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Abstract—Arimoto [1] proved a non-asymptotic upper bound
on the probability of successful decoding achievable by anycode
on a given discrete memoryless channel. In this paper we present
a simple derivation of the Arimoto converse based on the data-
processing inequality for Ŕenyi divergence. The method has two
benefits. First, it generalizes to codes with feedback and gives the
simplest proof of the strong converse for the DMC with feedback.
Second, it demonstrates that the sphere-packing bound is strictly
tighter than Arimoto converse for all channels, blocklengths
and rates, since in fact we derive the latter from the former.
Finally, we prove similar results for other (non-Rényi) divergence
measures.

Index Terms—Shannon theory, strong converse, information
measures, Ŕenyi divergence, feedback.

I. I NTRODUCTION

In [1], Arimoto has shown a simple non-asymptotic bound,
that implies a (strengthening of the) strong converse to the
channel coding for the DMC. Moreover, his bound is expo-
nentially tight for rates above the capacity.

To state Arimoto’s bound, recall that Gallager’s
E0(ρ, PX , PY |X), ρ 6= 1 function is defined for a pair
of random variablesX ∈ A andY ∈ B as follows:

E0(ρ, PX , PY |X)

= − log
∑

y∈B

(

∑

x∈A

PX(x)P
1

1+ρ

Y |X(y|x)

)1+ρ

(1)

= − log E

[

(

E
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exp

{

i(X̄; Y )

1 + ρ

}∣

∣

∣

∣

Y

])1+ρ
]

, (2)

where the second expression is a generalization to the case of
infinite alphabets, where

i(x; y)
△
= log

dPXY

d(PX × PY )
(x, y) , (3)

and the joint distribution of(X̄, Y ) is given by

PX̄Y (x̄, y) = PX(x̄)PY (y) . (4)

A random transformation is defined by a pair of measur-
able spaces of inputsA and outputsB and a conditional
probability measurePY |X : A 7→ B. An (M, ǫ) code for
the random transformation(A, B, PY |X) is a pair of (possibly
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randomized) mapsf : {1, . . . , M} → A (the encoder) and
g : B → {1, . . . , M} (the decoder), satisfying

1

M

M
∑

m=1

P [g(Y ) 6= m|X = f(m)] ≤ ǫ . (5)

Without loss of generality we assume thatǫ ≤ 1 − 1
M

. In
applications, we will takeA and B to be n-fold Cartesian
products of alphabetsA andB, and a channel to be a sequence
of random transformations{PY n|Xn : An → Bn} [2]. An
(M, ǫ) code for{An,Bn, PY n|Xn} is called an(n, M, ǫ) code.
For the statement and proof of the main converse bounds, it is
preferable not to assume thatA andB have any structure such
as a Cartesian product. This has the advantage of avoiding
the notational clutter that results from explicitly showing the
dimension (n) of the random variables taking values onA and
B.

Arimoto has shown the following result:
Theorem 1 ([1]): The probability of errorǫ of any (M, ǫ)

code for the random transformation(A, B, PY |X) satisfies for
any−1 < ρ < 0

ǫ ≥ 1 − Mρ exp{−E0(ρ, PX , PY |X)} , (6)

wherePX is the distribution induced onA by the encoder.
Note that the bound (6) applies to an arbitrary codebook.

To obtain a universal bound (i.e. the one whose right side
depends only onM ) one needs to take the infimum over
all distributions PX . When the blocklength of the code is
large, a direct optimization becomes prohibitively complex.
However, the following result resolves this difficulty and
makes Theorem 1 especially useful:

Theorem 2 (Gallager-Arimoto):Consider the product chan-
nel PY 2|X2 given by

PY 2|X2(y1y2|x1x2) = PY1|X1
(y1|x1)PY2|X2

(y2|x2) . (7)

Then for all−1 < ρ < 0 we have [1]

min
P

X2

E0(ρ, PX2 , PY 2|X2)

= min
PX1

E0(ρ, PX1
, PY1|X1

) + min
PX2

E0(ρ, PX2
, PY2|X2

) .(8)

Similarly, for ρ > 0 we have [3]

max
P

X2

E0(ρ, PX2 , PY 2|X2)

= max
PX1

E0(ρ, PX1
, PY1|X1

) + max
PX2

E0(ρ, PX2
, PY2|X2

) .(9)

Or in other words, the extremum in the left-hand sides of (8)
and (9) is achieved by the product distributions.



Application of Theorems 1 and 2 to the DMC of blocklength
n, i.e. the channel(An,Bn, (PY |X)n), one obtains that any
(n, exp{nR}, ǫ) code over the DMC satisfies

ǫ ≥ 1 − exp

{

−n sup
−1<ρ<0

[

min
PX

E0(ρ, PX , PY |X) − ρR

]}

,

(10)
The bound (10) has a number of very useful properties:

1) it is non-asymptotic (i.e. valid for anyn ≥ 1),
2) it is universal (i.e., the only data about the code appear-

ing in the right-hand side is the code rateR),
3) it is single-letter (i.e., its computational complexityis

independent of the blocklengthn),
4) a further analysis, see [1], shows that the exponent is

negative for allR > C, thus proving a (strengthening of
the) strong converse, which shows that above capacity
the minimum probability of error goes to 1 exponentially
fast with the blocklength. Moreover, it is known that
this lower bound is exponentially tight in the sense that
there exist a sequence of codes of rateR achieving the
exponent [4, Problem 2.5.16b]. The counterpart in data
compression is given by [4, Problem 1.2.6].

A drawback of the bound (10), severely limiting its use for
finite blocklength analysis, is that the right-hand side vanishes
for any R ≤ C. In this paper we present a strengthening
of the Arimoto bound which overcomes this drawback while
retaining all the mentioned advantages. In particular, for
R < C it yields a non-trivial exponential lower bound on the
probability of error, which although results in a weaker bound
on the error exponent than the Shannon-Gallager-Berlekamp’s
sphere-packing bound, is much simpler and is applicable to
non-discrete channels. We give two different proofs of thisre-
sult, each having its own benefits. The first proof demonstrates
that Arimoto’s result is implied by the minimax converse
shown in [5]. In particular this implies that for symmetric
channels, the sphere-packing bound is always tighter than (10)
for all rates and blocklengths. The second proof demonstrates
that Arimoto’s result is a simple consequence of the data-
processing inequality for an asymmetric information measure
introduced by Sibson [6] and Csiszár [7]. The proof parallels
the standard derivation of the Fano’s inequality and appears
to be the simplest known proof of the strong converse for
memoryless channels. In particular, no measure concentration
inequalities are employed.

The second proof admits an important generalization to the
case of codes with feedback. Namely, we show that (10) holds
in this exact form for (block) codes with feedback. Although,
this result is known asymptotically [4, Problem 2.5.16c], the
non-asymptotic bound appears to be proven here for the first
time1. A converse bound valid for all DMCs might prove to
be helpful in the ongoing effort of establishing the validity of
the sphere-packing exponent for codes with feedback over a
general DMC [9], [10].

1A similar result can be extracted with a circuitous route from [8] whose
proof contains gaps as pointed out in [9].

Finally, we conclude by showing which of the results
generalize to other divergence measures, and which are special
to Rényi divergence. A family of bounds obtained by fixing an
arbitraryf -divergence includes Fano’s inequality (correspond-
ing to relative entropy), Arimoto converse (correspondingto
Rényi divergence) and Wolfowitz strong converse (e.g., [5,
Theorem 9]).

II. A RIMOTO CONVERSE: A PROOF VIA META-CONVERSE

A. Preliminaries

One of the main tools in our treatment [5] is the perfor-
mance of an optimal binary hypothesis test defined as follows.
Consider aW-valued random variableW which can take
probability measuresP or Q. A randomized test between
those two distributions is defined by a random transformation
PZ|W : W 7→ {0, 1} where0 indicates that the test chooses
Q. The best performance achievable among those randomized
tests is given by2

βα(P, Q) = min
∑

w∈W

Q(w)PZ|W (1|w) , (11)

where the minimum is over all probability distributionsPZ|W

satisfying

PZ|W :
∑

w∈W

P (w)PZ|W (1|w) ≥ α . (12)

The minimum in (11) is guaranteed to be achieved by the
Neyman-Pearson lemma. Thus,βα(P, Q) gives the minimum
probability of error under hypothesisQ if the probability of
error under hypothesisP is not larger than1 − α.

In [5] we have shown that a number of classical con-
verse bounds, including Fano’s inequality, Shannon-Gallager-
Berlekamp, Wolfowitz strong converse and Verdú-Han infor-
mation spectrum converse, can be obtained in a unified manner
as a consequence of the meta-converse theorem [5, Theorem
26]. One of such consequences is the following minimax
converse [5]:

Theorem 3 (minimax converse):Every (M, ǫ) code satis-
fies

M ≤ sup
PX

inf
QY

1

β1−ǫ(PXY , PX × QY )
, (13)

wherePX ranges over all input distributions onA, andQY

ranges over all output distributions onB.
The traditional sphere-packing bound for symmetric channels
follows from Theorem 3 by choosingQY to be equiprobable
on the finite output alphabet. For this reason, Theorem 3 can
be viewed as a natural generalization of the sphere-packing
bound.

The Rényi divergence forλ > 0, λ 6= 1 is [11]

Dλ(P ||Q) =
1

λ − 1
log E Q

[

(

dP

dQ

)λ
]

. (14)

2We write summations over alphabets for simplicity; however, all of our
general results hold for arbitrary probability spaces.



Normalization ensures that

lim
λ→1

Dλ(P ||Q) = D(P ||Q) , (15)

whereD(P ||Q) is the relative entropy:

D(P ||Q)
△
= E Q

[

dP

dQ
log

dP

dQ

]

. (16)

Although Rényi divergence is not anf -divergence in the sense
of [12], it is a monotone transformation of the Hellinger
divergence of orderλ, see [13]. Since Hellinger divergence
is an f -divergence for allλ > 0, λ 6= 1, the data-processing
inequality automatically follows for Rényi divergence aswell.

Additionally, we define a conditional Rényi divergence as
follows:

Dλ(PA|B ||QA|B|PB)

△
=

1

λ − 1
log
∑

b∈B

PB(b) exp{(λ − 1)Dλ(PA|B=b||QA|B=b)}

(17)

=
1

λ − 1
log
∑

b∈B

∑

a∈A

PB(b)Pλ
A|B(a|b)Q1−λ

A|B(a|b) (18)

= Dλ(PB × PA|B||PB × QA|B) . (19)

Two obvious consequences of the definition are identities

sup
PB

Dλ(PA|B||QA|B|PB) = sup
b∈B

Dλ(PA|B=b||QA|B=b)

(20)
and

Dλ(PAB ||QAB) = Dλ(PB ||QB) + Dλ(PA|B||QA|B|P
(λ)
B ) ,

(21)
whereP

(λ)
B is theλ-tilting of PB towardsQB given by

P
(λ)
B (b)

△
= Pλ

B(b)Q1−λ
B (b) exp{−(λ − 1)Dλ(PB ||QB)} .

(22)
The binary Rényi divergence is given by

dλ(p||q)
△
= Dλ([p 1 − p] || [q 1 − q]) (23)

= 1
λ−1 log

(

pλq1−λ + (1 − p)λ(1 − q)1−λ
)

.(24)

B. Main result

Theorem 4:Any (M, ǫ) code satisfies forλ > 0, λ 6= 1:

dλ(1 − ǫ|| 1
M

) ≤
λ

1 − λ
E0(λ

−1 − 1, PX , PY |X) (25)

and in particular for any−1 < ρ < 0 we obtain (6) (letting
λ = 1

1+ρ
> 1).

Proof: The key observation is that Gallager’s
E0(ρ, PX , PY |X) for ρ > −1 is given by a Rényi divergence
of orderλ = 1

1+ρ
:

λ

1 − λ
E0(λ

−1−1, PX , PY |X) = Dλ(PXY ||PX ×Q∗
Y ) , (26)

where the auxiliary output distributionQ∗
Y is defined implicitly

via
dQ∗

Y

dPY

(Y )
△
=

(

E
[

exp{λi(X̄; Y )}|Y
])

1
λ exp{E0(

1−λ
λ

, PX , PY |X)} ,(27)

where we adopted the convention (3), (4).
Now from Theorem 3 we know that any(M, ǫ) code

satisfies

β1−ǫ(PXY , PX × Q∗
Y ) ≤

1

M
. (28)

Applying the data-processing for Rényi divergence we get

dλ(1 − ǫ||β1−ǫ(PXY , PX × Q∗
Y )) ≤ Dλ(PXY , PX × Q∗

Y ) .

(29)
In view of (28) and1 − ǫ ≥ 1

M
, (29) implies

dλ(1 − ǫ|| 1
M

) ≤ Dλ(PXY , PX × Q∗
Y ) . (30)

Application of (26) completes the proof of (25).
To obtain (6) observe a simple inequality:

dλ(1 − ǫ|| 1
M

) ≥
1

λ − 1
log
(

(1 − ǫ)λMλ−1 + ǫλ
)

. (31)

If we take−1 < ρ < 0 and letλ = 1
1+ρ

> 1 we can further
lower-bounddλ:

dλ(1 − ǫ|| 1
M

) ≥
λ

λ − 1
log(1 − ǫ) + log M , (32)

which together with (25) implies (6).
As already mentioned, Theorem 4 extends Arimoto’s result.

First, as shown, inequality (25) is stronger than (6). Moreover,
the family of bounds (25) includes Fano’s inequality:

(1 − ǫ) log M − h(ǫ) ≤ I(X ; Y ) , (33)

which is obtained by takingλ → 1 (see (15)). This does
not happen with (25) whenρ → 0. Second, inequality (25)
extends (6) toρ > 0 as follows:

ǫ ≥

(

exp

{

−
1

1 + ρ
E0(ρ, PX , PY |X)

}

− M− ρ
1+ρ

)1+ρ

.

(34)
If we now apply (34) to codes over the DMC of blocklength
n and take infimum over allPXn via Theorem 2 (similar to
the derivation of (10)) we get an exponential lower bound on
ǫ valid for all (n, exp{nR}, ǫ) codes:

ǫ ≥ exp{−nρ∗R + o(n)} , (35)

whereρ∗ is found as a solution to

max
PX

E0(ρ, PX , PY |X) = ρR . (36)

Compared to the derivation of the sphere-packing bound
in [14], the bound (35) is much easier to obtain, but, alas,
ρ∗R is always larger than the sphere-packing exponent. Note
also that forR ≥ C the solutionρ∗ = 0 and (35) shows that
exponentially small probabilities are impossible for suchrates,
a fact also clear from (10).



III. A SECOND PROOF OFTHEOREM 4

Observe that in the proof of Theorem 4 the inequality (31)
holds even ifQ∗

Y is replaced with an arbitrary measureQY :

dλ(1 − ǫ|| 1
M

) ≤ Dλ(PXY , PX × QY ) . (37)

To obtain the best bound we may minimize the right-hand side
over the choice ofQY . However, as noted in [7], the identity
of Sibson [6]

Dλ(PXY ||PXQY ) = Dλ(PXY ||PXQ∗
Y ) + Dλ(Q∗

Y ||QY )
(38)

shows that such method does not lead to any improvement
sinceQ∗

Y , defined in (27), is in fact the minimizer:

inf
QY

Dλ(PXY ||PXQY ) = Dλ(PXY ||PXQ∗
Y ) . (39)

This leads us naturally to the following asymmetric infor-
mation measure, introduced by Csiszár in [7]:

Kλ(X ; Y )
△
= inf

QY

Dλ(PXY ||PXQY ) . (40)

In the special case of discretePX (40) was introduced by
Sibson in [6]. Using Sibson identity (38) we obtain the
following equivalent expressions forKλ(X ; Y )

Kλ(X ; Y ) = Dλ(PXY ||PXQ∗
Y ) (41)

=
λ

1 − λ
E0(λ

−1 − 1, PX , PY |X) (42)

=
λ

λ − 1
log
∑

y∈B

(

∑

x∈A

PX(x)Pλ
Y |X(y|x)

)
1
λ

.(43)

Notice that in [15] for the purpose of finding an efficient
algorithm for computingsupPX

E0(ρ, PX , PY |X) Arimoto has
shown a variational representation forE0 (and therefore for
Kλ; see (42)) different from (40).

An important property ofKλ(X ; Y ) shown by Csiszár [7]
is the following:

sup
PX

Kλ(X ; Y ) = inf
QY

sup
x

Dλ(PY |X=x||QY ) . (44)

One application of (44) is a direct proof of Theorem 2:

sup
PX1X2

Kλ(X1X2; Y1Y2)

= inf
QY1Y2

sup
x1,x2

Dλ(PY1|X1=x1
PY2|X2=x2

||QY1Y2
) (45)

≤ inf
QY1

QY2

sup
x1,x2

Dλ(PY1|X1=x1
PY2|X2=x2

||QY1
QY2

)(46)

= inf
QY1

sup
x1

Dλ(PY1|X1=x1
)

+ inf
QY2

sup
x2

Dλ(PY2|X2=x2
) (47)

= sup
PX1

Kλ(X1; Y1) + sup
PX2

Kλ(X2; Y2) . (48)

Note that the more cumbersome original proofs of Theorem 2
relied on the Karush-Kuhn-Tucker conditions, which require
additional justification in non-discrete settings.

We notice as a side remark that the maximum ofKλ(X ; Y )
over PX is known as the capacity of orderλ. It was defined

in [16] as a maximization of a different information measure
(based on Rényi entropy). A simple algorithm for its compu-
tation is derived in [15]. In [7] it was shown that the same
value for the capacity of orderλ is obtained by maximizing
two other information measures (based on Rényi divergence),
one of themKλ(X ; Y ); see also [17].

The next result relatesKλ(X ; Y ) to a proof of Theorem 4
and also demonstrates a remarkable resemblance between the
properties ofKλ(X ; Y ) and the mutual informationI(X ; Y ).

Theorem 5:For λ > 0, λ 6= 1 the following holds.
1) The functionfλ(Kλ(X ; Y )) is convex inPX and con-

cave inPY |X , wherefλ(x) = 1
λ−1 exp{(1 − λ−1)x} is

monotonically increasing.
2) For random variablesW −X−Y −Z forming a Markov

chain the following holds

Kλ(W ; Z) ≤ Kλ(X ; Y ) . (49)

3) If X andY take values in the same set{1, . . . , M} and
X is equiprobable, then

min
PY |X :P[X 6=Y ]≤ǫ

Kλ(X ; Y ) = dλ(1 − ǫ|| 1
M

) (50)

if ǫ ≤ 1 − 1
M

and minimum is equal to zero otherwise.
Proof: Property 1 follows by noticing that

fλ(Kλ(X ; Y )) =
1

λ − 1

∑

y∈B

(

∑

x∈A

PX(x)Pλ
Y |X(y|x)

)
1
λ

(51)
and applying convexity (concavity) ofx

1
λ for λ < 1 (λ > 1).

The concavity inPY |X follows from Minkowski inequality.
To show Property 3, consider an arbitraryPXY with P[X 6=

Y ] = s. Then the data-processing for Rényi divergence applied
to the transformation(X, Y ) → 1{X 6= Y } shows

Dλ(PXY ||PXQY ) ≥ dλ(1 − s|| 1
M

) . (52)

Since the function in the left-hand side is decreasing for all
s ≤ 1 − 1

M
, we find that

min
PY |X :P[X 6=Y ]≤ǫ

Kλ(X ; Y ) ≥ dλ(1 − ǫ|| 1
M

) . (53)

provided thatǫ ≤ 1− 1
M

. On the other hand, the lower bound
is achieved by the kernelPY |X defined as:

PY |X(y|x) =

{

1 − ǫ , x = y
ǫ

M−1 , x 6= y .
(54)

The proof of Property 2 is the key step. Notice because
of the asymmetric nature ofKλ(X ; Y ) we must prove two
statements separately:

• “data post-processing”: ifX − Y − Z form a Markov
chain, then

Kλ(X ; Z) ≤ Kλ(X ; Y ) . (55)

This inequality follows from the following argument. For
an arbitraryQY denote

QZ(b) =
∑

y∈B

QY (y)PZ|Y (b|y) . (56)



Then by the data-processing for Rényi divergence we
have:

Dλ(PXZ ||PXQZ) ≤ Dλ(PXY ||PXQY ) . (57)

Taking infimum overQY and using the definition of
Kλ(X ; Z) shows (55).

• “data pre-processing”: ifW − X − Y form a Markov
chain, then

Kλ(W ; Y ) ≤ Kλ(X ; Y ) . (58)

Consider the computation ofD(PXY ||PXQY ). For a
fixedQY the random variable(X, Y ) is distributed either
as PXY or as PXQY . Observe that applying random
transformationPWY |XY to (X, Y ) we obtain (W, Y )
distributed either asPWY or as PW QY (the Markov
property is needed to see that the distribution ofW is
PW in the alternative hypothesis). Then by the data-
processing for Rényi divergence:

Dλ(PWY ||PW QY ) ≤ Dλ(PXY ||PXQY ) , (59)

which implies (58) after taking infimum overQY .

Proof of Theorem 4:Notice that an(M, ǫ) code defines
four random variables forming a Markov chainW −X−Y −
Ŵ , whereW is the message (equiprobable on{1, . . . , M}),
X is the channel input,Y is the channel output and̂W is the
decoder estimate of the messageW . Then Properties 2 and 3
(Theorem 5) together imply Theorem 4.

Inequality (25) applied to an arbitrary(n, M, ǫ) code for
the channelPY n|Xn states that

dλ(1 − ǫ|| 1
M

) ≤ Kλ(Xn; Y n) , (60)

whereXn has the distribution induced by the encoder. Max-
imizing the right-hand side of (60) over allPXn is particu-
larly simple for memoryless channels since whenPY n|Xn =
(PY |X)n, then by (48) we have

sup
PXn

Kλ(Xn; Y n) = n sup
PX

Kλ(X ; Y ) (61)

and hence from (60) we get the following result:
Corollary 6: Every (n, M, ǫ) code for a memoryless chan-

nel (An,Bn, (PY |X)n) satisfies

dλ(1 − ǫ|| 1
M

) ≤ n sup
PX

Kλ(X ; Y ) . (62)

As explained in Section II inequality (62) further simplifies to
either (10) whenλ > 1 or to (35) whenλ < 1.

IV. CODES WITH FEEDBACK

In [18] Shannon showed that the capacity of a DMC does
not increase even if we allow the encoder to use a full noiseless
instantaneous feedback. In this Section we demonstrate that,
moreover, the non-asymptotic bound in Corollary 6, continues
to hold even in the setting of Shannon feedback. A precise
definition of the feedback code can also bee found in [4,
Problem 2.1.27], for example.

Theorem 7:Every (n, M, ǫ) feedback code for a memory-
less channel(An,Bn, (PY |X)n) satisfies (62) and in particu-
lar (10).

Proof: Take an arbitrary(n, M, ǫ) feedback code. Then
it induces a certain joint distribution on(W, Y n) according to

PWY n(w, yn) =
1

M

n
∏

i=1

PY |X(yi|fi(w, yi−1)) , (63)

where fi : {1, . . . , M} × Bi−1 → A, i = 1, . . . , n are the
encoder maps. The decoder estimateŴ is obtained as a (pos-
sibly randomized) function ofY n and thereforeW −Y n−Ŵ

form a Markov chain. By Theorem 5 (Property 2) we have

Kλ(W ; Ŵ ) ≤ Kλ(W ; Y n) , (64)

and by Theorem 5 (Property 3) we have

Kλ(W ; Ŵ ) ≥
1

λ − 1
log
(

(1 − ǫ)λMλ−1 + ǫλ
)

. (65)

To conclude the proof we need to show that

Kλ(W ; Y n) ≤ n sup
PX

Kλ(X ; Y ) . (66)

To that end consider the following chain:

Kλ(W ; Y n)
△
= inf

QY n

Dλ(PWY n ||PW QY n) (67)

= inf
QY n

[

Dλ(PWY n−1 ||PW QY n−1)

+ Dλ(PYn|Y n−1W ||QYn|Y n−1 |P
(λ)
WY n−1)

]

(68)

= inf
Q

Y n−1

[

Dλ(PWY n−1 ||PW QY n−1)

+ inf
Q

Yn|Y n−1

Dλ(PYn|Y n−1W ||QYn|Y n−1 |P
(λ)
WY n−1)

]

(69)

≤ inf
Q

Y n−1

[

Dλ(PWY n−1 ||PW QY n−1)

+ inf
QYn

Dλ(PYn|Y n−1W ||QYn
|P

(λ)
WY n−1)

]

(70)

≤ inf
Q

Y n−1

[

Dλ(PWY n−1 ||PW QY n−1)

+ inf
QYn

sup
x∈A

Dλ(PYn|Xn=x||QYn
)

]

(71)

= inf
Q

Y n−1

Dλ(PWY n−1 ||PW QY n−1)

+ sup
PX

Kλ(X ; Y ) (72)

= Kλ(W ; Y n−1) + sup
PX

Kλ(X ; Y ) , (73)

where (68) is by (21), (69) follows since the first term does not
depend onQYn|Y n−1 , (70) follows by restricting the infimum
to QYn|Y n−1 = QYn

, (71) is by (20), (72) is by (44), and (73)
is by the definition ofKλ in (40). The proof of (66) now
follows from (73) by induction.



V. GENERALIZATION TO OTHER DIVERGENCE MEASURES

Notice that the key Properties 2 and 3 ofKλ needed for
the proof of Theorem 4 also hold (with the same proof) if the
Rényi divergenceDλ in (40) is replaced by any other func-
tion of a pair of distributions, satisfying the data-processing
inequality; for example, anyf -divergence works as well. This
section formalizes this idea.

First, consider a measurable spaceW and, a pair of distribu-
tionsP andQ on it and a transition probability kernelPW ′|W

from W to W. Applying PW ′|W to P andQ we obtain a pair
of distributionP ′ andQ′:

P ′(w′) =
∑

w∈W

PW ′|W (w′|w)P (w) (74)

Q′(w′) =
∑

w∈W

PW ′|W (w′|w)Q(w) . (75)

Definition 1: A function D(P ||Q) assigning an extended
real number to a pair of distributions is called a generalized
divergence, or ag-divergence, if for any PW ′|W we have

D(P ′||Q′) ≤ D(P ||Q) . (76)

Note that restricting transformations to those mappingW to
W is made without loss of generality, as we can consider
that the spaceW is rich enough to contain copies of any
A and B considered in the given problem and therefore, the
functionD satisfies the data-processing inequality with respect
to transformations fromA to B as well.

Examples ofg-divergences:

• All f -divergences [12], [17], in particular total variation,
relative entropy and Hellinger divergence [13].

• Rényi divergence; note that it is a non-decreasing function
of the Hellinger divergence.

• −βα(P, Q) for any 0 ≤ α ≤ 1. This example shows
that the class ofg-divergences is larger than just non-
decreasing functions off -divergences, since−βα(P, Q)
cannot be obtained from anyf -divergence3.

To any g-divergenceD(P ||Q) we define a binaryg-
divergenceδ(p||q) as the divergence between the distributions
on {0, 1} given byP (1) = p andQ(1) = q; formally,

δ(p||q)
△
= D([p 1 − p]||[q 1 − q]) . (78)

Following the approach of Sibson [6] and Csiszár [7] for any
g-divergence we define an information measure

K(X ; Y )
△
= inf

QY

D(PXY ||PXQY ) . (79)

The following theorem summarizes the results that can be
obtained by the same methods as above:

Theorem 8:Consider ag-divergenceD(P ||Q). Then all of
the following hold:

3Assume otherwise, then we would have (see Theorem 8, Property 4) that

inf
PX

βα(PXY ||PXQY ) = inf
x∈A

βα(PY |X=x, QY ) , (77)

but it is easy to construct a counter-example where this doesnot hold.

1) Any (M, ǫ) code for the random transformation
(A, B, PY |X) satisfies

δ(1 − ǫ|| 1
M

) ≤ sup
PX

inf
QY

D(PXY ||PXQY ) (80)

= sup
PX

K(X ; Y ) (81)

≤ inf
QY

sup
PX

D(PXY ||PXQY ) (82)

2) For random variablesW −X−Y −Z forming a Markov
chain the following holds

K(W ; Z) ≤ K(X ; Y ) . (83)

3) If X andY are taking values in the same set{1, . . . , M}
andX is equiprobable, then

min
PY |X :P[X 6=Y ]≤ǫ

K(X ; Y ) = δ(1 − ǫ|| 1
M

) (84)

if ǫ ≤ 1 − 1
M

and minimum is equal toδ( 1
M
|| 1

M
)

otherwise.
4) If D(P ||Q) is anf -divergence, then we have an equality

in (82) and

sup
PX

D(PXY ||PXQY ) = sup
x∈A

D(PY |X=x||QY ) . (85)

In particular, forK(X ; Y ) we have

sup
PX

K(X ; Y ) = inf
QY

sup
x∈A

D(PY |X=x||QY ) . (86)

Remark:What this theorem shows is that many of the prop-
erties ofDλ are common to allg-divergences. However, what
makesDλ special is additivity under products:

Dλ(P1P2||Q1Q2) = Dλ(P1||Q1) + Dλ(P2||Q2) , (87)

which results in identities like (38) and (21), and in turn in
single-letter bounds like (10).

Proof: Notice that any hypothesis test betweenPXY and
PXQY is a random transformation fromA × B to {0, 1}.
Applying the data-processing property forD we get that any
test attaining probabilities of success1 − ǫ and 1 − β over
PXY andPX × QY , respectively, must satisfy

δ(1 − ǫ||β1−ǫ) ≤ D(PXY , PX × QY ) . (88)

Note that the data-processing property implies that whenever
p ≤ p′ ≤ q we have

δ(p′||q) ≤ δ(p||q) (89)

and a similar monotonicity in the second argument. Since by
Theorem 3,β1−ǫ ≤ 1

M
and 1

M
≤ 1 − ǫ by assumption, we

have from (88):

δ(1 − ǫ|| 1
M

) ≤ D(PXY , PX × QY ) . (90)

Therefore, taking first infimum over allQY and the supremum
over all PX we get (80). Then (81) is by definition (79)
and (82) is obvious.

Proofs of (83) and (84) are exact repetition of the proofs
of Properties 2 and 3 in Theorem 5, since there we have not



used any special properties of the Rényi divergence, except
the data-processing property.

Finally, when D(P ||Q) is an f -divergence then
D(PXY ||PXQY ) is linear in PX and convex in QY .
Thus the equality in (82) follows from the minimax theorem
by interchanging sup and inf exactly as explained by
Csiszár [7] in the proof of (44). (85) follows from linearity
of D(PXY ||PXQY ) in PX . Finally, (86) follows from (85)
and the equality in (82).

Remark:Examples of the application of Theorem 8 (Prop-
erty 1) include:

• Fano’s inequality: takeD to be the relative entropy.
• Theorem 4: takeD to be Rényi divergenceDλ.
• Wolfowitz strong converse, e.g. [5, Theorem 9]: takeD to

be anf -divergence appearing in the DT-bound [5, (78)],
f = |x − γ|

+.

If we apply Theorem 8 with ag-divergence given by
−βα(P, Q), 0 ≤ α ≤ 1, we get the following (equivalent)
form of Theorem 3:

Corollary 9: Every(M, ǫ) code satisfies for all0 ≤ α ≤ 1:

inf
PX

sup
QY

βα(PXY ||PXQY )

≤
α

M(1 − ǫ)
+

(

1

ǫ
−

1

M(1 − ǫ)

)

|α − 1 + ǫ|
+

,(91)

wherePX ranges over all input distributions onA, andQY

ranges over all out distributions onB.
Taking α = 1 − ǫ in (91) one recovers Theorem 3. The

additional benefit of stating the minimax problem in this form
is that it demonstrates that to bound the cardinality of a code
for a givenǫ, it is not required to evaluateβα for α = 1−ǫ. In
fact, determining the value ofβα for any α sufficiently close
to 1 − ǫ also works. This is useful whenβα is computed via
a Neyman-Pearson lemma.
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