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Abstract

Recently Tchamkerten, Chandar and Wornell proposed a novel variation of the problem of joint

synchronization and error-correction. This paper considers a strengthened formulation that requires

the decoder to estimate both the message and the location of the codeword exactly. Such a scheme

allows for transmitting data bits in the synchronization phase of the communication, thereby improving

bandwidth and energy efficiencies. It is shown that the capacity region remains unchanged under the

exact synchronization requirement. Furthermore, asynchronous capacity can be achieved by universal

(channel independent) codes. Comparisons with earlier results on another (delay compensated) definition

of rate are made. The finite blocklength regime is investigated and it is demonstrated that even for

moderate blocklengths, it is possible to construct capacity-achieving codes that tolerate exponential level

of asynchronism and experience only a rather small loss in rate compared to the perfectly synchronized

setting; in particular, the channel dispersion does not suffer any degradation due to asynchronism.

For the binary symmetric channel a translation (coset) of a good linear code is shown to achieve the

capacity-synchronization tradeoff.
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I. INTRODUCTION

The traditional approach to the problem of reliable communication in the presence of noise

typically assumes that the decoder has access to a corrupted version of the original waveform

with the beginning and the end of the waveform being perfectly known. In such a setting for

sufficiently long blocklengths modern sparse graph codes achieve almost the best possible error

correction. It is natural, therefore, to revisit other sources of suboptimality in a communication

system. One such overhead is introduced by the traditional frame synchronization methods [1]–

[3] employing periodical pilot signals that consume both energy and bandwidth. The focus of

this paper is the problem of performing the error-correction and synchronization jointly.

Classically, several approaches going beyond pilot-based methods were investigated. One of

the earliest ideas is comma-free encoding [4] that allows one to recover synchronization in a

data stream composed of back-to-back transmitted codewords in the absence of channel noise.

In [5] it was shown that a coset of a good linear code will have the comma-free property.

Extension to situation with channel noise was considered in [6], where again it was shown

that cosets of certain linear codes suffice. Another line of work focused on coding [7] and

fundamental limits [8] for communication in the presence of random insertions/deletions. In an

even earlier work Gallager [9] shows that for this setting a good (convolutional) code scrambled

by a pseudo-random sequence yields an excellent synchronization performance. In the context

of multiple-access channels, treatments of both the frame-asynchronism [10]–[12] and symbol-

asynchronism [13] focused on the case when the relative time offsets between the users are

perfectly known at the decoder (or remain constant across multiple transmissions, which makes

them reliably learnable at the decoder).

This paper considers the problem of initial acquisition of synchronization. Namely, the actual

noisy transmission is assumed to be preceded by a (random length) sequence of background

noise. The goal of the decoder is to detect the precise moment when the message starts as

well as to decode the content of the initial frame. The motivation is to optimize energy and

bandwidth efficiency of modern systems by inserting data bits into the synchronization phase

of communication. In practice, these bits might be used for implementing multiple-access to

a shared wideband medium, e.g. the receiver may be synchronizing with a frequency-hopping

pattern corresponding to a specific user.

November 24, 2012 DRAFT



3

Such a single shot model of asynchronism has recently been proposed by Tchamkerten,

Chandar and Wornell [14], who were motivated in part by the sensor networks in which nodes

exchange data very infrequently (thus, making constant channel-tracking impractical). Subsequent

work [15], [16] demonstrated significant advantages in going beyond the conventional pilot-

based approach. The focus of [14]–[16] was on recovering the message only, whereas this paper

considers both the message and the timing. In the context of initial synchronization such extension

appears to be vital.

Mathematically, the formulation of [14] is a generalization of the change point detection

problem [17], close in spirit to the so called “detection and isolation” problem introduced in [18],

except that in the latter the set of distributions that the original one can switch to is pre-specified

whereas [14] allows for an optimal codebook design.

Here we show that the requirement of timing recovery does not change the capacity region

compared to the one reported in [16] (for the special case when cost of each symbol is 1). For

binary symmetric channel this is achieved by a random coset of a good linear code, which is

in agreement with the classical findings discussed above. In addition show that sequences of

universal codes exist that achieve all points inside the capacity region simultaneously for all

channels. Finally, we investigate the results in the regime of finite blocklength. In particular, we

demonstrate that even for short blocklengths it is possible to combat a gigantic (exponential)

asynchronism while achieving essentially the same performance as for the synchronous setting:

namely, the channel dispersion [19] is unchanged. This illustrates that communication systems,

investing significant bandwidth in pilots, may be operating far from optimality.

The organization of the paper is as follows. Section II defines the problem formally. Section III

contains the asymptotic results on the capacity and universality, and comparisons with the results

in [14]–[16]. Section IV presents the finite blocklength results and draws conclusions on channel

dispersion. With the exception of the non-asymptotic achievability bound in Theorem 4 the

discussion focuses on discrete memoryless channels (DMCs).
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II. PROBLEM FORMULATION AND NOTATION

Consider a DMC with stochastic matrix W : X → Y and a distinguished symbol ⋆ ∈ X . We

define its blocklength n extension as

W n(yn|xn) =

n∏

j=1

W (yj|xj) . (1)

Given a number An ≥ n we define an asynchronous random transformation, denoted (W n, An),

as follows:

• input space is X n △
= {(x1, . . . , xn) : xi ∈ X , i = 1, . . . , n}

• output space is YAn

• the transformation acts as follows:

PY An |Xn(·|·) =
∑

t

Pν(t)PY An |Xn,ν(·|·, t) ,

where ν is a random variable uniformly distributed on {1, . . . , An − n+ 1} and

PY An |Xn,ν(y
An|xn, t) =

∏

j<t,j≥t+n

W (yj|⋆)
∏

t≤j<t+n

W (yj|xj) . (2)

Definition 1: An M-code for the random transformation (W n, An) is a triplet

• An encoder function f : {1, . . . ,M} → X n

• A stopping time n ≤ τ ≤ An − n + 1 of the filtration generated by {Yj, j = 1, . . . , An}.
For convenience, we set

ν̂
△
= τ − n + 1 ,

which marks the decoder’s estimate of ν.

• A decoder function g : Y ν̂+n−1 → {1, . . . ,M}.
Given an M-code we construct a probability space (W, Xn, Y An, Ŵ) and distribution P on

it by taking W – uniform on {1, . . . ,M}, Ŵ = g(Y ν̂+n−1) and then chaining all random

transformations according to the directed graphical model:

ν

""
E

E

E

E

E

E

E

E

E

W
f

// Xn // Y An

ν̂,g
// Ŵ

(3)
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The code is said to be an (M, ǫ) code if its probability of error does not exceed ǫ. In this paper

we consider three definitions of probability of error (in the order of decreasing strength):

P[Ŵ = W, ν̂ = ν] ≥ 1− ǫ (4)

P[Ŵ = W, ν̂ ≤ ν] ≥ 1− ǫ (5)

P[Ŵ = W, ν̂ ≤ ν + Ln] ≥ 1− ǫ , Ln = exp{o(n)} (6)

An (M, ǫ)-code under (4) is required to decode the message W and synchronize, under (5) is

required to decode the message W with no additional delay (lookahead past the end of the

codeword), while (6) allows for a subexponential delay Ln. The criterion (6) was considered

in [16] and only introduced here for the purpose of comparison.

One of the main results of this paper is that (rate-wise) it does not matter which one of the

three criteria is used and whether ǫ is held fixed or is asymptotically vanishing. Thus, neither

enabling the lookahead nor permitting the early decision change the capacity, which may appear

somewhat surprising considering that the commonly used pilot-based synchronization scheme

of Massey [20] does in fact require some lookahead past the pilot end (called deferred-decision

in [2]).

Definition 2: A pair (R,A) is called ǫ-achievable if there exist sequences of numbers An ≥ n

and Mn ≥ 2 satisfying

lim inf
n→∞

1

n
logAn ≥ A , (7)

lim inf
n→∞

1

n
logMn ≥ R (8)

and a sequence of (Mn, ǫ) codes for random transformations (W n, An). The asynchronous ǫ-

capacity at asynchronism A is defined as

Cǫ(A)
△
= sup{R : (R,A) is ǫ-achievable} .

The asynchronous capacity at asynchronism A is defined as

C(A)
△
= lim

ǫ→0
Cǫ(A) .

The ǫ-synchronization threshold A◦,ǫ is defined as

A◦,ǫ
△
= sup{A : (0,A) is ǫ-achievable}
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and the synchronization threshold is

A◦
△
= lim

ǫ→0
A◦,ǫ .

Remark: Note that (0,A) is ǫ-achievable if and only if there exist a sequence of (n, 2, ǫ) codes

for random transformations (W n, 2nA+o(n)).

The main difference with the model studied in [14], [15] is that the definition of rate there

was

R̃
△
=

logM

E [|ν̂ − ν + n|+] (9)

and correspondingly the error event was defined as just {Ŵ 6= W}. With such a (delay

compensated) definition of rate, one defines the capacity C̃(A) in exactly the same manner as

C(A); the key results of [14], [15] provide upper and lower bounds on C̃(A) (but not C̃ǫ(A)).

The definition (9) was chosen, perhaps, to model the situation when one wants to assess the

minimal number of channel uses (per data bit) that the channel remains under the scrutiny of

the decoder, whereas our definition

R
△
=

logM

n
(10)

serves the purpose of studying the minimal number of channel uses (per data bit) that the

channel remains occupied by the transmitter, while the delay constraint is disentangled from the

rate definition by the condition (5). With such definitions, our model can be interpreted as the

problem of communicating both the data W and the state ν as in [21], except that the state is no

longer a realization of the discrete memoryless process and it enters the channel law (W n, An)

in a different way.

The notation in this paper follows that of [22] and [19, Section IV.A], in particular, D(P ||Q)

denotes the relative entropy between distributions P and Q; Wx(·) = W (·|x); for a distribution

P on X a distribution PW on Y is defined as PW (y) =
∑

x W (y|x)P (x); we agree to identify

distribution Q on Y with a stochastic kernel Q : X → Y which is constant on X , so under this

agreement PWx = Wx; and I(P,W ) is a mutual information between X ∼ P and Y ∼ PW and

coupled via PY |X = W : I(P,W ) = D(W ||PW |P ). We denote by P n the product distribution

on X n and similarly for Yn. We adopt the definitions of [22, Chapter 2] for the concepts of an

n-type, a typical set TP , V-shells TV (x), etc. Additionally, we agree for any set S of stochastic
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matrices V : X → Y to denote

TS(x) =
⋃

V ∈S
TV (x) . (11)

The spaces of probability measures on X and Y , and stochastic matrices V : X → Y are given

the topology inherited from the canonical identification with the convex compact subsets of the

respective finite dimensional Euclidean spaces.

III. ASYMPTOTIC RESULTS

We summarize the previously known results:

Theorem 1 ([14], [16], [23]): For any DMC W and 0 < ǫ < 1 we have

Aǫ,◦ = A◦ = max
x∈X

D(Wx||W⋆) . (12)

The asynchronous capacity and ǫ-capacity of the DMC W under the probability of error crite-

ria (5) or (6) is:

C(A) = Cǫ(A) = max
P :D(PW ||W⋆)≥A

I(P,W ) , (13)

where the maximum is defined to be zero whenever A > A◦.

Remark: Results regarding (5) are not mentioned in [16] explicitly, but maybe extracted from

the proofs. Similarly, the strong converse part, i.e. Cǫ(A) = C(A), is implicitly contained in [16].

For completeness, in Appendix A we put an alternative proof of the strong converse. The proof

strategy is similar to [16], but we build upon the hypothesis-testing framework of [19], which

allows us to do away with a complicated refinement of the blowing-up lemma required by [16]1.

Remark: As shown in [16, Theorem 5] the weak converse in Theorem 1 is unchanged if ν is

not precisely uniform on exp{nA} atoms but rather is “essentially” such: namely, the length ℓn

of the optimal binary lossless compressor of ν satisfies:

1

n
ℓn → A ,

where the convergence is in probability, which by a standard argument is equivalent to

1

n
log

1

Pν(ν)
→ A , (14)

also in probability. As the argument in Appendix A demonstrates under such an assumption the

strong converse continues to hold also.

1Added in proof: A recent revision [24] appears to work around the blowing-up lemma as well.
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Our main asymptotic results are the following:

Theorem 2: For any DMC W and any 0 < ǫ < 1 the asynchronous capacity Cǫ(A) under

the stronger criterion (4) is given by (13). In other words, the requirement of precise timing

recovery as per (4) does not incur any loss in rate.

It turns out that all rates up to capacity C(A) can also be approached by a universal sequence

of codes that does not require an apriori knowledge of W :

Theorem 3: Fix A ≥ 0, rate R and a distribution P on X . Then there exists a sequence

of codebooks and universal decoders which simultaneously achieves a vanishing probability of

error (5) over all asynchronous DMCs (W n, exp{An}) satisfying

A < D(PW ||W⋆) , (15)

R < I(P,W ) . (16)

The equivalence of Theorem 3 with the capacity expression (13) follows from

max
P :D(PW ||W⋆)≥A

I(P,W ) = sup
P :D(PW ||W⋆)>A

I(P,W ) , (17)

where supremum in the left-hand side is taken to be zero if the constraint set is empty. To

show (17), note that if the maximizer P in the right-hand side is such that D(PW ||W⋆) > A
then there is nothing to prove, so assume D(PW ||W⋆) = A. If P is a local maximum of

P 7→ D(PW ||W⋆) then by convexity it must be a global one and in particular

D(W ||W⋆|P ) ≤ D(PW ||W⋆)

implying that I(P,W ) = D(W ||W⋆|P )−D(PW ||W⋆) = 0 and both sides of (17) are zero. Oth-

erwise, if P is not a local maximum, there must be a sequence Pn → P such that D(PnW ||W⋆) >

A, which implies the equality in (17) by continuity of Pn 7→ I(Pn,W ).

A. Discussion and comparison of results

As an example of evaluating (12)-(13), consider the binary symmetric channel BSC(δ) with

X = {0, 1}, Y = {0, 1}, ⋆ = 0 and

W (y|x) =







1− δ , y = x

δ , y 6= x ,
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For such a model, computation of (12)-(13) yield

A◦ = d(δ||1− δ) , (18)

C(d(p ∗ δ||1− δ)) = h(p ∗ δ)− h(δ) , p ∈ [0, 1
2
] , (19)

where the latter is presented in parametric form and we have defined

d(x||y) = x log
x

y
+ (1− x) log

1− x

1− y
, (20)

h(x) = x log
1

x
+ (1− x) log

1

1− x
, (21)

p ∗ δ = (1− p)δ + p(1− δ) . (22)

For the analogous case of binary erasure channel, the C(A) equals the usual synchronous

capacity C for all A > 0. Indeed, if A◦ = ∞ then according to (13)

C(A) = max
P

I(P,W )
△
= C , ∀A ≥ 0 , (23)

i.e. capacity can be achieved for all exponents A ≥ 0.

Next, we compare results in Theorems 2 and 3 with the previously known Theorem 1:

• Theorem 2 proves achievability part under a more stringent condition (4). Unlike [16]

(and [15]) our proof relies on analyzing the behavior of information density, a certain

(super-)martingale property of which allows us to guarantee the perfect synchronization

required in (4). An additional benefit is that the resulting bounds are competitive in the

finite blocklength regime, as shown later in Section IV.

• The fact that requirement of perfect synchronization does not incur a penalty in rate may ap-

pear somewhat surprising. For example, as shown in [23] (which considers synchronization

problem only, i.e. there is only M = 1 message), to find the exact location of the start of

the transmission one may use a shift-register generated pseudo-random sequence. However,

it turns out that no preamble-based method may achieve asynchronous capacity (see the

remark after (24) and [15]). Nevertheless, Theorem 2 constructs a codebook that is usable

for blind synchronization without the need for preambles with favorable autocorrelation.

• Theorem 3 relies on a generalization of the packing lemma, which is used to construct a

codebook having vanishing probability of error simultaneously for a class of DMCs.

• The alternative proof of the strong converse of Theorem 1 that we presented in Appendix A

shows that the ǫ-capacity is unchanged even if the distribution of the start of transmission
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ν is non-uniform as in (14). Our proof technique is of independent interest, as it further

develops the meta-converse framework [19, Section III.E] and [25, Section 2.7], which is

known to result in tight non-asymptotic bounds (see [19, Section III.J4]). It is possible that

our methods would also prove useful for improving the bounds on the capacity C̃(A) in

the model (9).

It is instructive to compare results of Theorems 1 and 2 to those in [14], [15] for a delay-

compensated definition of rate (9):

• In both cases the synchronization threshold is given by (12); see [14]. This is not surprising

since (as remarked above) A◦ is determined by the ability to communicate with M = 2

codewords, for which the precise definition of rate is immaterial.

• In both cases, there is a “discontinuity at R = C” in the sense that C(A) = C for all

A ≤ A1 with A1 > 0 if and only if

D(P ∗
Y ||W⋆) > 0 ,

where P ∗
Y denotes the unique capacity achieving output distribution. However, the precise

value of this critical exponent A1 is unknown for the model (9) even for the BSC, whereas

in the model (10) we always have

A1 = D(P ∗
Y ||W⋆) . (24)

• In both cases, for a certain natural class of synchronization schemes based on preambles,

see [15, Definition 3], we have A1 = 0, which prevents achieving capacity with positive

asynchronism exponent. For the model (9) this is shown in [15, Corollary 3], while for the

model (10) this is simply trivial: to combat a positive asynchronism exponent one would

require preamble of the size δn, but this penalizes the rate to be at most C − δ.

• According to [15] there exist channels (and BSC is one of them – see below) for which the

capacity C̃(A) = 0 for some range of A < A◦. In such regime there exist codes reliably

sending M = exp{nR} codewords, but the rate R̃, as defined in (9), remains zero. This

strange behavior, called “discontinuity at R = 0” in [15, Corollary 2] does not occur in the

definition of rate (10): the capacity is positive for all A < A◦.

• Somewhat counter-intuitively although in our model we impose a seemingly strong condition

{ν̂ ≤ ν} absent in [14], [15], it turns out that the capacity vs. asynchronous exponent region
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Fig. 1. BSC(0.11): The asynchronous capacity (19) compared with inner-outer bounds of [15] for the different model (9).

is larger. This is explained by noticing that if ν̂ > ν then one typically has ν̂ = ν+exp{nǫ}.
Thus in the model (9), to avoid significant penalty in rate the occurrence of ν̂ > ν should

happen with exponentially small probability.

Additionally, [26] considers the definition of rate as in (10) but models asynchronism dif-

ferently and restricts the decoders to operate solely on the basis of each observed n-block.

Their region of rate vs. false alarm error-exponent coincides with the region (13) of rate vs.

asynchronism exponent; see [26, Theorem 1]. This is explained by noticing that the false alarm

is what governs the level of asynchronism that the code is capable of tolerating.

To illustrate these points, in Fig. 1 we compare the region (13) with inner (achievability) and

outer (converse) bounds found in [15, Theorem 2 and Theorem 3], respectively, which for the

case of the BSC(δ) can be shown to be (in parametric form)

A = d(q||δ), C̃in(A) = h(p ∗ δ)− h(δ) (25)

A =
d(p ∗ δ||1− δ)d( 1

2
||δ)

d(p ∗ δ||1− δ) + pd( 1

2
||δ) , C̃out (A) = h(p ∗ δ)− h(δ) (26)

where parameter runs over p ∈ [0, 1

2
] and in (25) q solves

d(q||p ∗ δ) = d(q||δ) .

Note that according to the C̃out bound the capacity in the model (9) is zero between d( 1

2
||δ)

and A◦ = d(1 − δ||δ). This demonstrates the above mentioned discontinuity at R = 0 for the
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BSC and therefore closes the open question mentioned after [15, Corollary 2].

B. Proof of Theorem 2

The main problem in achieving a good error-correction performance in the presence of asyn-

chronism is the ability to resolve partially aligned codewords. For example, suppose that a

codeword x ∈ X n is being transmitted. Then, if there is a k-symbol misalignment, 0 ≤ k < n,

the decoder observes outputs effectively generated by a shifted codeword x⋆k:

x⋆k △
= (⋆, . . . , ⋆
︸ ︷︷ ︸

k

, x1, . . . , xn−k) ∈ X n . (27)

As will be shown shortly, in asynchronous communication achieving a small probability of

error in the sense of (5) requires constructing a codebook in which any pair of distinct codewords

c, c̄ ∈ X n are far apart, and so are c⋆k and c̄. As illustrated by [15, Theorem 2] and [16, Theorem

1], the existence of such codebooks follows immediately from a random coding argument,

since c⋆k and c̄ are independent. Below we materialize this intuition into a finite-blocklength

achievability result (Theorem 4) and a universal packing lemma (Lemma 7).

Achieving a small probability of error in the stronger sense of (4), however, requires construct-

ing a codebook in which c⋆k is far away from c itself. Because of strong dependence between

c⋆k and c this presents a new type of difficulty. Interestingly, however, in memoryless channels

this dependence may still be controlled. For example, for the BSC the quality of distinguishing

c from c̄ depends, essentially, on the Hamming distance |c− c̄| only. If c, c̄ ∈ {0, 1}n are selected

uniformly, then evidently |c− c̄| and |c−c⋆k|, k ≥ 1 have identical (binomial) distribution. Thus,

on average c is distinguishable from both c̄ and c⋆k with small probability of error, resulting

in correct synchronization and message decoding as required by (4). For a general DMC, this

observation is the content of Lemma 6 below.

We proceed to formal analysis. First, we show how to achieve small probability of error

in (5). The following bound applies to general (non-memoryless, non-discrete) channels PY n|Xn

and will also be used for finite blocklength evaluation in Section IV:

Theorem 4: Consider an arbitrary random transformation PY n|Xn : X n → Yn. Then for

any γ ≥ 0 and any input distribution PXn on X n there exists an M-code for the random
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transformation (PY n|Xn , A) satisfying

P[Ŵ = W, ν − n < ν̂ ≤ ν]

≥ P [i(Xn; Y n) > γ]− nM exp{−γ} − E
[
exp{−|r(Y n)− logA|+}

]
, (28)

where P denotes probability with respect to the distribution PXnY n(x, y) = PY n|Xn(y|x)PXn(x),

E is the expectation with respect to P and we also defined

r(yn)
△
= log

PY n(yn)

W⋆(yn)
(29)

i(xn; yn)
△
= log

PY n|Xn(yn|xn)

PY n(yn)
. (30)

Remark: As the proof demonstrates, the bound holds for an arbitrary (not necessarily uniform)

distribution of ν on {1, . . . , A}.
Proof: Intuitively, good asynchronous decoder will analyze sequentially each n-block of

outputs yn and try to determine whether it was generated by one of the codewords or the

background noise. The decoding stops once yn is “close” to one of the codewords ci while also

being “far” from the typical W⋆-noise. Naturally, then for a given codebook {c1, . . . , cM}, ci ∈
X n we define the asynchronous decoder as follows:

ν̂
△
= inf{t ≥ 1 : ∃j : r(Y t+n−1

t ) ≥ γ1, i(cj ; Y
t+n−1
t ) > γ} , (31)

Ŵ △
= min{j : i(cj ; Y ν̂+n−1

ν̂ ) > γ} , (32)

where γ1 is a constant to be chosen later. We now replace each cj with a random codeword

Cj . The elements of the codebook {Cj, j = 1, . . .M} are generated independently of each other

with distribution PXn . We proceed to upper bound the probability of the error event

E
△
= {Ŵ 6= 1} ∪ {ν̂ > ν} ∪ {ν̂ ≤ ν − n} . (33)

For this computation we assume without loss of generality that W = 1. Then, we have

P[E] ≤ P[E, i(C1; Y
ν+n−1
ν ) > γ] + P[i(C1; Y

ν+n−1
ν ) ≤ γ] (34)

= P[E, i(C1; Y
ν+n−1
ν ) > γ] + P [i(Xn; Y n) ≤ γ] (35)

≤ P[ν̂ > ν, i(C1; Y
ν+n−1
ν ) > γ] + P[ν̂ ≤ ν − n] (36)

+

n−1∑

k=0

P[Ŵ 6= 1, ν̂ = ν − k, i(C1; Y
ν−n+1
ν ) > γ] + P [i(Xn; Y n) ≤ γ] (37)
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where in (35) we rewrote the second term via the probability P from (28) and (37) is as in (74).

First term is bounded as follows:

P[ν̂ > ν, i(C1; Y
ν+n−1
ν ) > γ] ≤ P[r(Y ν+n−1

ν ) < γ1] (38)

= PY n [r(Y n) < γ1] , (39)

which follows by noticing that Y ν+n−1
ν is distributed precisely as PY n . The second term is also

handled easily:

P[ν̂ ≤ ν − n] ≤ P[∃t < ν − n : r(Y t+n−1
t ) ≥ γ1] (40)

≤ AnW
n
⋆ [r(Y

n) ≥ γ1] , (41)

since for t < ν − n we have Y t+n−1
t ∼ W n

⋆ .

For the third term in (37) we have

n−1∑

k=0

P[Ŵ 6= 1, ν̂ = ν − k, i(C1; Y
ν−n+1
ν ) > γ] ≤

n−1∑

k=0

M∑

j=2

P[i(Cj , Y
ν−k+n−1
ν−k ≥ γ] (42)

≤ nM exp{−γ} , (43)

where (42) follows simply by the fact that under {i(C1; Y
ν−n+1
ν ) > γ} only makes an error if

for another codeword and some time shift ν − n < t ≤ ν we have i(Cj; Y
t+n−1
t ) > γ, and (43)

follows because Cj and Y t+n−1
t are independent and thus the standard property of information

density applies:

P

[

log
PAB(A, B̄)

PA(A)PB(B̄)
≥ γ

]

≤ exp{−γ} ,

whenever A and B̄ are independent with A ∼ PA (or, by symmetry, if B̄ ∼ PB).

Finally, summing all terms together we get

P[E] ≤ PY n [r(Y n) < γ1] + AnW
n
⋆ [r(Y

n) ≥ γ1] + P [i(Xn; Y n) ≤ γ] + nM exp{−γ} . (44)

Choosing now γ1 = logA and applying the identity [19, (69)] to the first two terms in (44) we

get (28). Optimality of the choice γ1 = logA follows the same argument as in the discussion

after [19, Lemma 19].

Next, we prove the achievability bound for a stronger criterion (4). This result is restricted to

DMC.
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Theorem 5: Let W : X → Y be a DMC. Let τ > 0 be arbitrary. Then, there exists E > 0

such that for any input distribution P on X , any sufficiently large n, any γ ≥ nτ and any M

and A there exists an M-code for the asynchronous random transformation (W n, A) satisfying

P[Ŵ = W, ν̂ 6= ν]

≥ P [i(Xn; Y n) > γ]− nM exp{−γ}

−E
[
exp{−|r(Y n)− logA|+}

]
− (n− 1) exp{−nE} , (45)

where P denotes probability with respect to the distribution PXnY n(x, y) = W n(yn|xn)P n(xn),

E is the expectation with respect to P and r(·), i(·; ·) are defined by (29), (30)

Proof: By following the random-coding construction in Theorem 4 with PXn = P n we

show that the probability of event {Ŵ = W, ν − n < ν̂ ≤ ν} averaged over all codebooks

is lower-bounded by the left-hand side of (28). This takes care of the first three terms in (45).

Thus, we only need to prove that the decoder (31)-(32) also achieves

P[Ŵ = W, ν − n < ν̂ < ν] ≤ (n− 1) exp{−nE} (46)

for all sufficiently large n and some E > 0 (when averaged over the random codebook {C1, . . . , CM}).
As in (37) by symmetry we may condition on W = 1. Note that for any 1 ≤ k < n we have

{Ŵ = 1, ν̂ = ν − k} ⊆ {i(C1; Y
ν−k+n−1
ν−k ) ≥ γ} .

Since γ ≥ nτ , by Lemma 6 (to follow next) we have

P[i(C1; Y
ν−k+n−1
ν−k ) ≥ γ] ≤ exp{−nE} . (47)

Then (47) and the union bound imply (46) and (45).

Lemma 6: Fix DMC W : X → Y , input distribution P on X and let

i(an; bn) =

n∑

j=1

log
W (bj |aj)
PW (bj)

or i(an; bn) = −∞ if W (bj|aj) = 0 for at least one j. Let Xj = ⋆ for −n + 1 ≤ j ≤ 0 and Xj

be i.i.d. with law P for 1 ≤ j ≤ n. Let Y n
−n+1 be the result of passing Xn

−n+1 over the DMC W .

Then for any τ > 0 there exists E > 0 such that for all sufficiently large n and all 1 ≤ k ≤ n

we have

P[i(Xn
1 ; Y

n−k
1−k ) > nτ ] ≤ exp{−nE} . (48)
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Remark: Thus using a misaligned output Y n−k
1−k instead of Y n

1 results in a log-likelihood ratio

that is almost always non-positive.

Proof: Let W r : Y → X be the reverse DMC defined as

W r(x|y) = W (y|x)P (x)

PW (y)
.

Note that for 1 ≤ j ≤ n we have

Tj = log
W (Yj−k|Xj)

PW (Yj−k)
= log

W r(Xj |Yj−k)

P (Xj)
.

Therefore, by independence of Xj’s we have

E [Tj|Xj−1
−n+1, Y

j−1
−n+1] = −D(P ||W r

Yj−k
) ≤ 0 ,

where as usual W r
b denotes a distribution W r(·|b) on X . Thus, the cumulative sums

∑m
j=1 Tj

form a super-martingale. Since

i(Xn
1 ; Y

n−k
1−k ) =

n∑

j=1

Tj

estimate (48) follows from Azuma’s inequality once we ensure that the Tj are bounded. To that

end notice that

Tj ≤ log
1

pmin
,

where pmin is a minimal non-zero value of P (·). If minx,y W (y|x) > 0 then the lower bound

follows similarly. If however, stochastic matrix W has zeros the Tj and D(P ||W r
y ) may be

infinite. This can be fixed as follows. By finiteness of Y we can always find a very large θ > 0

such that for all y ∈ Y

−D(P ||W r
y ) ≤

∑

x∈X
P (x)max

(

−θ, log
W r(x|y)
P (x)

)

(49)

≤ 0 . (50)

Then, since

i(Xn
1 ; Y

n−k
1−k ) ≤

n∑

j=1

max(−θ, Tj)

the (48) follows by applying Azuma’s inequality to a bounded difference super-martingale
∑n

j=1max(−θ, Tj).

Finally, we may put all the pieces together:
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Proof of Theorem 2: : By (17), to prove achievability of (13) it is enough to show that

for every triple P,R,A such that (15)-(16) hold, the pair (R,A) is achievable with a vanishing

probability of error in the sense of (4). To that end, we apply Theorem 5 with M = exp{nR},
A = exp{nA}, γ = nR + nδ where δ > 0 is such that

R + δ < I(P,W ) (51)

A+ δ < D(PW ||W⋆) . (52)

Note that with such a choice we have in the left-hand side of (28)

E
[
exp{−|r(Y n)− logA|+}

]
≤ P [r(Y n) < A+ δ] + exp{−nδ} .

By the weak law of large numbers and (51)-(52) we have

P [r(Y n) < A+ δ] → 0 (53)

P [i(Xn; Y n) > γ] → 1 . (54)

Thus, the left-hand side of (45) converges to 1 and the constructed sequence of codes satisfies

P[Ŵ = W, ν̂ 6= ν] → 1 . (55)

C. Proof of Theorem 3

The key technical ingredient is the following generalization of a packing lemma [22, Lemma

2.5.1]:

Lemma 7: There exist a constantK = K(|X |, |Y|) > 0 and a positive integer n = n0(|X |, |Y|)
such that for every R > 0, and every type P of sequences in X n satisfying H(P ) > R, there

exist at least M = exp{nR−K log n} distinct sequences ci ∈ X n of type P such that for every

pair of stochastic matrices V : X → Y , V̂ : X → Y , every i and every 0 ≤ k < n we have
∣
∣
∣
∣
∣
TV (c

⋆k
i ) ∩

⋃

j 6=i

TV̂ (cj)

∣
∣
∣
∣
∣
≤
∣
∣TV (c

⋆k
i )
∣
∣ exp{−n|I(P, V̂ )− R|+} (56)

provided that n ≥ n0.

Remark: In fact, there is nothing special about the transformations c 7→ c⋆k. The lemma and

the proof hold verbatim if c⋆ki is replaced by f(ci), and clause “every 0 ≤ k < n” with “every
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f ∈ Fn”, where Fn is an arbitrary collection of maps f : X n → X n of polynomial size:

|Fn| = exp{O(logn)}.
Proof: The argument is not much different from that of [22, Lemma 2.5.1] except that we

need to account for the fact that c⋆ki may not have the type P . Below we demonstrate how the

argument in [22] can be slightly modified to handle this generalization.

Let M = exp{nR −K logn} with K to be specified later. It is clear that (56) is equivalent

to the same statement with exp{−n| · |+} upper-bounded by exp{−n(·)}. For a given codebook

C define

λ(i, k, V, V̂ )
△
=

∣
∣
∣TV (c

⋆k
i ) ∩⋃j 6=i TV̂ (cj)

∣
∣
∣

∣
∣TV (c⋆ki )

∣
∣

,

if the denominator is non-zero and we take λ = 0 otherwise. As in [22, Lemma 2.5.1] the proof

will be complete if we can show for all n ≥ n0(|X |, |Y|):

E




∑

V,V̂ ,k

λ(1, k, V, V̂ ) exp{n(I(P, V̂ )− R)}



 ≤ 1

2
, (57)

where the expectation is over a randomly generated codebook C = {C1, . . . , CM} with Cj’s

being independent and uniformly distributed across the type TP .

To compute E [λ(1, k, V, V̂ )] assume that TV (c
⋆k
1 ) 6= ∅ and notice that then

λ(1, k, V, V̂ ) = P

[

U ∈
⋃

j 6=1

TV̂ (Cj)

]

,

where U is distributed uniformly across TV (C
⋆k
1 ). For this probability we have

P

[

U ∈
⋃

j 6=1

TV̂ (Cj)

]

≤ MP[U ∈ TV̂ (C2)] (58)

= MP[u0 ∈ TV̂ (C2)] (59)

= M
|{x : u0 ∈ TV̂ (x)}

|TP |
(60)

≤ M(n + 1)|X | exp{−nI(P, V̂ )} , (61)

where (58) is a union bound, in (59) we denoted by u0 any element of TV (C
⋆k
1 ) and applied the

permutation symmetry, (60) is because C2 is uniform on TP and (61) is by the same argument

as in the proof of [22, Lemma 2.5.1].

Overall, regardless of TV (c
⋆k
1 ) being empty or not we have

λ(1, k, V, V̂ ) exp{n(I(P, V̂ )− nR)} ≤ (n + 1)|X | exp{−K log n} (62)
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because of (61) and M = exp{nR−K log n}. Summing (62) over all k, V and V̂ and applying

the type-counting [22, Lemma 2.2] we see that for sufficiently large K the left-hand side in (57)

converges to zero, hence there must exist n0 such that (57) holds for all n ≥ n0.

We will also need the fact that over the finite space Q 7→ D(P ||Q) is continuous (as an

extended real-valued function):

Lemma 8: Let Q1, Q2 be distributions on a finite space B such that

qmin
△
= min{Q1(y) : Q1(y) > 0} (63)

δ
△
= max

y∈B
|Q1(y)−Q2(y)| <

qmin

2
(64)

Then for every distribution P on B we have that D(P ||Q1) and D(P ||Q2) are finite or infinite

simultaneously and in the former case

|D(P ||Q1)−D(P ||Q2)| ≤
2δ log e

qmin
.

Proof: Since δ < qmin

2
it is clear that Q1 ∼ Q2. Assuming Q1, Q2 ≪ P we get

D(P ||Q1)−D(P ||Q2) =
∑

y∈B
P (y) log

Q1(y)

Q2(y)
(65)

≤
∑

y∈B
P (y)

Q1(y)−Q2(y)

Q2(y)
log e (66)

≤ 2δ log e

qmin

∑

y∈B
P (y) , (67)

where (66) is by log x ≤ (x− 1) log e, and in (67) we applied

Q1(y)−Q2(y) ≤ δ , (68)

Q2(y) >
qmin

2
, (69)

which follow by (64). Similar argument works for D(P ||Q2)−D(P ||Q1).

Proof of Theorem 3: Let Pn → P be a sequence of n-types over X converging to P . The

encoder for each n consists of the codebook constructed in Lemma 7 with composition Pn and

Mn = exp{nR−K log n} ,

which clearly has asymptotic rate R.

We now describe the decoder, which operates in two phases:
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1) Time slots 1, . . . , n are used to estimate W⋆ by

Ŵ⋆(b)
△
=

1

n

k∑

j=1

1{Yj = b} , ∀b ∈ Y .

2) From the time instant t ≥ 2n and on the decoder computes the conditional type of the

block of last n letters with respect to every codeword ci, i = 1, . . . ,M and stops at the

first moment when the conditional type enters the following set:

En = {V : D(PnV ||Ŵ⋆) > A+ n−c, I(Pn, V ) > R + n−c} ,

where 0 < c < 1/4 is an arbitrary fixed constant. Formally,

ν̂
△
= inf{t : ∃j : Y t+n−1

t ∈ TEn(cj)} , (70)

Ŵ △
= min{j : Y ν̂+n−1

ν̂ ∈ TEn(cj)} . (71)

This stopping rule may be seen as a simplified version of the one proposed in [14], properly

adapted to the universal setting.

We now fixW satisfying (15)-(16) and use these encoders and decoders to construct a sequence

of probability spaces generated using random transformation (W n, An) according to (3) with

An = exp{An} .

We upper-bound probability of error as follows:

P[{ν̂ > ν} ∪ {Ŵ 6= W}] (72)

≤ P[ν̂ > ν] + P[Ŵ 6= W, ν̂ ≤ ν − n] + P[Ŵ 6= W, ν − n < ν̂ ≤ ν] (73)

≤ P[ν̂ > ν] + P[ν̂ ≤ ν − n] + P[Ŵ 6= W, ν − n < ν̂ ≤ ν] (74)

Next, we proceed to showing that each term in (74) tends to zero.

First, we show that with large probability the estimate Ŵ⋆ is close to the actual W⋆. Denote

the event

F
△
= {ν ≤ 2n} ∪

{

||Ŵ⋆ −W⋆||TV > n−1/4
}

,

where ||P −Q||TV =
∑

y∈Y |P (y)−Q(y)|. Clearly, by the fact that

P[ν ≤ 2n] =
2n

An
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Chebyshev bound and Var[W⋆(b)] = O(n−1) we have

P[F ] → 0 n → ∞ . (75)

Define an open neighborhood of W in the space of stochastic matrices as

B =
{

V : I(P, V ) > R +
ǫ0
2
, D(PV ||W⋆) > A+

ǫ0
2

}

,

where ǫ0 > 0 is chosen such that

I(P,W ) > R + ǫ0, D(PW ||W⋆) > A+ ǫ0 ,

which is possible by (15)-(16). We now show that there exists an n0 such that for all n ≥ n0

and every realization in F c we have the inclusion

B ⊂ En . (76)

Indeed, compactness of spaces of distributions on X and stochastic matrices V : X → Y implies

uniform continuity of the map

(P, V ) 7→ I(P, V ) .

Therefore, the sequence

δn
△
= max

V
|I(Pn, V )− I(P, V )| → 0 (77)

is vanishing. Next, fix V ∈ B and notice that by (77) we have

I(Pn, V ) ≥ I(P, V )− δn > R +
ǫ0
2
− δn .

Therefore, for all n sufficiently large we have

V ∈ B =⇒ I(Pn, V ) > R + n−c . (78)

Assume that V ∈ B is chosen such that D(PV ||W⋆) < ∞. Consider the chain

|D(PnV ||W⋆)−D(PV ||W⋆)| = (79)
∣
∣
∣
∣
∣
H(PV )−H(PnV ) +

∑

y∈B
(PnV (y)− PV (y)) log

1

W⋆(y)

∣
∣
∣
∣
∣

(80)

≤ |H(PV )−H(PnV )|+ ||PnV − PV ||TV log
1

w1
(81)

≤ max
V

|H(PV )−H(PnV )|+ ||Pn − P ||TV log
1

w1

(82)

= δ′n , (83)

November 24, 2012 DRAFT



22

where in (81) we denoted

w1 = min{W⋆(y) : W⋆(y) > 0} ,

and in (82) applied the data-processing for total variation. Notice now that by uniform continuity

of entropy on the simplex of distributions on B we have

δ′n → 0 (84)

as n → ∞ since ||Pn − P ||TV → 0. Therefore, for any realization in F c and every V we have

D(PV ||W⋆) ≤ D(PnV ||W⋆) + δ′n (85)

≤ D(PnV ||Ŵ⋆) + δ′n +
2 log e

w1
||Pn − P ||TV , (86)

where (85) is by (83) and (86) is by Lemma 8 with Q1 = W⋆, Q2 = Ŵ⋆. Note that condition (64)

is satisfied for all n sufficiently large since on F c we have

||Ŵ⋆ −W⋆||TV ≤ n−1/4 . (87)

Thus, by (86) and (84) we have for all sufficiently large n

V ∈ B,D(PV ||W⋆) < ∞ =⇒ D(PnV ||Ŵ⋆) > A+ n−c (88)

In the case when D(PV ||W⋆) = ∞ assume that n is large enough so that Pn ∼ P . Then

D(PnV ||W⋆) = ∞ and by Lemma 8 condition in the right-hand side of (88) is satisfied.

Together (78), (88) and the previous argument imply (76).

Thus, for the first term in (74) we have

P[ν̂ > ν] ≤ P[F ] + P[ν̂ > ν, F c] (89)

≤ P[F ] + P[Y ν+n−1
ν 6∈ TEn(cW), F c] (90)

≤ P[F ] + P[Y ν+n−1
ν 6∈ TB(cW), F c] (91)

≤ P[F ] + 1− 1

M

M∑

j=1

W n(TB(cj)|cj) (92)

= o(1) , (93)

where (90) follows from the definition of ν̂ (note we used convention (11)), (91) is by (76),

(92) is by (2), and (93) is by (75) and since B is a neighborhood of W and by [22, Lemma

2.12]

W n (TB(x
n)|xn) → 1 , (94)
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for any sequence xn ∈ X n.

Note that on F c for any V ∈ En we have for all n sufficiently large

D(PnV ||W⋆) ≥ D(PnV ||Ŵ⋆)−
2 log e

w1
n−1/4 (95)

> A+ n−c − 2 log e

w1
n−1/4 (96)

> A+
1

2
n−c , (97)

where (95) is by (87) and Lemma 8 assuming n is large so that (64) holds, (96) is by the

assumption that V ∈ En and (97) is by taking n large and recalling that c < 1/4.

Therefore, on F c we have

yn ∈ ∪M
j=1TEn(cj) =⇒ D(P̂yn||W⋆) > A+

1

2
n−c ,

where P̂yn denotes the Y-type of the sequence yn = (y1, . . . , yn), cf. [22, Definition 2.1]. Then

we have

P[Y t+n−1
t ∈ ∪M

j=1TEn(cj)|t ≤ ν − n, F c] ≤
∑

PY :D(PY ||W⋆)>A+ 1

2
n−c

exp{−nD(PY ||W⋆)} (98)

≤ (n+ 1)|Y| exp{−nA− 1

2
n1−c} , (99)

where (98) follows from [22, Lemma 1.2.6] since for t ≤ ν−n we have Y t+n−1
t ∼ W n

⋆ , and (99)

from counting of Y-types.

Then, for the second term in (74) we have

P[ν̂ ≤ ν − n] ≤ P[F ] + P[∃t ≤ ν − n : Y t+n−1
t ∈ ∪M

j=1TEn(cj), F
c] (100)

≤ P[F ] + AnP[Y
t+n−1
t ∈ ∪M

j=1TEn(cj)|F c, t ≤ ν − n] (101)

≤ P[F ] + An(n+ 1)|Y| exp

{

−nA− 1

2
n1−c

}

(102)

= o(1) , (103)

where (101) follows by the union bound, (102) is because of (99); and (103) is by (75) and

(n+ 1)|Y| exp{−n1−c} → 0.
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Regarding the third term in (74) fix arbitrary 1 ≤ i ≤ M, 0 ≤ k < n and V̂ : X → Y and

consider the following chain

W n

(
⋃

j 6=i

TV̂ (cj)

∣
∣
∣
∣
∣
c⋆ki

)

=
∑

V

W n

(

TV (c
⋆k
i ) ∩

⋃

j 6=i

TV̂ (cj)

∣
∣
∣
∣
∣
c⋆ki

)

(104)

≤
∑

V

exp{−n|I(P, V̂ )− R|+}W n(TV (c
⋆k
i )|c⋆ki ) (105)

= exp{−n|I(P, V̂ )−R|+} , (106)

where (105) is by Lemma 7 and the fact that all strings in TV (c
⋆k
i ) have the same probability.

Thus, conditioning on En we get

P[Ŵ 6= i|ν̂ = ν − k, En,W = i] ≤
∑

V̂ ∈En

exp{−n|I(P, V̂ )−R|+} , (107)

which follows from (106) and observing that when ν̂ = ν−k the yn block is effectively generated

by the shift of a true codeword c⋆ki as defined in (27). Next, we obtain:

P[Ŵ 6= W, ν − n < ν̂ ≤ ν] ≤ P[F ] +

n−1∑

k=0

P[Ŵ 6= W|ν̂ = ν − k] (108)

≤ P[F ] + nE




∑

V̂ ∈En

exp{−n|I(Pn, V̂ )− R|+}



 (109)

≤ P[F ] + (n+ 1)|X | |Y|+1 exp{−n1−c} (110)

= o (1) , (111)

where in (109) we average (107) over i and the realization of En, in (110) we used the type-

counting [22, Lemma 2.2] and lower-bounded

I(Pn, V̂ ) > R + n−c

valid by the definition of En; and (111) is by (75) and (n+ 1)|X | |Y|+1 exp{−n1−c} → 0.

Therefore, we have shown that in the upper-bound on probability of error (74) each term is

o(1) provided W is such that (15)-(16) hold.

IV. NON-ASYMPTOTIC BOUND AND CHANNEL DISPERSION

One of the important conclusions from the formula (13) is that the function C(A) is constant

on the interval [0;A1], where A1 is given by (24). In other words, a certain level of asynchronism

November 24, 2012 DRAFT



25

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

Blocklength, n

Achievability (asynch.)

Converse (synch.)

Capacity

R
a

te
, 

b
it
/c

h
.u

s
e

Fig. 2. BSC(0.11): Non-asymptotic performance of asynchronous codes compared with the upper (converse) bound for the

synchronous channel. Probability of error ǫ = 10−3, asynchronism level An = 20.68n−5.25
√

n.

(up to exp{nA1}) is completely harmless to the capacity of the channel. This surprising result

has also been noticed in [15] (the value of A1 is not known exactly for their model).

All the arguments so far were asymptotical and it is very natural to doubt whether such

effect is actually possible for blocklengths of interest. To show that it does indeed happen for

practical lengths we will employ the non-asymptotic achievability bound (Theorem 4). We will

also demonstrate that for A ∈ [0,A1] neither the capacity nor the channel dispersion suffer any

loss. First, however, we recall some of the results of [19].

Let M∗(n, ǫ) be the maximal cardinality of a codebook of blocklength n which can be

(synchronously) decoded with block error probability no greater than ǫ over the DMC defined

by (1). By Shannon’s theorem asymptotically we have

logM∗(n, ǫ) ≈ nC (112)

It has been shown in [19] that a much tighter approximation can be obtained by defining an

additional figure of merit referred to as the channel dispersion:
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Definition 3: The dispersion V (measured in squared information units per channel use) of a

channel with capacity C is equal to

V = lim
ǫ→0

lim sup
n→∞

1

n

(nC − logM∗(n, ǫ))2

2 ln 1
ǫ

. (113)

For example, the minimal blocklength required to achieve a given fraction η of capacity with a

given error probability ǫ can be estimated as:2

n &

(
Q−1(ǫ)

1− η

)2
V

C2
. (114)

The motivation for Definition 3 and estimate (114) is the following expansion for n → ∞

logM∗(n, ǫ) = nC −
√
nV Q−1(ǫ) +O(logn) . (115)

As shown in [19] in the context of memoryless channels, (115) gives an excellent approximation

for blocklengths and error probabilities of practical interest.

An interesting qualitative conclusion from Theorem 4 is the following:

Corollary 9: Consider a DMC W with (synchronous) capacity C and dispersion V . Then

for every 0 < ǫ < 1 there exist capacity-dispersion optimal codes for the asynchronous DMC

at asynchronism An = 2nA1+o(n). More precisely the number of messages Mn for such codes

satisfies

logMn = nC −
√
nV Q−1(ǫ) +O(logn) , n → ∞ (116)

and (4) holds.

Remark: As (115) demonstrates, it is not possible to improve the second term in expan-

sion (116) even in the synchronous setting, see also [19, Theorem 48].

Proof: Apply Theorem 5 with the following choices

PXn = P n , (117)

An =
1√
n
exp{nA1 − n

3

4

√

V1} (118)

logMn = nC −
√
nV Q−1

(

ǫ− B + 4√
n

)

− 3

2
log n , (119)

γn = logMn +
3

2
logn , (120)

2As usual, Q(x) =
∫∞
x

1√
2π

e−t2/2 dt .
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where P is the capacity-dispersion achieving distribution,

V1 = Var[log r(Y n)]

and B is the Berry-Esseen constant for the sum of iid random variables comprising i(Xn; Y n)

in (45); see [19, (259)]. With these choices we have for each of the terms in (45) for sufficiently

large n:

E
[
exp{−|r(Y n)− logAn|+}

]
≤ 2√

n
(121)

P [i(Xn; Y n) > γn] ≥ 1− ǫ+
4√
n

(122)

nMn exp{−γn} ≤ 1√
n

(123)

(n− 1) exp{−nE} ≤ 1√
n
, (124)

where (121) is by a simple estimate valid for all ν

E
[
exp{−|r(Y n)− logAn|+}

]
≤ PY n [r(Y n) < ν] + An exp{−ν}

applied with ν = nA1−n
3

4

√
V1 and first term estimated by Chebyshev; (122) is by an application

of Berry-Esseen theorem, as in [19, (261)]; and (123)-(124) are obvious. Summing (121)-(124)

we see that right-hand side of (45) is not smaller than 1− ǫ. Thus, by applying Taylor expansion

to (119) we obtain (116).

Corollary 9 demonstrates that not only it is possible to communicate with rates close to

capacity and still handle an exponential asynchronism (up to 2nA1), but in fact one can even do

so using codes which are capacity-dispersion optimal.

Finally, in Fig. 2 we illustrate this last point numerically by computing the bound of Theo-

rem 4 for the BSC(δ) and comparing it with the converse for the corresponding synchronous

channel [19, Theorem 35]. For the purpose of this illustration we have chosen ǫ = 10−3, δ = 0.11

and, somewhat arbitrarily,

An = exp

{

nD(P ∗
Y ||W⋆) +

√

nV (P ∗
Y ||W⋆)Q

−1( ǫ
4
)

}

(125)

≈ 20.68n−5.25
√
n . (126)

In particular, the plot shows that it is possible to construct asynchronous codes that do not lose

much compared to the best possible synchronous codes in terms of rate, but which at the same
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time are capable of tremendous tolerance to asynchronism. For example, already at n = 500 the

decoder is able to find and error-correct the codeword inside a noisy binary string of unimaginable

length 2221 ≈ 1066.

We also remark that since the results of Theorem 4 and 5 only rely on the pairwise in-

dependence of the codewords in the ensemble, for the BSC when M = 2k we may use the

ensemble corresponding to a random coset of a random linear code, that is the encoder function

f : Fk
2 → Fn

2 is given by

f(b) = Gb+ c0, b ∈ Fk
2 ,

where G is an n×k binary matrix with i.i.d. uniform entries and c0 is a uniformly chosen element

of Fk
2. In this way, we conclude that for the BSC both the expansion (116) and the bound on

Fig. 2 maybe achieved by a coset code. This naturally complements the results on coset codes

in the classical models of back-to-back transmission [5], [6] and insertion-deletion [7], [9]; see

Section I.

From the practical viewpoint, we thus expect that good modern error-correcting codes scram-

bled by a pseudo-random sequence will be a good solution to a problem of joint coding-

synchronization.
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APPENDIX A

PROOF OF THE STRONG CONVERSE PART OF THEOREM 1

First, we introduce the performance of the optimal binary hypothesis test. Consider a X -valued

random variable X which can take probability measures P or Q. A randomized test between

those two distributions is defined by a random transformation PZ|X : X 7→ {0, 1} where 0

indicates that the test chooses Q. The best performance achievable among those randomized

tests is given by3

βα(P,Q) = min
∑

x∈X
Q(x)PZ|X(1|x) , (127)

3We sometimes write summations over alphabets for simplicity of exposition; in fact, the definition holds for arbitrary

measurable spaces.
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where the minimum is over all probability distributions PZ|X satisfying

PZ|X :
∑

a∈X
P (x)PZ|X(1|x) ≥ α . (128)

The minimum in (127) is guaranteed to be achieved by the Neyman-Pearson lemma. Thus,

βα(P,Q) gives the minimum probability of error under hypothesis Q if the probability of error

under hypothesis P is not larger than 1 − α. For more on the behavior of βα see [25, Section

2.3] for example.

We proceed by noticing a pair of simple Lemmas.

Lemma 10: If A◦ < ∞ then there exists V1 such that for any input xn we have

βα(PY n|Xn=xn,W n
⋆ ) ≥

α

2
exp

{

−nD(W ||W⋆|P̂xn)−
√

2nV1

α

}

,

where P̂xn is the composition of xn and

PY n|Xn=xn(·) △
= W n(·|xn) ,

with W n defined in (1).

Proof: As in [19, Section IV.A] we define

V (Wx||W⋆)
△
=
∑

y∈Y
W (y|x) log2 W (y|x)

W⋆(y)
−D(Wx||Q)2 ,

which is well-defined and finite whenever A◦ < ∞. Since X is finite we can set V1 =

maxx∈X V (Wx||W⋆) and conclude by applying [19, Lemma 59].

Lemma 11: Consider a DMCW . IfA◦ < ∞ then there exists V1 such that for any synchronous

(n,M, ǫ) code (maximal probability of error) with codewords {ci, i = 1, . . .M} of constant

composition P0 we have

βα(PY n ,W n
⋆ ) ≥ M

α

4

α− 2ǫ

2− α
exp

{

−nD(W ||W⋆|P0)−
√

4nV1

α− 2ǫ

}

(129)

provided that α > 2ǫ, where in (129) PY n denotes the output distribution induced by the code:

PY n [·] = 1

M

M∑

j=1

W n(·|ci) .

Proof: Let δ = α − ǫ > 0 and consider an arbitrary set A such that PY n [A] ≥ α. Then by

Chebyshev inequality at least

M ′ =

⌈
α

2− α
M

⌉

(130)
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codewords ci ∈ X n satisfy

PY n|Xn=ci[A] ≥
α

2
.

Without loss of generality, we assume they have indices i = 1, . . . ,M ′. Let Di, i = 1, . . . ,M ′

denote the decoding regions corresponding to the given code. By the maximal probability of

error requirement we have

PY n|Xn=ci[A ∩Di] ≥
α

2
− ǫ .

Then

W n
⋆ [A ∩Di] ≥ βα

2
−ǫ(PY n|Xn=ci,W

n
⋆ ) (131)

≥ α− 2ǫ

4
exp

{

−nD(W ||W⋆|P0) +

√

4nV1

α− 2ǫ

}

, (132)

where (131) is by the definition of βα and (132) by Lemma 10. Finally, we have

W n
⋆ [A] =

M∑

i=1

W n
⋆ [A ∩Di] (133)

≥
M ′
∑

i=1

W n
⋆ [A ∩Di] (134)

≥ M
α

2− α

α− 2ǫ

4
exp

{

−nD(W ||W⋆|P0) +

√

4nV1

α− 2ǫ

}

, (135)

where (133) is by disjointedness of Di’s and (135) is by (130) and (132). Extension from sets

A ⊂ Yn to random transformations PZ|Y n : Yn → {0, 1} is trivial and thus (129) follows by the

definition of βα.

Proof of the converse part of Theorem 1: We first consider the error definition as in (5).

For the case A◦ = ∞ we can assume that a genie provides the value of ν to the decoder,

in which case the problem becomes synchronous and the usual strong converse for the DMC

applies. Thus, assume A◦ < ∞.

First, we assume ǫ < 1
3
and consider an (Mn, ǫ) code for a random transformation (W n, An).

By a standard argument, at the expense of a small increase in ǫ and a small decrease in Mn we

can assume that (5) is replaced with

P[Ŵ = W, ν̂ ≤ ν|W = j] ≥ 1− ǫ , j = 1, . . . ,Mn . (136)
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We claim that such a code must be synchronously decodable over DMC W with maximal

probability of error at most ǫ. Indeed, consider the following synchronous decoder: upon receiving

yn it generates ν uniform on {1, . . . , An}, puts the received yn into slots ν . . . ν+n−1 and fills

the rest of the slots with W⋆-generated noise. It then applies the given asynchronous decoder to

the so-constructed element of YAn . Overall, by (136) the maximal probability of error must not

exceed ǫ.

By another standard argument, e.g. [22, Chapter 10 and Theorem 10.6], there must exist a

constant composition subcode with M ′
n codewords such that for any i = 1, . . . ,M ′

n we have

P[Ŵ = W|ν̂ = ν,W = i] ≥ 1− ǫ (137)

and

logM ′
n ≥ logMn − b1 logn , (138)

where b1 > 0 is some (code-independent) constant. From now on we restrict attention to this

subcode. It is well known that for some constant b3 > 0 (depending only on W and ǫ)

logM ′
n ≤ nI(Pn,W ) + b3

√
n , (139)

where Pn is the composition of the code. Being interested in asymptotics, we are free to assume

that
1

M ′
n

< 1− 3ǫ . (140)

We now apply the meta-converse principle [19, Section III.E], which consists of changing the

channel and using (the complement of) the dominating error event as a binary hypothesis test

between the two channels. Namely, in addition to the true channel PY An |Xn,ν we consider an

auxiliary channel

QY An |Xn,ν = WAn
⋆

which outputs W⋆-distributed noise in all of An symbols, regardless of Xn and ν. Obviously,

under the Q-channel we have

Q[ν − n < ν̂ ≤ ν] ≤ n

An
(141)
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by independence of ν̂ and ν, whereas under the P -channel we have

P[ν̂ ≤ ν, Ŵ = W] ≤ P[ν − n < ν̂ ≤ ν] + P[ν̂ ≤ ν − n, Ŵ = W] (142)

= P[ν − n < ν̂ ≤ ν] + P[ν̂ ≤ ν − n]P[Ŵ = W|ν̂ ≤ ν − n] (143)

≤ P[ν − n < ν̂ ≤ ν] +
1

M ′
n

, (144)

where (144) is because P[Ŵ = W|ν̂ ≤ ν − n] = 1
M

by conditional independence of Ŵ and W .

Thus from (144) and (5) we have

P[ν − n < ν̂ ≤ ν] ≥ 1− ǫ− 1

M ′
n

. (145)

Consider now the random variable Z = 1{ν − n < ν̂ ≤ ν}. The kernel PZ|Y An ,ν acts from

YAn × {1, . . . , An − n + 1} to {0, 1} and constitutes a valid binary hypothesis test between

PY Anν and QY Anν . Therefore,

β1−ǫ′(PY Anν , QY Anν) ≤
n

An
, (146)

where we denoted for convenience

ǫ′ = ǫ+
1

M ′
n

.

On the other hand, for some b2 > 0

β1−ǫ′(PY Anν , QY Anν) = β1−ǫ′(PY Anν ,W
An
⋆ × Pν) (147)

= β1−ǫ′(PY An |ν=1,W
An
⋆ ) (148)

= β1−ǫ′(PY n|ν=1,W
n
⋆ ) (149)

≥ M ′
n exp

{
−nD(W ||W⋆|Pn)− b2

√
n
}
, (150)

where (147) is by independence of Y An and ν under Q, (148) is by [19, Lemma 29], (149)

is because under ν = 1 observations Y An
n+1 are useless for discriminating the two hypothesis,

and (150) is by Lemma 11 which is applicable because 1− ǫ′ > 2ǫ by (140).

Together (138), (139), (146) and (150) show that every code achieving probability of error ǫ

over (W n, An) must satisfy for some input type Pn:

logMn ≤ nD(W ||W⋆|Pn)− logAn + b2
√
n+ b1 log n (151)

logMn ≤ nI(Pn,W ) + b3
√
n (152)
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The first implication from (151) is that there cannot be a sequence of (n, 2, ǫ) codes for asyn-

chronism An = exp{nA} with A > maxxD(Wx||W⋆). Thus the synchronization thresholds A◦,ǫ

and A◦ are given by (12).

Consider now a sequence of codes achieving (R,A). The corresponding sequence of dom-

inating types Pn must contain a subsequence converging to some P . Thus dividing by n and

taking the limits in (151)-(152) we obtain that the pair (R,A) must belong to

⋃

P







R +A ≤ D(W ||W⋆|P )

R ≤ I(P,W )






. (153)

Since for A ≥ A◦ we already have shown C(A) = 0 we can focus on A < A◦, for which we

have:

C(A) = max
P

min(D(W ||W⋆|P )−A, I(P,W ) (154)

= max
P

min(I(P,W ) +D(PW ||W⋆)−A, I(P,W )) (155)

= max
P

I(P,W )− |A−D(PW ||W⋆)|+ (156)

= max
P :D(PW ||W⋆)≥A

I(P,W ) , (157)

where (157) follows by noticing that the function under maximization in (156) is linear on the

open set {D(PW ||W⋆) < A} and equal to

D(W ||W⋆|P )−A . (158)

Therefore, if the maximum in (156) were attained at a point P ∗ belonging to this open set, then

we would have

D(W ||W⋆|P ∗) = A◦ . (159)

Distribution P ∗ can not be concentrated on 1 atom, for otherwise D(P ∗W ||W⋆) = A◦ > A,

and therefore we can always modify P ∗ to increase the value of D(P ∗W ||W⋆) until we have

D(P ∗W ||W⋆) = A, thereby showing that the maximum in (156) can be taken without loss of

generality only over {D(PW ||W⋆) ≥ A}.
To address the (practically uninteresting) case of ǫ ≥ 1

3
we need to modify the proof as

follows. To warrant applicability of Lemma 11 in (150) we needed to verify that

1− ǫ− 1

M ′
n

≥ 2ǫmax , (160)
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where ǫmax is the maximal probability (under synchronous decoding) of the considered code. To

that end we perform an additional expurgation via [22, Corollary 2.1.9] to ensure 2ǫmax < 1− ǫ.

Then for sufficiently large n (160) will hold and the rest of the argument is unchanged.

Finally, to address a generalization pointed out in the Remark after Theorem 2 and to handle

a weaker condition (6) we need to replace the event {ν − n < ν̂} with
{

ν − n < ν̂ ≤ ν + Ln,
1

n
log

1

Pν(ν)
> A− δ

}

,

where δ > 0 is arbitrarily small. Then according to (14) we have

P

[

ν − n < ν̂ ≤ ν + Ln,
1

n
log

1

Pν(ν)
> A− δ

]

= P [ν − n < ν̂ ≤ ν + Ln] + o(1) ,

and hence the equivalent of the estimate (145) holds at the expense of arbitrary small enlargement

of ǫ. In (141), on the other hand, we clearly have:

Q

[

ν − n < ν̂ ≤ ν + Ln,
1

n
log

1

Pν(ν)
> A− δ

]

≤ (n + Ln) exp{−nA+ nδ} .

Continuing as above, we show (153) with A replaced by A − δ. Since the δ is arbitrary, the

result follows.

REFERENCES

[1] R. H. Barker, “Group synchronization of binary digital systems,” in Communicatin Theory, W. Jackson, Ed. New York:

Academic-Butterworth, 1953.

[2] J. J. Stiffler, Theory of Synchronous Communications. Englewood Cliffs, NJ: Prentice-Hall, 1971.

[3] R. Scholtz, “Frame synchronization techniques,” IEEE Trans. Commun., vol. 28, no. 8, pp. 1204–1213, 1980.

[4] S. Golomb, B. Gordon, and L. R. Welch, “Comma-free codes,” Can. J. Math., vol. 10, pp. 202–209, 1958.

[5] J. J. Stiffler, “Comma-free error-correcting codes,” IEEE Trans. Inf. Theory, vol. 11, no. 1, pp. 107–112, Jan. 1965.

[6] V. I. Levenshtein, “One method of constructing quasilinear codes providing synchronization in the presence of errors,”

Prob. Peredachi Inform., vol. 7, no. 3, pp. 30–40, 1971.

[7] V. Levenshtein, “Binary codes capable of correcting deletions, insertions, and reversals,” Soviet Physics Doklady, vol. 10,

no. 8, pp. 707–710, 1966.

[8] R. L. Dobrushin, “Shannon’s theorems for channels with synchronization errors,” Prob. Peredachi Inform., vol. 3, no. 4,

pp. 11–26, Dec. 1967.

[9] R. Gallager, “Sequential decoding for binary channels with noise and synchronization errors,” MIT, Lincoln Lab, Tech.

Rep. AD0266879, Oct. 1961.

[10] G. Poltyrev, “Coding in an asynchronous multiple-access channel,” Prob. Peredachi Inform., vol. 19, no. 3, pp. 12–21,

Sep. 1983.

[11] J. Hui and P. Humblet, “The capacity region of the totally asynchronous multiple-access channels,” IEEE Trans. Inf. Theory,

vol. 31, no. 3, pp. 207–216, Mar. 1985.

November 24, 2012 DRAFT



35

[12] L. Farkas and T. Koi, “Capacity regions of discrete asynchronous multiple access channels,” in Proc. 2011 IEEE Int. Symp.

Inf. Theory (ISIT), Aug. 2011, pp. 2273–2277.
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