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1 Main category of interest

Recall the definition of morphisms between measurable spaces:

Definition 1 A category RanTra of random transformations is defined as follows: objects
are measurable spaces; a morphism F : A → B is a transition probability kernel between
the spaces; composition of morphisms and the totality of all morphisms Hom(A,B) are
defined in a natural way. Probability measure µ on the space A is simply a morphism
1 → A from the space of cardinality 1.

Given a measure µ on A, we define a pushforward measure F∗µ via

∀E ⊂ B : (F∗µ)(E)
△
= µ(F−1E) . (1.1)

Some remarks:

1. A discrete space with M elements is denoted [M ].

2. Any measurable function f : A → B defines a morphism as follows:

∀x ∈ A, E ∈ σB : Ff (E|x) = 1{f(x) ∈ E} .

In this sense RanTra is an extension of Meas.

3. A morphism F obtained from injective function is a monomorphism. Similarly, a
morphism obtained from a non-injective function cannot be a monomorphism. Oth-
erwise, the criterion for F to be a monomorphism is easier to describe after applying
a functor to VectR (see below).

4. Similar discussion applies to epimorphisms and surjective functions. However, for
epimorphisms the following additional necessary criterion is frequently useful:

E1 6= E2 =⇒ ∃x1, x2 : F (E1|x1) 6= F (E2|x2) .
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1.1 Binary Hypothesis Testing

We can modify the category RanTra by adding to each space a pair of measures P,Q.

Definition 2 A category BinHT of binary hypothesis testing problems is defined as fol-
lows: objects are triplets consisting of a measurable space and a pair of measures P,Q. A
morphism F : (A, P,Q) → (B, P ′, Q′) is a transition probability kernel between the spaces
satisfying:

F∗(P ) = P ′, F∗(Q) = Q′ .

Composition of morphisms and the totality of all morphisms Hom(A,B) are defined as in
RanTra.

We can frequently omit the spaceA and simply talk about the binary hypothesis testing
problem (P,Q). Some remarks:

• If P ∼ Q then (P,Q) is isomorphic to a problem over the space R via a map:

A → R : x → dP

dQ
(x) .

• Any f -divergence defines a contravariant functor from BinHT to the poset R. In fact
any such functor is precisely a g-divergence defined in [12]. Note that −βα(P,Q)
(see [1, Chapter 2]) for every α defines a g-divergence which is not a monotone
transformation of any f -divergence [12].

• More generally, a family {Dα, α ∈ A} of g-divergences defines a contravariant functor:

BinHT →
∏

α∈A

R ,

where the category on the right is a poset.

Conjecture: A (covariant) functor βα(P,Q) defines an equivalence of category BinHT
and a category of convex maps [0, 1] → [0, 1] understood as a poset.

Convenience of this identification is obvious since it gives a clearer understanding of
the category BinHT. However, there is a problem: a natural product in BinHT:

(A, P,Q)× (B, P ′, Q′)
△
= (A×B, P × P ′, Q×Q′)

is not easily understood in the target category of convex maps. In non-fancy language
this means that there is no convenient description of βα(P × P ′, Q×Q′) in terms of
βα(P,Q) and βα(P

′, Q′).

Challenge: Find another equivalent representation of category BinHT where unlike
the βα-representation the product also has a natural form. (Conjecture: take all
Rényi divergences!)

2



2 Channels

Warning on notation

Notice that here the term “channel” is equivalent to a random
transformation in [1], whereas the channel in [1] means a se-
quence of random transformations.

Definition 3 A channel A = (A,K,B) consists of measurable spaces A,B and a mor-
phism between them. The diagram corresponding to the channel is

A

K

��
B

.

Examples:

1. Discrete channel (DC) is specified by finite spaces A, B (with power-set σ-algebras)
and a |A| × |B| transition matrix K.

2. A particular discrete channel IM = ([M ], 1, [M ]), where the kernel 1 is just the
identity map, is of importance for data compression.

3. For example, BSC(n, δ) is a channel with A = B = Z
n
2 and

Y n = Xn + Zn ,

where Zn is binary i.i.d. noise, independent of Xn and with P[Zj = 1] = δ.

4. The (hard-constrained) channel AWGN(n, P ) is the channel with input space

A = {x ∈ R
n : ||x|| ≤ nP}

output space B = R
n and the transition kernel K defined via

Y n = Xn + Zn ,

where Zn is iid gaussian noise Zj ∼ N (0, 1).

Definition 4 A morphism F = (f, g) of channels F : A1 → A2 is a pair of maps making
the following diagram commute:

A1

K1

��

f // A2

K2

��
B1 B2g

oo

.
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The set of all morphism between two channels is denoted Hom(A1,A2). If it is non-empty
then we say that channel A1 is noisier than A2 and write

A1 ≺ A2 ,

which in words means that it is possible (via a pair of devices f and g) to simulate channel
A1 over the channel A2. Clearly ≺ defines a partial order on the set of channels. We say
that two channels are weakly isomorphic and write A1 ≍ A2 if

A1 ≺ A2 , and A2 ≺ A1 .

Examples:

1. One way to obtain channels with non-empty Hom between them is the following con-
struction, which corresponds to modulation in communication. Take B = (A′,K ′,B′)
to be any channel, fix some measurable spaces A,B and morphisms f : A → A′ and
g : B′ → B. The channel A = (A,K,B) is defined to have the kernel K = g ◦K ′ ◦ f ,
i.e. the induced dashed line on the following diagram

A

K
��

f // A′

K ′

��
B1 B′

g
oo

.

Obviously, the set Hom(A,B) contains at least morphism (f, g).

2. A particular example of the above construction is BPSK-modulated AWGN(1, P )
channel that leads to the following morphism F of channels:

BSC(1, Q(
√
P ))

F−→ AWGN(1, P ) , (2.1)

where {0, 1} are mapped to {−
√
P ,

√
P} and decoded via maximum likelihood de-

coder (signum function).

3. Most channels are incomparable and thus for them Hom(A,B) is empty. For an
example notice that capacity C(A) (as maximal mutual information) satisfies, by
data-processing inequality:

A ≺ B =⇒ C(A) ≤ C(B) .

Therefore, for example Hom(BSC(n, 0), BSC(n, δ)) is empty for δ 6= 1.

4. TODO: Read reference [9] and see what counter-example it gives to Shannon’s con-
jecture about sufficient condition for having A ≺ B.
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5. Finally, there is always one special identity morphism inside Hom(A,A), namely
I = (1A, 1B).

The example 1 is an instance of a very important constuction, “modulation construc-
tion”. We give the following definition:

Definition 5 The totality of all possible morphisms between spaces A,B through the chan-
nel B = (A′,K ′,B′) is denoted as ModB(A,B). Obviously,

ModB(A,B) ⊂ Hom(A,B) .

To each element of ModB(A,B) corresponds a channel A = (A, g ◦ K ′ ◦ f,B) and a
morphism F = (f, g) : A → B. Clearly we have then A ≺ B; we will say that A is A → B

modulation of B.

Various information theoretic problems can be restated in the language of the above
“modulation construction”. Examples:

1. Almost lossless and lossy data compression. A source is a measurable space A with
a chosen measure PX and a distortion function d(·, ·). The question is to describe
all A → A modulations of IM channel (see above). To each K ∈ ModIM (A,A) we
associate its average distortion as follows:

d(K) =

∫

A×A

d(PX ×K)d(x, x̂) ,

where d(·, ·) is a distortion measure; for example, d(x, x̂) = 1{x 6= x̂} for almost
lossless data compression. The goal is to compute

d∗(A,M) = inf
K∈ModIM (A,A)

d(K) .

2. Channel coding. Given a fixed channel A the goal is to describe all [M ] → [M ]
modulations of A. More concretely, to each modulation K ∈ ModA([M ], [M ]) we
associate its average probability of error:

e(K) = 1− 1

M

M∑

j=1

K(j, j) ,

and the question is to compute for each M the function

e∗(A,M) = inf
K∈ModA([M ],[M ])

e(K) .
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Even more restrictively, the question is to compute the asymptotic properties of

e∗(An, 2nR) ,

for each R.

TODO: Note that if we denote modulation by (f, g) then the probability of success
is tr fKg and hence we are trying to solve the problem:

sup
f,g

tr fKg . (2.2)

However, since tr fKg = trKgf = tr gfK, we can interpret the problem (2.2) in a
completely different way (“trace-duality”).

3. Joint source channel coding (JSCC). Note that in the data compression we fixed the
channel to be IM and in the channel coding we fixed the source to be [M ]. In the
JSCC we do not fix either. The question is to describe for a given source (A, PX , d)
the smallest possible average distortion achievable over all A → A modulations of a
fixed channel B:

d∗(A,B) = inf
K∈ModB(A,A)

∫

A×A

d(PX ×K)d(x, x̂) .

We proceed to channel isomorphisms.

Definition 6 The channels A and B are strongly isomorphic if there exists a pair of mor-
phisms F : A → B and G : B → A such that F ◦G = IB and G ◦ F = IA.

Obviously, if channels are strongly isomorphic then they are weakly isomorphic. The
question is now to understand what constitutes the set of classifying invariants.

Examples:

1. Clearly, maximal mutual information afforded by the channel is equal for any weakly
isomoprhic channels (“capacity is a weak-invariant”).

2. Moreover, the cardinality of input and output spaces must be equal for strongly-
isomoprhic channels (“cardinalities are strong-invariants”).

3. Of course, not all weakly isomorphic channels are strongly isomorphic. For example,
consider a channel A = ([1], PY ,B), where PY is some fixed measure on B. Then
it is weakly isomorphic to B = ([2], PY ,B) where the kernel is such that the output
Y ∈ B is independent of the input and is distributed as PY . Clearly, though, that A
and B are not strongly isomorphic since |[1]| 6= |[2]|.

This construction can be easily generalized to show

Proposition 7 Channels with zero capacity are weakly isomorphic.
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2.1 Non-existence of categorical channel products

Categorical co-product is what we call channel sum (or a parallel channel). What is a
categorical product?

Take a pair of channels A, B. Then in the usual category theory language, their product
is the channel D = A × B and a pair of (projection) morphisms A,B such that for any
other channel E and morphisms F : E → A and G : E → B there exists a unique morphism
H : E → D making the following diagram commute:

A DAoo B // B

E
F

``@@@@@@@@
H

OO

G

??~~~~~~~

(2.3)

It raises the question whether channel products always exist. Here is an outline why
A×A does not exist, when A = BSC(1, δ). Indeed, first by taking E = A and F = G = 1A
and obtaining the H : A → A×A which simultaneously extends two identity morphisms:

A A×AAoo B // A

A
1A

ccGGGGGGGGG
H

OO

1A

;;wwwwwwwww

(2.4)

By writing diagrams for left and right morphisms we see that the output parts of A,B
satisfy the property that suppa2(0) ∩ supp a2(1) = and similarly for b2. Denote by K and
T the kernels of the channels A and A×A. Then since T = a2 ◦K ◦ a1 we see that

supp a2(0) ∪ supp a2(1) = supp b2(0) ∪ supp b2(1) = suppT ,

where suppT is the union of supports of all T (x), x ∈ (A×A)1. On the other hand, looking
at the input side: a1◦h1 = 1 – implies that the input space of A×A splits into four disjoint
sets L00, L01, L10, L11:

Lij = {x ∈ (A×A)1 : supp a1(x) = {i}, supp b1(x) = {j}}

and each subset is non-empty of course.
Now, on one hand for any x in L00 we must have

T (x) = a2(0) = b2(0) .

(here a2(0) and b2(0) are measures on (A × A)2 of course) On the other hand, for any
x ∈ L01 we have

T (x) = a2(0) = b2(1) ,
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and we can see that since (A×A)1 = ∪Lij we have

T = a2(0) = a2(1) = b2(0) = b2(1) = PY ,

for some measure PY . This is a contradiction since (2.4) implies A×A and A are weakly
isomorphic and thus must have equal capacities, but capacity of A×A is zero.

Note: another observation is that for any measurable space A and maps f1 : A → (A)1,
g1 : A → (B)1 we can always take a channel E = (A, 1, [1]) and construct morphisms F,G
to A,B such that their input parts are f1, g1. Thus, if (2.3) holds then input part (A×B)1
by the universal property of set-products must be actually equal to (A)1 × (B)11.

3 Channel automorphisms

The setHom(A,A) carries a natural structure of monoid. However, because there is always
an element PY ∈ Hom(A,A) which induces some fixed distribution PY regardless of the
input, this monoid’s Grothendieck group is trivial. Instead, we restrict attention to the
invertible elements of Hom(A,A).

Definition 8 The automorphism group of the channel A is defined as follows:

AutA = {F ∈ Hom(A,A) : ∃G s.t. F ◦G = 1, G ◦ F = 1} .

Simple remarks:

1. AutA naturally acts on both the input space A and output space B. In the discrete
case we have for each φ ∈ AutA:

PY |X(y|x) = PY |X(φ(y)|φ(x)) . (3.1)

Later addon: This requires some explanation. An element of Hom(A,A) has two
components (f, g) and two elements are composed as

(f, g) · (f ′, g′) = (f ◦ f ′, g′ ◦ g) . (3.2)

Therefore, if we just consider a naive action on A and B defined for each φ = (f, g)
as

wrong action: φ(x) = f(x), φ(y) = g(y)

then because of (3.2) we have AutA acting on A on the left and on B on the right.
There are two problems defining the action in this way. First, equation (3.1) should
be rewritten in much less intuitive form:

wrong action: PY |X(y|x) = PY |X(φ−1(y)|φ(x)) .
1This is not really true, since f1 and g1 are not necessarily deterministic morphisms, and in the category

where morphisms are transition probability kernels, one can not gurantee uniqueness of the map to A×B.
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Second, the map φ(x, y) = (f(x), g(y)) does not define an action on A × B since
φ ◦ φ1(x, y) in general is not equal to either (φφ1)(x, y) or (φ1φ)(x, y).

The correct definition of the (left) action of AutA on A×B is given as follows:

φ = (f, g) : A×B → A×B (3.3)

(x, y) 7→ (f(x), g−1(y)) . (3.4)

It is under this action that equation (3.1) makes sense. It also means that all elements
(x, y) in the orbit have the same probability W (y|x). Also, for group-noise channels
typical φ acts on (x, y) as (g ◦ x, g ◦ y).
All in all: the rule of thumb is: if some transformation f : A → A is “equivalent” to
h : B → B in the sense that PY |X ◦ f = h ◦ PY |X , then the element of Hom(A,A) is
(f, h−1), but the action of this element is (x, y) → (f(x), h(y)).

2. Let A = BSC(n, δ) where n is the blocklength and δ is the crossover probability. For
the BSC we have

AutΣ = Z
n
2 ⋊ Sn (3.5)

where Sn is the symmetric group on n elements. Indeed, denote a metric space of all
0, 1-strings of length n with Hamming norm || · || as Bn. Take F = (φ1, φ2) ∈ AutΣ
and denote. Then we have, by definition of the BSC

PY |X(y|φ1(x)) = PY |X(φ−1
2 (y)|x) ,

or, equivalently,

δ||y−φ1(x)||(1− δ)n−||y−φ1(x)|| =
∑

y′∈φ−1

2
(y)

δ||y
′−x||(1− δ)n−||y′−x|| . (3.6)

Summing over all x we find
|φ−1

2 (y)| = 1 ,

meaning that φ2 is a bijection of Bn. Then from (3.6) it follows that

∀x, y : ||y − φ1(x)|| = ||φ−1
2 (y)− x|| , (3.7)

which implies that φ1 is also a bijection. Of course, it is obvious that φ1 and φ2 are
bijections from the definition of the automorphism; a direct proof demonstrates that
we do not loose generality by that restriction at least in this important case.

Finally, from (3.7) by taking y = φ1(x) we find that φ2 = φ1 and that each one is an
automorphism of the Hamming space Bn. Hence (3.5) is proved because Z

n
2 ⋊ Sn is

the full automorphism group of the Hamming space.
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3. For A = AWGN(n, P ) we have

AutΣ = O(n) ,

where O(n) is the orthogonal group. This follows easily since an input component of
F ∈ AutΣ must preserve the cost function; i.e. if φ1 = InF then

x2 = (φ1(x))
2 ,

and hence φ1 is an orthogonal transformation.

4. For a general channel An we only know that there is an injection

Sn →֒ AutAn ,

where Sn acts by permuting coordinates. This is just the expression of the fact that
An is a memoryless channel.

5. In general, once a symmetry group is known, we can define generalized types as orbits
in the input space under the action of AutA. E.g., for the most general DMC of
blocklength n we find that the symmetry group is Sn and thus the orbits the action of
Sn are exactly the Csiszar-Korner-Marton types. However, for channels with larger
AutA, such as BSC, the group acts transitively (i.e. there is only one orbit) and
therefore, type-splitting becomes not-necessary.

6. It is always true that AutA× B contains Aut(A)×Aut(B). Moreover, Aut(A×A)
contains Aut(A)2 ⋊ S2. However, the precise description might be hard. Indeed for
example if A = BSC(1, 1/2) then

AutA2 = S4 6= (AutA)2 ,

because of the additional symmetries.

7. Q: Aut for the group-noise channel (3.14).

A: Proved to be nothing nice, unless PN is of general type (i.e. PN (a) = PN (b)
implies a = b), in which case

AutA ∼ G ,

because for any element (g, g′) ∈ AutA there must be x0 s.t. g(x0) = 1, and since
[g(x)]−1g′(y) = x−1y for all x, y ∈ G we must have

g′(y) = x−1
0 y ,

and also
g(x) = x−1

0 x .

Note however, this is not very useful since PN will not be of general type even for
BSC(n, δ) for n > 1.
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8. TODO: Aut for channel sum.

Theorem 9 If PX is a capacity achieving input distribution, then PX ◦g−1 is also capacity
achieving for any g ∈ AutA. For channels with |A|, |B| < ∞, the unique capacity achieving
output distribution PY is constant on the orbits of AutA.

Remark: In particular if A = (A1)
n (an n-fold product) then the unique capacity achiev-

ing n-letter distribution is constant along the Y -types.
Proof: Simple data-processing demonstrates that for any g ∈ AutA we have

I(PX , PY |X) = I(PX ◦ g−1, PY |X) .

Assume |A|, |B| < ∞, then

PY (y) =
∑

x∈A

PX(x)PY |X(y|x) (3.8)

=
∑

x∈A

PX(x)PY |X(g(y)|g(x)) (3.9)

=
∑

x∈A

PX(g(x))PY |X(g(y)|g(x)) (3.10)

=
∑

x∈A

PX(x)PY |X(g(y)|x) (3.11)

= PY (g(y)) , (3.12)

where (3.9) is by (3.1), (3.10) is because PY is unique and PX ◦ g is also capacity achiev-
ing, (3.11) is because g is bijection of A.QED.

3.1 Symmetric channels

Definition 10 A (discrete) channel A is called Dobrushin-symmetric if every row of PY |X

is a permutation of the first and every column of PY |X is a permutation of the first.

Definition 11 A (discrete) channel A is called Gallager-symmetric if output alphabet B
can be split into a disjoint union of sub-alphabets such that restricted to each sub-alphabet
PY |X has the Dobrushin property: every row (every column) is a permutation of the first
row (column).

Definition 12 A channel A is called input-symmetric (output-symmetric) if AutA acts
transitively on the input (output) space.

Definition 13 A channel A is called weakly input-symmetric if there exists an input x0 ∈
A and a collection of random transformations Tx : B → B, x ∈ A such that:

Tx ◦ PY |X=x0
= PY |X=x (3.13)
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and
Tx ◦ P ∗

Y = P ∗
Y ,

where P ∗
Y is the capacity-achieving output distribution.

TODO: Hidden assumption on the existence of P ∗
Y . What should I do about it?

3.2 Relations between definitions of symmetric channels

1. My previous definition of input-symmetric channels required: for each permutation of
inputs there must exist a permutation of outputs “undoing” the first. This is equiva-
lent to requiring that AutA contain S|A| canonically. This is too hard a requirement.
It is not satisfied even for BSC(2, δ). Thus, this claim automatically rebuffs the
conjecture that in the old-definition we have “product of inp.-sym. is inp.-sym.”

2. Since Aut(A) × Aut(B) ≤ AutA × B we have trivially: product of input symmetric
channels is input symmetric.

3. Relation to Dobrushin’s definition. Recall that Dobrushin says that DMC W is
symmetric if every row is a permutation of the first row and every column is a
permutation of the first column. Obviously,

Dobrushin 6=⇒ square

Easily, for each group-noise channel, i.e. channel of the form

Y = X ◦N (3.14)

where ◦ is a composition inside some group G and X,Y,N ∈ G; each such channel is
Dobrushin-symmetric. The converse is not true. According to [11] the latin squares
that are Cayley tables are precisely the ones in which composition of two rows (as
permutations) gives another row. An example of the latin square which is not a
Cayley table is the following:









1 2 3 4 5
2 5 4 1 3
3 1 2 5 4
4 3 5 2 1
5 4 1 3 2









where numbers 1, 2, 3, 4, 5 are to be replaced with arbitrary probabilities p1, . . . p5.
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In fact, this channel is not even input-symmetric: exchange of the first and fourth
rows is not possible to undo via column permutations. So we have shown:

group-noise =⇒ Dobrushin, square (3.15)

Dobrushin, square 6=⇒ input-symmetric (let alone group-noise)(3.16)

input-symmetric, square 6=⇒ Dobrushin , (3.17)

where the counter-example for the last statement is the following channel:







1 2 3 4
1 3 2 4
4 2 3 1
4 3 2 1







(3.18)

4. Channel (3.18) also demonstrates:

Gallager-symmetric, square 6=⇒ Dobrushin

5. Note that it is an easy consequence of the definitions that

input-symmetric =⇒ every row is a permut-n of the first (3.19)

output-symmetric =⇒ every column is a permut-n of the first (3.20)

thus we have

input-symmetric, output-symmetric =⇒ Dobrushin (3.21)

6. By splitting B into orbits of AutA on B we see that a subchannel A → {orbit} is
input and output symmetric. Thus by (3.21) we have:

input-symmetric =⇒ Gallager-symmetric (3.22)

7. Notice that the capacity achieving output distribution is constant on each subalpha-
bet of a Gallager-symmetric channel. Thus:

Gallager-symmetric =⇒ weakly input-symmetric . (3.23)

At the same time

weakly input-symmetric 6=⇒ Gallager-symmetric , (3.24)
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where the counter-example is the following channel

W =










1/7 4/7 0 2/7

4/7 1/7 0 2/7

1/7 0 4/7 2/7

1/7 4/7 2/7 0










. (3.25)

Indeed, detW 6= 0 and hence the capacity achieving input distribution is unique.
But PX = [1/4, 1/4, 3/8, 1/8] achieves uniform PY and is thus optimal. Clearly any
permutation Tx : {1, 2, 3, 4} → {1, 2, 3, 4} fixes a uniform PY and thus the channel
is weakly input-symmetric. At the same time it is not Gallager-symmetric since no
column is a permutation of another.

8. Here is another example of the w.i.s. channel which is not Gallager-symmetric. The
importance of this example is that it makes use of the freedom of having Tx being
randomized. The channel is:

W =





1/2 1/2 0
1/2 0 1/2
1/2 1/4 1/4





To show it is w.i.s. notice that the AutW contains element that flips first two inputs
(rows 1,2) and flips last two inputs (columns 2,3). Thus P ∗

Y (2) = P ∗
Y (3). Now take

x0 = 1 (corresp., first row) and T2 : {1, 2, 3} → {1, 3, 2} and T3 is given by the
following matrix

T3 =





1 0 0
0 1/2 1/2
0 1/2 1/2





To check that T3 ◦W (·|1) = W (·|3) simply write

(
1/2 1/2 0

)





1 0 0
0 1/2 1/2
0 1/2 1/2



 =
(
1/2 1/4 1/4

)

Finally, by symmetry distribution P ∗
Y has the form

P ∗
Y =

(
a b b

)
,

and therefore T3 ◦ P ∗
Y = P ∗

Y and T2 ◦ P ∗
Y = P ∗

Y as required.

9. Q: Understand Sason’s definition of the symmetric channel:

PY |X(y|x) = PY |X(g−1
x y|0) ,
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and gx1
◦ gx2

= gx1+x2
, i.e. the input space is a group Z|A| and there is a group

homomorphism Z|A| → SY together with the noise distribution PN (·) = PY |X(·|0).
A: Sason’s definition is just the requirement that once A is given a structure of Z|A|,
there must be a subgroup of AutG that acts on A by addition. Of course, such
channel is automatically input-symmetric.

3.3 Sphere-packing and feedback

Theorem 14 For input-symmetric channel with |A| < ∞, uniform input distribution
achieves capacity and thus we have

C = D(Wa||PW ),∀a ∈ A ,

where W is the channel kernel, P is any capacity achieving distribution and Wa is the
measure W (·|a). Furthermore, the dispersion can be calculated as

V
△
= V (W ||PW |P ) = V (Wa||PW ),∀a ∈ A

and the upper bound on logM∗ is improved to

logM∗(n, ǫ) ≤ nC −
√
nV Q−1(ǫ) +

1

2
log n+O(1) ,

and also holds with feedback.

Proof: The first claim follows from concavity of I(P,W ) in P and

U =
∑

g∈AutA

1

|AutA|P ◦ g−1 ,

where U is uniform.
Second claim follows from the previous theorem after noticing that V (Wa||PW ) does

not depend on a when AutA acts transitively on A:

V (Wg(a)||PW ) + C2 =
∑

y∈B

W (y|g(a)) log2 W (y|g(a))
PW (y)

(3.26)

=
∑

y∈B

W (g(y)|g(a)) log2 W (g(y)|g(a))
PW (g(y))

(3.27)

=
∑

y∈B

W (g(y)|g(a)) log2 W (g(y)|g(a))
PW (y)

(3.28)

=
∑

y∈B

W (y|a) log2 W (y|a)
PW (y)

(3.29)

= V (Wa||PW ) . (3.30)
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The last result follows from a fact

βα(PWY n , PW × (PW )n) = βα(PY n|Xn=xn , (PW )n) .

QED.

Note: Dobrushin’s result is not contained and does not contain this last theorem. His
proof works in the additional cases when all rows of W are permutations of each other,
and thus the capacity achieving output distribution is uniform (as shown above, this does
not imply the channel is input-symmetric). To include Dobrushin’s result we need to go to
weakly input-symmetric channels. Input-symmetric differs from weakly input-symmetric
in imposing a group structure on transformations Tx (see (3.13)). As the next theorem
suggests, apparently, such requirement is superficial for the problems of sphere packing with
feedback.

Theorem 15 Consider a weakly input-symmetric channel A. Assume also that

C ′ △
= sup

x∈A
D(PY |X=x||P ∗

Y ) < ∞ (3.31)

sup
x∈A

V (PY |X=x||P ∗
Y ) < ∞ . (3.32)

Then all of the following hold:

1. For x0 ∈ A and P ∗
Y as in Definition 13 we have:

C ′ = D(PY |X=x0
||P ∗

Y ) ,

2. For any distribution PXn on An we have

βn
α(PXnY n , (P ∗

Y )
n) ≥ βn

α((PY |X=x0
)n, (P ∗

Y )
n) . (3.33)

3. For any distribution PX supported on {x ∈ A : D(PY |X=x||P ∗
Y ) = C ′} we have

V (PX , PY |X) = V (PY |X=x0
||P ∗

Y )
△
= V ′ . (3.34)

4. The following (sphere packing) bound holds with and without feedback:

logM∗(n, ǫ) ≤ − log βn
α((PY |X=x0

)n, (P ∗
Y )

n) ,

5. Finally, if
V ′ > 0 and T (PY |X=x0

||P ∗
Y ) < ∞

then as n → ∞ we have

logM∗(n, ǫ) ≤ nC ′ −
√
nV ′Q−1(ǫ) +

1

2
log n+O(1) .

If V ′ = 0 then we have

logM∗(n, ǫ) ≤ nC ′ − log(1− ǫ) .
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Remark: For discrete memoryless channels we know that C ′ = C and V ′ = V where
(C, V ) is the capacity-dispersion pair.

Proof: The first claim follows from the data-processing applied to (PY |X=x0
, P ∗

Y ) and
any transformation Tx from (3.13). To prove the second claim notice that

βα(PY |X=x, P
∗
Y ) = βα(Tx ◦ PY |X=x0

, Tx ◦ P ∗
Y ) (3.35)

≥ βα(PY |X=x0
, P ∗

Y ) (3.36)

where (3.36) follows from the data-processing inequality applied to βα. A straightforward
generalization then shows that for any xn ∈ An we have

βn
α(PY n|Xn=xn , (P ∗

Y )
n) ≥ βn

α(PY n|Xn=xn
0
, (P ∗

Y )
n) , (3.37)

where xn0 denotes the string of n letters x0. Now following the proof of Lemma 29 in [?]
we get (3.33).

For any x ∈ A we have that the second moment of log
dPY |X=x

dP ∗
Y

is finite by (3.32) and

hence by the CLT:

log βn
α((PY |X=x)

n, (P ∗
Y )

n) = −nD(PY |X=x||P ∗
Y )−

√

nV (PY |X=x)Q
−1(α) + o(

√
n) .

Therefore, from (3.37) we conclude that (3.34) holds (otherwise (3.37) will be violated
either for α < 1/2 or for α > 1/2).

The last two claims are proved as for the input-symmetric case. QED

3.4 Functor: RanTra → VectR.

To any measurable space X we associate a vector space VX of measurable functions on it.

To any morphism X
PY |X−→ Y we associate a linear map VY

F−→ VX as follows:

F (φ)(x) =

∫

Y

φ(y)dFY |X=x .

This is a contravariant faithful functor (that is, F1 = F2 (linear maps) if and only if
P 1
Y |X = P 2

Y |X (transition kernels)). The functor is not full: its image is the set of all
positive linear maps preserving constant 1-function.

Remarks:

1. The map between [n] and [k] is just a n × k stochastic matrix. This establishes a
functor between the subcategory of RanTra consisting of discrete spaces and finite-
dimensional R-vector spaces with stochastic-matrices as morphisms between them.
For example, the image of the BSC(1, δ) is

(
1− δ δ
δ 1− δ

)
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2. Channel sum corresponds to direct sum of vector-spaces and direct-sum of morphisms.

3. Channel product corresponds to tensor product. For example,

BSC(n, δ) ↔
(
1− δ δ
δ 1− δ

)⊗n

Note that the operator on the operator on the right is diagonalizable with n + 1
eigenspaces corresponding to eigenvalue (1− δ)k, k = 0, . . . , n and dimension

(
n
k

)
.

This last point brings an interesting interpretation to Shannon’s theorem. For any
(positive, 1-preserving) linear map F : VY → VX between finite-dimensional R-vector

spaces there exists an inclusion g∗ and a surjection f∗ from an 2k-dimensional space R
2k

such that the overall map

R
2k g∗−→ V ⊗n

Y

F⊗n

−→ V ⊗n
X

f∗

−→ R
2k

satisfies
||f∗ ◦ F⊗n ◦ g∗ − I2k ||∞ ≤ ǫ

provided that k < nC and n is sufficiently large (depending on how small ǫ is). This is not
possible for k > nC.

Thus Shannon’s theorem shows that tensor products asymptotically have exponentially
large rigid linear subspaces.

Future work:

1. Interpret Shannon’s theorem for BSC(n, δ) in terms of the eigenspace decomposition
of F⊗n.

2. describe symmetries and channel equivalences in the target category of finite-dimensional
spaces.

3. According to [10], if two doubly stochastic matrices K and K ′ are similar, then there
exist doubly stochastic matrices C and C1 such that

CK = K ′C , and KC1 = C1K
′ ,

or in the diagrammatic way:

A

K

��

C // A1

K ′

��

C1 // A

K

��
B

C // B1
C1 // B

, (3.38)

where |A| = |B| = |A1| = |B1| and K ∼ K ′ (as square matrices). Same conclu-
sion is true for stochastic (not doubly) K and K ′ under some additional conditions
(see [10]). Unfortunately, the directions of arrows in (3.38) is not correct, so we can
not immediately conclude that K ≺ K ′ or K ≍ K ′.
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3.5 Functor: RanTra → ConVect

Define a category of coned vector spaces as follows:

Definition 16 A finite dimensional coned vector space V is an R-vector space together
with a positive cone C+ and a unity element 1V ∈ C+ which satisfy the following proper-
ties:There exists a unique (upto reordering) basis eα, α ∈ I of V such that

C+ = hull{0, eα, α ∈ I} .

In this case the unity element should satisfy

1V =
∑

α

eα .

Morphism of coned spaces is a morphism of vector spaces that preserves a positive cone
and the unity.

The following is a contravariant functor from RanTra: to a measurable space S we
associate a coned space F (S) = VS of functions S → R with C+ being the set of all positive
functions and 1S being the identity function1 And to a morphism of spaces f : S → R we
associate a linear map

F (f) : v(r) →
∫

v(r)f(dr|s) .

The canonical basis of VS is naturally indexed by elements of S:

basisof VS = {es, s ∈ S}.

We also adopt the following convention: for each subset R ⊂ S we denote

eR =
∑

r∈R

er ∈ VS .

Remarks:

1. Functor F establishes the (co-)equivalence of categories (the apparent reverse functor
is actually an adjoint functor) of finite measurable spaces and finite-dimensional coned
spaces.

2. Each coned space has a natural inner product under which the C+-basis is orthogonal.

3. Taking any subset of basis vectors eα we can form a subspace V ′ ⊂ V such that the
orthogonal projection is a morphism of coned spaces. Inclusion V ′ →֒ V , however, is
not a morphism since it does not preserve unities.

1Note that this VS also has a natural ring structure (under pointwise multiplication) but morphisms of
measurable spaces do not preserve this structure, so we did not include it in the definition of a coned space.
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4. Two interesting subsets are defined on each coned space:

KV = {x ∈ V : ∀α < x, eα >∈ [0, 1]} , (3.39)

PV = hull(eα, α ∈ I) = {x ∈ C+ :< x, 1V >= 1} . (3.40)

5. A probability measure P on S corresponds to an element p ∈ PV :

E P [f(S)] =< p, f > .

6. Note that any (image under the functor) of a binary morphism S
H→ [2] is completely

specified by a single element h ∈ KVS
. Indeed:

V2
H̃→ VS : H̃(v0) = 1S − H̃(v1)

and thus H̃(v0) should belong to KVS
and is otherwise arbitrary.

7. A binary hypothesis testing curve for (S,P,Q) can be found as

βα(P,Q) = inf
h∈K:<h,p>≥α

< h, q > (3.41)

= α
< p, q >

||p|| + inf
v:α p

||p||
+v∈K

< v, q > (3.42)

Finally, corresponding to a coding diagram

[M ]
f→ X

T→ Y
g→ [M ]

we have

[M ]
g̃→ Y

T̃→ X
f̃→ [M ] .

Note that when the encoder is deterministic and without repeated codewords we have:

f̃(ex) =

{

0 , x 6∈ f([M ]) ,

ew , x = f(w), w ∈ [M ] .
(3.43)

When the decoder is deterministic then we have

g̃(eŵ) =
∑

y∈Dŵ

ey = eDŵ
, (3.44)

where Dŵ = g−1(ŵ) is a decoding set.
Below we make the following assumptions about f, g and T :
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1. X = Y = S (i.e. spaces of inputs and outputs can be identified). Then the main
vector space is denoted V instead of VS .

2. encoder and decoder are as in (3.43), (3.44).

3. Therefore, we can identify [M ] as a subset of S. Then VM →֒ V is an (orthogonal)
inclusion and f̃ is a projection:

f̃ = Proj(V → VM ) .

4. Moreover, the code is “linear”, so that the cardinality of each Dŵ is the same. This
implies that g̃ can be extended from an orthogonal operator VM → V to a full
orthogonal operator V → V satisfying

g̃∗ ◦ g̃ = |Dŵ|I =
|S|
M

I .

After these assumptions we have the following picture: an endomorphism of a coned space
T̃ : V → V is given. A coned subspace VM is contained as inclusion in V and an orthogonal
operator g̃ : V → V is given. Together they satisfy:

tr f̃ T̃ g̃ = M(1− ǫ) ,

where ǫ is the probability of error of the original code (f, g). Note that f̃ T̃ g̃ is an |S|-by-|S|
matrix with block-structure:

f̃ T̃ g̃ =

(
Λ 0
0 0

)

,

where Λ is a doubly stochastic matrix (because of “linearity” of the code). A code is good
if

A = f̃ T̃ g̃ − f̃

is almost a zero-operator. More precisely we have the estimates:

ǫ

√

M

M − 1
≤ ||Aes|| ≤

√
2ǫ (3.45)

||A|| ≤
√
2Mǫ . (3.46)

(Note that it is not clear immediately whether even for BSC
√
Mǫ → 0 for all rates?)

3.6 Functor: channels → synchronized channels

Recall that a kernel PY |X : A → B in the definition of the channel is required to satisfy
two conditions:
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1. for a fixed x ∈ A, PY|X=x(·) is a probability measure on (B,FB), where FB is the
σ-algebra implicit in the definition of B; and

2. for a fixed E ∈ G the function x 7→ PY|X=x(E) is FA-measurable.

For problems with feedback the notion of time and causality is of vital importance. We
therefore need to add some more structure to the definition of the channel.

Definition 17 A synchronized channel A = (A,K,B, {Fn,Gn}) is an abstract channel
(A,B,K) with filtrations Fn and Gn on A and B, resp., and the requirement that K
be a transition probability kernel from (A,Fn) to (B,Gn) for each n ∈ Z. Naturally we
define Hom(A,B) as morphisms measurable w.r.t. Fn,Gn. Similarly AutA is defined as
invertible elements of Hom(A,A).

For notational simplicity, we also assume there are two pre-chosen sequences of functions
on A and B, such that

Fn = σ{Xk, k ≤ n} , and Gn = σ{Yk, k ≤ n} .

Definition 18 A time-shift for a channel A is a pair of maps A
TA→ A and B

TB→ B such
that the following diagram commutes:

A

K

��

TA // A2

K

��
B

TB // B2

.

A partition of the channel (A, T ) is a pair of partitions π and σ (of A and B, resp.) such
that

∀S ∈ σ∀P ∈ π∀x1, x2 ∈ P : K(S|x1) = K(S|x2) (3.47)

(this is simply an expression of the usual condition for a non-anticipatory channel).

Note that if (π, σ) is a partition, then (T−1
A π, T−1

B σ) is a partition too.

Definition 19 A channel (A, T ) is said to be Bernoulli if there are finite partitions of
input and output spaces (satisfying (3.47)) such that the action of T on them generates
σ-algebras on A and B respectively.

Any channel A can be extended memorylessly to a synchronized Bernoulli channel A′

by the following construction. We take A′ = A∞ and Xj as the usual projections onto
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j-th coordinate; similarly we construct B′ = B∞ and Yj . The kernel PY|X is defined as an
extension of the following sequence of finite dimensional kernels:

PY n|Xn=(x1,...xn) =

n∏

j=1

PY |X=x1
,

where the product is the product of measures on B. A synchronized channel obtained in
this way starting from finite spaces A and B is called discrete memoryless (DMC). The
Bernoulli shift T is obviously defined as a time shift. This description is functorial (i.e.
maps of channels A → B induce maps of synchronized channels A′ → B′).

4 Symmetric codes

Linear codes over BSC(n, δ) correspond to a particular way of generating constellations in
the input space Z

n
2 . Namely, there is an injection

Z
n
2 →֒ AutBSC(n, δ)

and for any subgroup H of Zn
2 we define codebook to be all H translates of the fixed vector

x0 = (0, 0, . . . , 0). Moreover, typically the way to choose H = Z
k
2 is by giving Z

n
2 the

structure of a vector space F
n
2 and defining H = span(g1, . . . , gk) for a certain collection

(g1, . . . , gk) of F2-independent vectors.
To summarize, a [k, n] linear code is defined by a choice of injection

Z
k
2 →֒ AutBSC(n, δ)

and an initial vector x0.
As a generalization we give the following definition, which encompasses linear codes

over BSC and BIAWGN, geometrically uniform (GU) [2] and G-generated codes [8] over
AWGN.

Definition 20 A symmetric code for the channel A is defined by a pair (x0,H) where
x0 ∈ A is an element of the input space A of A and H is a subgroup of AutA. Explicitly,
the encoder is a map H → A given by

f(h) = h(x0) .

Therefore, the cardinality of the code is |H|; the cardinality of the codebook is [H : H ∩
Stab x0]. The decoder is assumed to be a maximum likelihood one.

Although such a choice might look quite restrictive, these codes do achieve capacity of some
symmetric channels [7]. At the same time the syndrome decoding generalizes to them and
thus they are somewhat easier to decode than a general code.
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Although, for BSC the probability of error does not depend on the choice of x0, it
might not be true in general.1 TODO: conjugate subgroups correspond to the same code?
Change of basepoint within H-orbit is a permutation of codewords? Cyclic codes corresp.
to σHσ−1 = H. More generally, are there normal subgroups of the Coxeter group?

Theorem 21 Consider channel A = (A,K,B) and a symmetric code (H,x0). Then there
exists a randomized maximum likelihood decoder such that with this decoder the average
probability of error equals to the maximum probability of error and, of course, the Pe is
minimal among all possible decoders.

Proof: This is an extension of the Theorem 56, Appendix A [?]. Denote the kernel of A
as PY |X for convenience.

For each y define the maximum likelihood function:

ml(y) = max
h∈H

PY |X(y|hx0)

and the cardinality of the set of maximum likelihood codewords:

N(y) = |{h ∈ H : PY |X(y|hx0) = ml(y)}| .

Now consider a randomized maximum likelihood decoder:

dr : B → H ,

where
dr(y) = h w.p. 1

N(y) if PY |X(y|hx0) = ml(y)

Denote
q(y, h) = P[dr(y) = h] .

Then by definition q(y, h) = 1
N(y) if h is among maximum likelihood codewords and 0

otherwise. Notice,
q(h1y, h) = q(y, h−1

1 h) .

Therefore, the probability of error of decoding the codeword h is

λh = P[dr(Y ) 6= h|X = hx0] (4.1)

= E [1− q(Y, h)|X = hx0] (4.2)

= E [1− q(h(Y ), 1)|X = x0] (4.3)

= λ1 . (4.4)

Therefore, all codewords are equally protected, as claimed.
Remarks:

1This property of the BSC is a consequence of the fact that for each H ≤ Z
n
2 there is an H ′ isomorphic

to H and such that x0 and 0 belong to the same H ′-orbit.
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1. In [8] authors compute the following. Suppose G ≤ AutA is abelian subgroup and
suppose that it acts regularly (or simply transitively) onA. Then what is the maximal
rate achievable by symmetric codes (H, 0) where H ≤ Gn:

CG = lim
ǫ→0

lim inf
n→∞

max
H≤Gn,Pe(H)≤ǫ

1

n
log |H| .

For example, when G = Zpr the answer turns out to be

CG = min
0≤l≤r

r

l
Cl ,

where Cl is the usual Shannon capacity of the channel Al with inputs restricted
to pr−l

Zpr (under obvious identification of Zpr and A. Interestingly, authors show
example of a channel with G = Z8 for which CG less than the Shannon capacity.

4.1 Application to AWGN

Consider an AWGN of blocklength n: it has in input space

Fn = {x : ||x||2 = nP} ⊂ R
n

(it is a standard method to reduce the power constraint ||x||2 ≤ nP to the one with equality
by adding an (n+ 1)-st coordinate).

The channel acts from Fn to R
n by adding white Gaussian noise:

Y n = Xn + Zn , Zn ∼ N (0, In) .

A simple argument shows then

AutAWGN = O(n)

since O(n) is the totality of isometries of Euclidean space preserving the sphere.
Symmetric codes for AWGN should be, according to this paradigm, be identified with

discrete subgroups of O(n), the orthogonal group. Classifying and understanding all such
subgroups is a long-standing mathematical problem. However, there is a better-understood
subgroup Cn ≤ O(n) called the Coxeter subgroup, which is isomorphic to Z

n
2 ⋊ Sn. Inter-

estingly, restricting attention to Cn and its subgroups is equivalent to factoring the encoder
through (2.1), or equivalently applying the BPSK modulation and then doing linear-coding
on top of it.

Note however, that inclusion G →֒ O(n) is an orthogonal representation of the group G
(any finite dimensional representation can be ortogonalized, so there is no loss of generality
here). Thus, any and all symmetric codes for the AWGN come from representations of finite
groups. Moreover, the ones that correspond to reducible representations are equivalent to
concatenating to shorter codes. Thus it is imperative to focus on irreducible representations.

Remarks:
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1. It might be worthwile to initially focus on faithful representations (i.e. only 1 element
of G is represented by an identity operator).

2. If we also require the action of G to be free (which is equivalent to asking that no
respective linear operators had an eigenvalue of 1) then finding such action is the
same as finding an (n − 1)-dimensional compact smooth Riemannian manifold with
constant positive sectional curvature (equivalently, compact topological manifolds
with finite fundamental group G and covered by Sn−1).

3. Classically (see [2]) codes from subgroups of O(n) were proposed by Slepian in [3]
(a later extensive review is in [4]). However, the problem with their approach is
that they restrict attention to commutative groups for which there cannot be real
irreducible representation for dimension > 2. Note that geometric uniform codes [2]
differ from our treatment in allowing translations in addition to O(n) (to include
things like lattice codes), so is not directly interesting. TODO: Read [3] and [4].

4. Maybe related: Slepian gave a funny counter-example of a 10-point constellation in
R
5 which has transitive symmetry group, but cannot be generated as an orbit code

by a subgroup of the symmetry group. A recent example of orbit codes: [5] and [6].

Real and complex representations

Given a real representation ρreal we can form a complex representation by taking ρreal⊗C.
We define any complex representation ρ to be essentially real if there exists some ρreal such
that ρ ≃ ρreal ⊗ C. For a complex representation ρ its realification is denoted by ρR.

Remarks:

1. ρreal–irred. does not imply ρreal ⊗ C – irred. (c/ex: Z4 with generator

(
0 −1
1 0

)

).

2. ρ – irred. does not imply ρR irred. (c/ex: any essentially real rep.).

3. For any representation ρreal the space supporting ρreal⊕ρreal can be given C-structure
such that ρreal ⊕ ρreal ≃C ρreal ⊗ C (as complex reps.).

4. ρ–essentially real ⇐⇒ ∃ basis of V s.t. all matrices of ρ are real.

5. ρ–essentially real ⇐⇒ ∃ equivariant antilinear map J : V → V satisfying J2 = 1.
Antilinearity ensures that the space V splits into +1 and −1 eigenspaces evenly. ρreal
is taken to be a restriction of ρ to +1 eigenspace.

6. Necessary criterion: ρ – essentially real then ρR ≃ ρreal ⊕ ρreal for some ρreal. Is it
sufficient? I.e. do we always have ρR ≃ ρreal ⊕ ρreal =⇒ ρ ≃ ρreal ⊗ C?
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7. Given a C-vector space V we can define its complex-conjugate V̄ as follows: V̄ = V

(as an abelian group) but λ ·v △
= (λ̄)v (where here and below · denotes multiplication

in V̄ and absence of · – that of V ). The following are simple relations between V and
V̄ :

• HomC(V, V ) = HomC(V̄ , V̄ ) = {H ∈ EndR(V ) : H commutes with i : V →C

V }.
• HomC(V, V̄ ) = HomC(V̄ , V ) = {H ∈ EndR(V ) : H–antilinear}.
• One may construct isomorphism between V and V̄ by picking an arbitrary basis

{ej} and defining J : V → V̄ via ej → ej, iej → −iej and extending this by
R-linearity. All such isomorphisms (as R-linear maps) are characterized by the
condition:

J2 = 1, J ∈ EndR(V ) . (4.5)

• A hermitian form on V ⇐⇒ Bilin(V, V̄ ) ⇐⇒ V ⊗ V̄ . Consequently, choice
of any hermitian form induces an isomorphism

V ∗ ≃ V̄ .

• Given a representation ρ on V , we can define a representation ρ̄ on V̄ : ρ̄g(v) =
ρg(v) (i.e. by definition ρ̄R = ρR; the definition makes sense becauseHomC(V, V ) =
HomC(V̄ , V̄ )).

• ρ and ρ̄ not necessarily isomorphic: e.g. rep. of Z4 on C
1 with i as a generator.

• Some useful identities:

ρ ≃ ρ1 ⊕ ρ2 =⇒ ρ̄ ≃ ρ̄1 ⊕ ρ̄2 (4.6)

ρR ⊗ C ≃ ρ⊕ ρ̄ . (4.7)

• ρ ≃ ρreal ⊗ C ⇐⇒ ρ ≃ ρ̄ with the isomorphism given by a map satisfy-
ing (4.5) ⇐⇒ there exists a basis of V s.t. all matrices of ρ are real.

• If ρ ≃ ρ̄, then ρR cannot be irreducible. Indeed, isomorphism H : V → V̄ cannot
be identity and clearly it satisfies

Hρg = ρgH as elements of EndR(V ) .

At the same time we cannot claim that H will satisfy (4.5). The only thing we
can guarantee is that in any R-basis obtained from C-basis we have:

H ↔
(
A B
B −A

)

TODO: explicit counter-example of ρ ≃ ρ̄ and H not satisfying (4.5).
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4.2 Application to noncoherent fast fading channel: SISO

Noncoherent fading channel acts on complex input letters by multiplication and addition,
independently on a per-letter basis, as follows:

Y = HX + Z ,

where H ∼ Nc(0, 1) and Z ∼ Nc(0, 1) (independent of each other).
Consequently, for blocklength n we have channel acting between

Fn
△
= {xn : ||xn||2 = nP} ⊂ C

n ,

and C
n via

Y n = diag(H1, . . . ,Hn)X
n + Zn ,

where Hj are iid1 and Zn ∼ Nc(0, In).
To compute the automorphism group we first address n = 1 case. Here we have

automorphism group given by U(1) × U(1). An element (eiθ1 , eiθ2) acts as follows:

X → Xeiθ1 (4.8)

Y → Y eiθ2 . (4.9)

Thus, we can cancel redundant degrees of freedom by first taking the quotient of the input
space by the subgroup U(1) × {1}, which reduces the input space from C to R+ and
corresponds to a map

x → |x| .
Similarly, taking the quotient of the output space by the subgroup {1} × U(1) we obtain
the equivalent model for the (single-letter) channel:

Y = |HX + Z| ,

where now X,Y ∈ R
+. Moreover, this is equivalent to the following channel

Y = |
√
GX + Z| , (4.10)

where now G has χ2 distribution (with two degrees of freedom).
Applying this operation to the blocklength n channel we obtain an equivalent channel

which acts between

F ′
n

△
= {xn :

n∑

j=1

x2j = nP} ⊂ R
n
+ ,

1This is the meaning of “fast” in the title of the section.
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and R
n
+ independently on each of n components and according to (4.10). This channel

clearly has permutation symmetries and it can be shown (TODO) that these are the only
symmetries, thus for the converted channel we have

Aut = Sn ,

whereas for the original we have (U(1) × U(1))n ⋊ Sn.
Important conclusion: For this channel the only source of symmetry is permutation

and thus we (knowing that capacity achieving distribution is unique and discrete) propose
to analyse the following codes:

• If for SNR P capacity achieving distribution is given by

P ∗
X =

L∑

i=1

wiδai ,

where ai > 0. Then construct (for large n) the vector

x0 = [a1, . . . , a1
︸ ︷︷ ︸

≈nw1

, . . . , aL, . . . , aL
︸ ︷︷ ︸

≈nwL

] .

• Take a subgroup G ≤ Sn, then the codebook is

{gx0 , g ∈ G .}
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