QW :
PW 6=QW

‖PZ −QZ‖TV
‖PW −QW ‖TV

(102)

= max
w,w′∈W

∥∥PZ|W=w − PZ|W=w′
∥∥
TV
∈ [0, 1] (103)

where the supremum in the first equality is over all pairs of distinct probability distributions PW and QW on W ,

PZ and QZ denote the output distributions on Z induced by passing PW and QW through PZ|W respectively, the

second equality is Dobrushin’s two-point characterization of ηTV [50], and for any w ∈ W , PZ|W=w denotes the

15The inequality in (100) can be perceived as a repeated application of a tensorized universal upper bound on the Dobrushin curve of any

d-input δ-noisy gate, cf. [38, Section II-A].
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wth conditional distribution on Z in PZ|W . For any fixed realization of the random DAG G such that Tk occurs

(for sufficiently large k such that (97) holds), observe that:∥∥PXk,0|G,Tk,X0,0=1 − PXk,0|G,Tk,X0,0=0

∥∥
TV

= ηTV
(
PXk,0|G,Tk,X0

)
≤ ηTV

(
PXk,0|G,Tk,Xk−m

)
ηTV
(
PXk−m|G,Tk,X0

)
≤ max
x0,x1

∥∥PXk,0|G,Tk,Xk−m=x1
− PXk,0|G,Tk,Xk−m=x0

∥∥
TV

≤
1− 2

(
δ ∗ g(m−1)(0)

)
1− 2δ

(104)

where PXk,0|G,Tk,X0
, PXk,0|G,Tk,Xk−m

, and PXk−m|G,Tk,X0
are transition kernels from X0 to Xk,0, from Xk−m

to Xk,0, and from X0 to Xk−m respectively, the first line follows from (103) where PXk,0|G,Tk,X0,0=y denotes

the conditional distribution of Xk,0 given {X0,0 = y,G, Tk} for any y ∈ {0, 1}, the second line holds because

X0 → Xk−m → Xk,0 forms a Markov chain (given G and Tk) and ηTV is sub-multiplicative in its input stochastic

matrix (this follows easily from (102)—see e.g. [51, Lemma 4.3]), the third line follows from (103) and the maximum

here is over all x0, x1 ∈ {0, 1}Lk−m , and the last line follows from (101). Taking conditional expectations with

respect to G given Tk in (104) yields:

E
[∥∥∥P+

Xk,0|G − P
−
Xk,0|G

∥∥∥
TV

∣∣∣Tk] ≤ 1− 2
(
δ ∗ g(m−1)(0)

)
1− 2δ

where P+
Xk,0|G and P−Xk,0|G inside the conditional expectation correspond to the conditional probability distributions

PXk,0|G,Tk,X0,0=1 and PXk,0|G,Tk,X0,0=0, respectively (as we condition on Tk). Therefore, we have:

E
[∥∥∥P+

Xk,0|G − P
−
Xk,0|G

∥∥∥
TV

]
= E

[∥∥∥P+
Xk,0|G − P

−
Xk,0|G

∥∥∥
TV

∣∣∣Tk]P(Tk)

+ E
[∥∥∥P+

Xk,0|G − P
−
Xk,0|G

∥∥∥
TV

∣∣∣T ck] (1− P(Tk))

≤
1− 2

(
δ ∗ g(m−1)(0)

)
1− 2δ

+

(
d2

2(d2 − 1)

)
d2m

Rk−m

using the tower property, the fact that TV distance is bounded by 1, and (97). Letting k → ∞ establishes the

desired result:

lim
k→∞

E
[∥∥∥P+

Xk,0|G − P
−
Xk,0|G

∥∥∥
TV

]
≤

1− 2
(
δ ∗ limk→∞ g(m−1)(0)

)
1− 2δ

+

(
d2

2(d2 − 1)

)
lim
k→∞

d2m

Rk−m
= 0

because limk→∞ g(m−1)(0) = 1
2 (as noted earlier) and (96) holds. This completes the proof. �

APPENDIX B

PROOF OF COROLLARY 1

Proof. This follows from applying the probabilistic method. Fix any d ≥ 3, any δ ∈ (0, δmaj), and any sequence

of level sizes satisfying Lk ≥ C(δ, d) log(k) for all sufficiently large k. We know from Theorem 1 that for the

random DAG model with these parameters and majority processing functions, there exist ε = ε(δ, d) > 0 and

K = K(δ, d) ∈ N (which depend on δ and d) such that:

∀k ≥ K, P
(
Ŝk 6= X0

)
≤ 1

2
− 2ε .



46 IEEE TRANSACTIONS ON INFORMATION THEORY

Now define Pk(G) , P(hkML(Xk, G) 6= X0|G) for k ∈ N as the conditional probability that the ML decision rule

based on the full k-layer state Xk makes an error given the random DAG G, and let Ek for k ∈ N be the set of

all deterministic DAGs G with indegree d and level sizes {Lm : m ∈ N} such that Pk(G) ≤ 1
2 − ε. Observe that

for every k ≥ K:

1

2
− 2ε ≥ P

(
Ŝk 6= X0

)
= E

[
P
(
Ŝk 6= X0

∣∣∣G)]
≥ E[Pk(G)]

= E[Pk(G)|G ∈ Ek]P(G ∈ Ek) + E[Pk(G)|G 6∈ Ek]P(G 6∈ Ek)

≥ E[Pk(G)|G 6∈ Ek]P(G 6∈ Ek)

≥
(

1

2
− ε
)
P(G 6∈ Ek)

where the first and third lines follow from the law of total expectation, the second line holds because the ML

decision rule minimizes the probability of error, the fourth line holds because the first term in the previous line

is non-negative, and the final line holds because G 6∈ Ek implies that Pk(G) > 1
2 − ε. Then, we have for every

k ≥ K:

P(G ∈ Ek) ≥ 2ε

1− 2ε
> 0 .

Since {Ek : k ∈ N} form a non-increasing sequence of sets (because Pk(G) is non-decreasing in k), we get via

continuity:

P

(
G ∈

⋂
k∈N

Ek

)
= lim
k→∞

P(G ∈ Ek) ≥ 2ε

1− 2ε
> 0

which means that there exists a deterministic DAG G with indegree d, noise level δ, level sizes {Lk : k ∈ N}, and

majority processing functions such that Pk(G) ≤ 1
2 − ε for all k ∈ N. This completes the proof. �

APPENDIX C

PROOF OF PROPOSITION 2

Proof.

Part 1: We first prove part 1, where we are given a fixed deterministic DAG G. Observe that the BSC along

each edge of this DAG produces its output bit by either copying its input bit exactly with probability 1 − 2δ, or

generating an independent Bernoulli
(
1
2

)
output bit with probability 2δ. This is because the BSC transition matrix

can be decomposed as:16  1− δ δ

δ 1− δ

 = (1− 2δ)

 1 0

0 1

+ (2δ)

 1
2

1
2

1
2

1
2

 . (105)

Now consider the events:

Ak , {all dLk edges from level k − 1 to level k generate independent output bits}

16This simple, but useful, idea is a specialization of more sophisticated Fortuin-Kasteleyn random cluster representations of Ising models

[41].
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for k ∈ N\{0}, which have probabilities P(Ak) = (2δ)dLk since the BSCs on the edges are independent. These

events are mutually independent (once again because the BSCs on the edges are independent). Since the condition

on Lk in the proposition statement is equivalent to:

(2δ)dLk ≥ 1

k
for all sufficiently large k ,

we must have:
∞∑
k=1

P(Ak) =

∞∑
k=1

(2δ)dLk = +∞ .

The second Borel-Cantelli lemma then tells us that infinitely many of the events {Ak : k ∈ N\{0}} occur almost

surely, i.e. P(
⋂∞
m=1

⋃∞
k=mAk) = 1. In particular, if we define Bm ,

⋃m
k=1Ak for m ∈ N\{0}, then by continuity:

lim
m→∞

P(Bm) = P

( ∞⋃
k=1

Ak

)
= 1 . (106)

Finally, observe that:

lim
m→∞

P(hmML(Xm,G) 6= X0) = lim
m→∞

P(hmML(Xm,G) 6= X0|Bm)P(Bm)

+ P(hmML(Xm,G) 6= X0|Bcm)P(Bcm)

= lim
m→∞

P(hmML(Xm,G) 6= X0|Bm)

= lim
m→∞

1

2
P(hmML(Xm,G) = 1|Bm) +

1

2
P(hmML(Xm,G) = 0|Bm)

=
1

2
(107)

where hmML(·,G) : {0, 1}Lm → {0, 1} denotes the ML decision rule at level m based on Xm (given knowledge of the

DAG G), the second equality uses (106), and the third equality holds because X0,0 ∼ Bernoulli
(
1
2

)
is independent

of Bm, and Xm is conditionally independent of X0 given Bm. The condition in (107) is equivalent to the TV

distance condition in part 1 of the proposition statement; this proves part 1.

Part 2: To prove part 2, notice that part 1 immediately yields:

lim
k→∞

∥∥∥P+
Xk|G − P

−
Xk|G

∥∥∥
TV

= 0 pointwise

which completes the proof. �

APPENDIX D

PROOF OF PROPOSITION 3

Proof.

Part 1: Fix any noise level δ ∈
(
0, 12
)

and any constant ε ∈
(
0, 14
)
. Furthermore, tentatively suppose that

Lk ≥ A(ε, δ)
√

log(k) for all sufficiently large k, where the constant A(ε, δ) is defined as:

A(ε, δ) ,
2

(1− 2δ)ε
√

1− 2ε
. (108)

Now consider the deterministic DAG G such that each vertex at level k ∈ N\{0} is connected to all Lk−1 vertices at

level k− 1 and all Boolean processing functions are the majority rule. (Note that when there is only one input, the
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majority rule behaves like the identity map.) For all k ∈ N\{0}, since Xk is an exchangeable sequence of random

variables given σ0, σk is a sufficient statistic of Xk for performing inference about σ0, where σk is defined in (2)

(cf. subsection I-C). We next prove a useful “one-step broadcasting” lemma involving σk’s for this model.

Lemma 3 (One-Step Broadcasting in Unbounded Degree DAG). Under the aforementioned assumptions, there

exists K = K(ε, δ) ∈ N (that depends on ε and δ) such that for all k ≥ K, we have:

P
(
σk ≥

1

2
+ ε

∣∣∣∣σk−1 ≥ 1

2
+ ε

)
≥ 1−

(
1

k − 1

)2
.

Proof. Suppose we are given that σk−1 = σ ≥ 1
2 + ε for any k ∈ N\{0}. Then, {Xk,j : j ∈ [Lk]} are conditionally

i.i.d. Bernoulli(P(Xk,0 = 1|σk−1 = σ)) and Lkσk ∼ binomial(Lk,P(Xk,0 = 1|σk−1 = σ)), where P(Xk,0 =

1|σk−1 = σ) = E[σk|σk−1 = σ]. Furthermore, since Xk,0 is the majority of the values of Xk−1,0, . . . , Xk−1,Lk−1

after passing them through independent BSC(δ)’s, we have:

E[σk|σk−1 = σ] = P(Xk,0 = 1|σk−1 = σ)

= 1− P

Lk−1σ∑
i=1

Zi +

Lk−1(1−σ)∑
j=1

Yj <
Lk−1

2


≥ 1− exp

(
−2Lk−1

(
1

2
− σ ∗ δ

)2)

≥ 1− exp

(
−2Lk−1

(
1

2
−
(

1

2
+ ε

)
∗ δ
)2)

= 1− exp
(
−2Lk−1ε

2(1− 2δ)2
)

(109)

where Zi are i.i.d. Bernoulli(1 − δ), Yj are i.i.d. Bernoulli(δ), {Zi : i ∈ {1, . . . , Lk−1σ}} and {Yj : j ∈

{1, . . . , Lk−1(1 − σ)}} are independent, the first inequality follows from Hoeffding’s inequality using the fact

that σ ∗ δ > 1
2 (because σ > 1

2 ), and the second inequality holds because σ ≥ 1
2 + ε, which implies that

σ ∗ δ ≥
(
1
2 + ε

)
∗ δ > 1

2 .

Next, observe that there exists K = K(ε, δ) ∈ N (that depends on ε and δ) such that for all k ≥ K, we have:

exp
(
−2Lk−1ε

2(1− 2δ)2
)
≤ ε

because limk→∞ Lk =∞ by assumption. So, for any k ≥ K, this yields the bound:

E[σk|σk−1 = σ] ≥ 1− ε > 1

2
+ ε

using (109) and the fact that ε < 1
4 . As a result, we can apply the Chernoff-Hoeffding bound, cf. [44, Theorem 1],

to σk for any k ≥ K and get:

P
(
σk <

1

2
+ ε

∣∣∣∣σk−1 = σ

)
≤ exp

(
−LkD

(
1

2
+ ε

∣∣∣∣∣∣∣∣E[σk|σk−1 = σ]

))
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where D(α||β) , α log(α/β) + (1−α) log((1−α)/(1−β)) for α, β ∈ (0, 1) denotes the binary Kullback-Leibler

divergence (or relative entropy) function. Notice that:

D

(
1

2
+ ε

∣∣∣∣∣∣∣∣E[σk|σk−1 = σ]

)
≥ −H

(
1

2
+ ε

)
−
(

1

2
− ε
)

log(1− E[σk|σk−1 = σ])

≥ Lk−1ε2(1− 2ε)(1− 2δ)2 −H
(

1

2
+ ε

)
where the first inequality holds because log(E[σk|σk−1 = σ]) < 0, and the second inequality follows from (109).

Hence, we have for any k ≥ K:

P
(
σk <

1

2
+ ε

∣∣∣∣σk−1 = σ

)
≤ exp

(
−Lk−1Lkε2(1− 2ε)(1− 2δ)2 + LkH

(
1

2
+ ε

))
where we can multiply both sides by P(σk−1 = σ) and then sum over all σ ≥ 1

2 + ε (as in the proof of (34) within

the proof of Theorem 1 in section III) to get:

P
(
σk <

1

2
+ ε

∣∣∣∣σk−1 ≥ 1

2
+ ε

)
≤ exp

(
−Lk−1Lk

(
ε2(1− 2ε)(1− 2δ)2 − 1

Lk−1
H

(
1

2
+ ε

)))
.

Since limk→∞ Lk =∞ by assumption, we can choose K = K(ε, δ) to be sufficiently large so that for all k ≥ K,

we also have H
(
1
2 + ε

)
/Lk−1 ≤ ε2(1− 2ε)(1− 2δ)2/2. Thus, for every k ≥ K:

P
(
σk <

1

2
+ ε

∣∣∣∣σk−1 ≥ 1

2
+ ε

)
≤ exp

(
−Lk−1Lk

ε2(1− 2ε)(1− 2δ)2

2

)
. (110)

Finally, we once again increase K = K(ε, δ) if necessary to ensure that Lk−1 ≥ A(ε, δ)
√

log(k − 1) for every

k ≥ K (as presumed earlier). This implies that for all k ≥ K:

Lk−1Lk ≥ A(ε, δ)2
√

log(k − 1) log(k) ≥ A(ε, δ)2 log(k − 1)

which, using (108) and (110), produces:

P
(
σk <

1

2
+ ε

∣∣∣∣σk−1 ≥ 1

2
+ ε

)
≤ exp(−2 log(k − 1)) =

(
1

k − 1

)2
for all k ≥ K. This proves Lemma 3. �

Lemma 3 is an analogue of (34) in the proof of Theorem 1 in section III. It illustrates that if the proportion of

1’s is large in a given layer of G, then it remains large in the next layer of G with high probability.

To proceed, we specialize Lemma 3 by arbitrarily selecting a particular value of ε, say ε = 7
32 ∈

(
0, 14
)
. This

implies that the constant A(ε, δ) becomes:

A(δ) = A

(
7

32
, δ

)
=

256

21(1− 2δ)
(111)

using (108). In the proposition statement, it is assumed that Lk ≥ A(δ)
√

log(k) for all sufficiently large k. Thus,

Lemma 3 holds with ε = 7
32 ∈

(
0, 14
)

under the assumptions of part 1 of Proposition 3. At this point, we can

execute the proof of part 1 of Theorem 1 in section III mutatis mutandis (with Lemma 3 playing the pivotal role

of (34)) to establish part 1 of Proposition 3. We omit the details of this proof for brevity.

Part 2: To prove part 2, we use the proof technique of part 1 of Proposition 2 in Appendix C. Recall that the

BSC(δ) along each edge of the DAG G produces its output bit by either copying its input bit with probability
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1− 2δ, or generating an independent Bernoulli
(
1
2

)
output bit with probability 2δ. As before, consider the mutually

independent events:

Ak , {all Lk−1Lk edges from level k − 1 to level k generate independent output bits}

for k ∈ N\{0}, which have probabilities P(Ak) = (2δ)Lk−1Lk . Define the constant B(δ) as:

B(δ) ,
1√

log
(

1
2δ

) . (112)

Since we assume in the proposition statement that Lk ≤ B(δ)
√

log(k) for all sufficiently large k, we have:

Lk−1Lk ≤
√

log(k − 1) log(k)

log
(

1
2δ

) ≤ log(k)

log
(

1
2δ

)
for all sufficiently large k, which implies that:

(2δ)Lk−1Lk ≥ 1

k

for all sufficiently large k. Hence, we get
∑∞
k=1 P(Ak) =

∑∞
k=1 (2δ)Lk−1Lk = +∞, and the second Borel-Cantelli

lemma establishes that infinitely many of the events {Ak : k ∈ N\{0}} occur almost surely, or equivalently,

P(
⋂∞
m=1

⋃∞
k=mAk) = 1. As a result, we can define Bm ,

⋃m
k=1Ak for m ∈ N\{0} such that limm→∞ P(Bm) = 1.

Therefore, we have (as before):

lim
m→∞

P(hmML(Xm,G) 6= X0) =
1

2

where hmML(·,G) : {0, 1}Lm → {0, 1} denotes the ML decision rule at level m based on Xm (given knowledge of

the DAG G). This completes the proof. �

APPENDIX E

PROOF OF PROPOSITION 5

Proof. Recall that Lkσk ∼ binomial(Lk, g(σ)) given σk−1 = σ. This implies via Hoeffding’s inequality and (29)

that for every k ∈ N\{0} and εk > 0:

P(|σk − g(σk−1)| > εk|σk−1 = σ) ≤ 2 exp
(
−2Lkε

2
k

)
where we can take expectations with respect to σk−1 to get:

P(|σk − g(σk−1)| > εk) ≤ 2 exp
(
−2Lkε

2
k

)
. (113)

Now fix any τ > 0, and choose a sufficiently large integer K = K(τ) ∈ N (that depends on τ ) such that:

P(∃k > K, |σk − g(σk−1)| > εk) ≤
∞∑

k=K+1

P(|σk − g(σk−1)| > εk) ≤ 2

∞∑
k=K+1

exp
(
−2Lkε

2
k

)
≤ τ

where we use the union bound, and let εk =
√

log(k)/Lk (or equivalently, exp
(
−2Lkε

2
k

)
= 1/k2). This implies

that for any τ > 0:

P(∀k > K, |σk − g(σk−1)| ≤ εk) ≥ 1− τ . (114)
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Since for every k > K, |σk − g(σk−1)| ≤ εk, we can recursively obtain the following relation:

∀k ∈ N\[K + 1],
∣∣∣σk − g(k−K)(σK)

∣∣∣ ≤ k∑
m=K+1

D(δ, d)k−mεm (115)

where D(δ, d) denotes the Lipschitz constant of g on [0, 1] as defined in (33), and D(δ, d) ∈ (0, 1) since δ ∈(
δmaj,

1
2

)
. Since Lm = ω(log(m)), for any ε > 0, we can take K = K(ε, τ) (which depends on both ε and τ ) to

be sufficiently large so that supm>K εm ≤ ε(1−D(δ, d)). Now observe that we have:

∀k ∈ N\[K + 1],

k∑
m=K+1

D(δ, d)k−mεm ≤
(

sup
m>K

εm

) ∞∑
j=0

D(δ, d)j =

(
sup
m>K

εm

)
1

1−D(δ, d)
≤ ε .

Moreover, since g : [0, 1] → [0, 1] is a contraction when δ ∈
(
δmaj,

1
2

)
, it has a unique fixed point σ = 1

2 , and

limm→∞ g(m)(σK) = 1
2 almost surely by the fixed point theorem [52, Chapter 5, Exercise 22(c)]. As a result, for

any τ > 0 and any ε > 0, there exists K = K(ε, τ) ∈ N such that:

P
(
∀k > K,

∣∣∣σk − g(k−K)(σK)
∣∣∣ ≤ ε) ≥ 1− τ

which implies, after letting k →∞, that:

P
(

1

2
− ε ≤ lim inf

k→∞
σk ≤ lim sup

k→∞
σk ≤

1

2
+ ε

)
≥ 1− τ .

Lastly, we can first let ε→ 0 and employ the continuity of P, and then let τ → 0 to obtain:

P
(

lim
k→∞

σk =
1

2

)
= 1 .

This completes the proof. �

APPENDIX F

PROOF OF PROPOSITION 6

Proof. This proof is analogous to the proof of Proposition 5. For every k ∈ N\{0} and εk > 0, we have after

taking expectations in (56) that:

P(|σ2k − g(σ2k−2)| > εk) ≤ 4 exp

(
− (L2k ∧ L2k−1)ε2k

8

)
. (116)

Now fix any τ > 0, and choose a sufficiently large integer K = K(τ) ∈ N (that depends on τ ) such that:

P(∃k > K, |σ2k − g(σ2k−2)| > εk) ≤
∞∑

m=K+1

P(|σ2m − g(σ2m−2)| > εm)

≤ 4

∞∑
m=K+1

exp

(
− (L2m ∧ L2m−1)ε2m

8

)
≤ τ

where we use the union bound and (116), and we set εm = 4
√

log(m)/(L2m ∧ L2m−1) (which ensures that

exp(−(L2m ∧ L2m−1)ε2m/8) = 1/m2). This implies that for any τ > 0:

P(∀k > K, |σ2k − g(σ2k−2)| ≤ εk) ≥ 1− τ . (117)

Since for every k > K, |σ2k − g(σ2k−2)| ≤ εk, we can recursively obtain the following relation:

∀k ∈ N\[K + 1],
∣∣∣σ2k − g(k−K)(σ2K)

∣∣∣ ≤ k∑
m=K+1

D(δ)k−mεm (118)



52 IEEE TRANSACTIONS ON INFORMATION THEORY

where g(k−K) denotes g composed with itself k−K times, and D(δ) denotes the Lipschitz constant of g on [0, 1]

as shown in (49), which is in (0, 1) since δ ∈
(
δandor,

1
2

)
. Since Lm = ω(log(m)), for any ε > 0, we can take

K = K(ε, τ) ∈ N (which depends on both ε and τ ) to be sufficiently large so that supm>K εm ≤ ε(1 − D(δ)).

This implies that:

∀k ∈ N\[K + 1],

k∑
m=K+1

D(δ)k−mεm ≤ ε

as shown in the proof of Proposition 5. Moreover, since g : [0, 1]→ [0, 1] is a contraction when δ ∈
(
δandor,

1
2

)
, it

has a unique fixed point σ = t ∈ [0, 1], and limm→∞ g(m)(σ2K) = t almost surely by the fixed point theorem. As

a result, for any τ > 0 and any ε > 0, there exists K = K(ε, τ) ∈ N such that:

P
(
∀k > K,

∣∣∣σ2k − g(k−K)(σ2K)
∣∣∣ ≤ ε) ≥ 1− τ

which implies that:

P
(

lim
k→∞

σ2k = t

)
= 1

once again as shown in the proof of Proposition 5. This completes the proof. �

APPENDIX G

PROOF OF COROLLARY 2

Proof. Fix any ε > 0 and any d ≥
(
2
ε

)5
, and let α = d−6/5. To establish the first part of the corollary, it suffices

to prove that for every n ∈ N\{0}:

n
(

1− (1− α)d −
√

2dαH(α)
)
≥ (1− ε)dαn

⇔ 1−
1− (1− α)d −

√
2dαH(α)

dα
≤ ε .

Indeed, if this is true, then Proposition 7 immediately implies the desired lower bound on the probability that B is

a d-regular bipartite lossless (d−6/5, (1− ε)d)-expander graph. To this end, observe that:

1−
1− (1− α)d −

√
2dαH(α)

dα
≤ 1− 1− e−dα

dα
+

√
2dαH(α)

dα

≤ dα

2
+

√
2H(α)

dα

≤ dα

2
+

√
4 log(2)

d
√
α

=
1

2d1/5
+

2
√

log(2)

d1/5

≤ 2

d1/5

≤ ε

where the first inequality follows from the standard bound (1 − α)d ≤ e−dα for α ∈ (0, 1) and d ∈ N\{0}, the

second inequality follows from the easily verifiable bounds 0 ≤ 1 − 1−e−x

x ≤ x
2 for x > 0, the third inequality

follows from the well-known bound H(α) ≤ 2 log(2)
√
α(1− α) ≤ 2 log(2)

√
α for α ∈ (0, 1), the fourth equality
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follows from substituting α = d−6/5, the fifth inequality follows from direct computation, and the final inequality

holds because d ≥
(
2
ε

)5
. This proves the first part of the corollary.

The existence of d-regular bipartite lossless (d−6/5, (1 − ε)d)-expander graphs for every sufficiently large n

(depending on d) in the second part of the corollary follows from the first part by invoking the probabilistic

method. This completes the proof. �
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