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Abstract—Arimoto [1] proved a non-asymptotic upper bound randomized) mapy : {1,...,M} — A (the encoder) and
on the probability of successful decoding achievable by angode :B — {1,..., M} (the decoder), satisfying
on a given discrete memoryless channel. In this paper we prest
a simple derivation of the Arimoto converse based on the data 1 M
processing inequality for Renyi divergence. The method has two — Z Plg(Y) #m|X = f(m)] <e. (5)
benefits. First, it generalizes to codes with feedback and\gs the M m=1
simplest proof of the strong converse for the DMC with feedbak. . . 1
Second, it demonstrates that the sphere-packing bound israttly ~ Without loss of generality we assume that< 1 — 7. In
tighter than Arimoto converse for all channels, blocklenghs applications, we will takeA and B to be n-fold Cartesian
and rates, since in fact we derive the latter from the former. products of alphabetd and3, and a channel to be a sequence
Finally, we prove similar results for other (non-Rényi) divergence of random transformation Py x» : A" — B"} [2]. An

measures. n 1an .
Index Terms—Shannon theory, strong converse, information (M, €) code for{A B ’PY"|X"} is called an(n, M, ¢) code.

measures, Rnyi divergence, feedback. For the statement and proof of the main converse bounds, it is
preferable not to assume thatandB have any structure such
l. INTRODUCTION as a Cartesian product. This has the advantage of avoiding

the notational clutter that results from explicitly shogithe

In [1], Arimoto has shown a simple non-asymptotic boun@jimension ) of the random variables taking values Arand
that implies a (strengthening of the) strong converse to the

channel coding for the DMC. Moreover, his bound is expo- Arimoto has shown the following result:

nentially tight for rates above the capacity. Theorem 1 ([1]): The probability of error of any (M, )
To state Arimoto's bound, recall that Gallagersode for the random transformati¢A, B, Py |x) satisfies for

Eo(p, Px, Py|x), p # 1 function is defined for a pair any—1 < p <0
of random variables € A andY < B as follows:

€>1—MPexp{—Eo(p, Px,Py|x)}, (6)
Eo(p, Px, Py|x)

e where Py is the distribution induced oA by the encoder.
. Note that the bound (6) applies to an arbitrary codebook.
_1ogz <Z PX(I)PYIX(?AI)) (1) 1o obtain a universal bound (i.e. the one whose right side
yeB \z€A depends only onl/) one needs to take the infimum over
(E [ {z’(X;Y)}‘YDH”] all distributions Px. When the blocklength of the code is
exp 71 } (2)

—logt +p large, a direct optimization becomes prohibitively comple
However, the following result resolves this difficulty and
where the second expression is a generalization to the ¢asen@kes Theorem 1 especially useful:

infinite alphabets, where Theorem 2 (Gallager-Arimoto)Consider the product chan-
A dPxy nel Py x: given by
i(z;y) = log ——————(x,9), ®3) B
d(Px x Py) Py2 x2(y1y2|r122) = Py |x, (Y1]21) Py x, (y2l22) . (7)
and the joint distribution of X,Y’) is given by Then for all-1 < p < 0 we have [1]
Py (2,y) = Px(z)Py(y). 4 IﬁligEO(p’PszPYz\Xz)
X
A random transformation is defined by a pair of measur- = r}gl;n Eo(p, Px,, Py x,) —i—r}g}i{n Eo(p, Px,, Py,|x, (8)
1 2

able spaces of inputd and outputsB and a conditional

probability measurePyx : A — B. An (M,€) code for Similarly, for p > 0 we have [3]

the random transformatiofA, B, Py |x ) is a pair of (possibly max Eo
X2
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Application of Theorems 1 and 2 to the DMC of blocklength Finally, we conclude by showing which of the results
n, i.e. the channe(A™, B", (Py|x)™), one obtains that any generalize to other divergence measures, and which ar@akpec
(n,exp{nR},¢) code over the DMC satisfies to Rényi divergence. A family of bounds obtained by fixing an

arbitrary f-divergence includes Fano’s inequality (correspond-
€>1—exp {_n sup {mm Eo(p, Px, Py|x) — pR} } , ing to rglative entropy), Arimot(_) converse (correspondiog
—1<p<0 | Px Rényi divergence) and Wolfowitz strong converse (e.g,, [5

_(10) Theorem 9]).
The bound (10) has a number of very useful properties:

1) it is non-asymptotic (i.e. valid for any > 1), Il. ARIMOTO CONVERSE A PROOF VIA META-CONVERSE

2) itis universal (i.e., the only data about the code appe&(- preliminaries
ing in the right-hand side is the code rag®,

3) it is single-letter (i.e., its computational complexity One of the main tools in our freatment [5] is the perfor-

independent of the blocklengh, mance of an optimal binary hypothesis test defined as follows

4) a further analysis, see [1], shows that the exponentqgnsid?r aW-valued random variabIeW_ which can take
negative for allR > C, thus proving a (strengthening 0fprobablhty measures” or Q. A randomized test between

the) strong converse, which shows that above capacjgpse two distributions is defined by a random transformatio

the minimum probability of error goes to 1 exponentially Z/W - W {0, 1} where( indicates that the test chooses

fast with the blocklength. Moreover, it is known thatQ.stLhii l;ie\;setnpggormance achievable among those randomized

this lower bound is exponentially tight in the sense thaf
there exist a sequence of codes of r&tachieving the P O) = mi P 1 11
exponent [4, Problem 2.5.16b]. The counterpart in data fa(P, Q) = min Z Qw)Pzw (Lw). (1)

weW
compression is given by [4, Problem 1.2.6]. ©

A drawback of the bound (10), severely limiting its use fo\év;iesr;i;h; minimum is over all probability distributiof,
finite blocklength analysis, is that the right-hand sideistaes
for any R < C. In this paper we presen_t a strengthenipg Py Z P(w)Pyw(llw) > a. (12)
of the Arimoto bound which overcomes this drawback while wew
retaining all the mentioned advantages. In particular, f
R < C'it yields a non-trivial exponential lower bound on th
probability of error, which although results in a weaker bdu
on the error exponent than the Shannon-Gallager-Berleka tror under hypothesi® is not larger thani — a.

here-packing bound, i h simpl di licabl .
Sphere-packing bound, 1s muUch SImp'er and 15 appiicaie In [5] we have shown that a number of classical con-

non-discrete channels. We give two different proofs of this bounds. including Fano's i litv. Sh ha
sult, each having its own benefits. The first proof demorestral 6'S€ DOUNCS, INClUding Fano's inequaity, anqon-@a.
erlekamp, Wolfowitz strong converse and Verdi-Han infor

that Arimoto’s result is implied by the minimax convers : : : o
shown in [5]. In particular this implies that for symmetricmat'on spectrum converse, can be obtained in a unified manner

channels, the sphere-packing bound is always tighter th@n (as a consequence of the meta-conyerse theorem [, '_I'heorem
for all rates and blocklengths. The second proof demorwra?(s]' One of such consequences is the following minimax

that Arimoto’s result is a simple consequence of the datgonverse [51: . )
processing inequality for an asymmetric information measu._ Theorem 3 (minimax conversefvery (M, e) code satis-
introduced by Sibson [6] and Csiszar [7]. The proof pahallef'es . 1
the standard derivation of the Fano’s inequality and appear M <supin )
to be the simplest known proof of the strong converse for Py @ Fi-c(Pxy, Px x Qy)
memoryless channels. In particular, no measure concemtratwhere Py ranges over all input distributions of, and Qy
inequalities are employed. ranges over all output distributions @&

The second proof admits an important generalization to tide traditional sphere-packing bound for symmetric chéne
case of codes with feedback. Namely, we show that (10) holigdlows from Theorem 3 by choosin@y to be equiprobable
in this exact form for (block) codes with feedback. Althoughon the finite output alphabet. For this reason, Theorem 3 can
this result is known asymptotically [4, Problem 2.5.16tf t be viewed as a natural generalization of the sphere-packing
non-asymptotic bound appears to be proven here for the fipstund.
time'. A converse bound valid for all DMCs might prove to The Rényi divergence fak > 0, A # 1 is [11]
be helpful in the ongoing effort of establishing the valjditf ap\ >

(%)

the sphere-packing exponent for codes with feedback over a Dy\(P||Q) = L
A T -1
general DMC [9], [10].

1A similar result can be extracted with a circuitous routerfr{8] whose 2We write summations over alphabets for simplicity; howewat of our
proof contains gaps as pointed out in [9]. general results hold for arbitrary probability spaces.

q'rhe minimum in (11) is guaranteed to be achieved by the
(?\leyman-Pearson lemma. Thus, (P, Q) gives the minimum
robability of error under hypothesi@ if the probability of

(13)

logE g . (14)




where we adopted the convention (3), (4).

Normalization ensures that
lim D (P||Q) = D(P||Q), Now from Theorem 3 we know that anyM,e) code
A—1 satisfies

where D(P||Q) is the relative entropy: B (Pxy,Px x Q}) < 1
1-e\L' XY, 1I'X Y) = F 7
A dP dP
D(PYQ) 2 | | (16

(15)
i (28)
aq '8 dq

Although Rényi divergence is not gftdivergence in the sense
of [12], it is a monotone transformation of the Hellinger dx(1 — €||B1—c(Pxy, Px x Qy)) < Di(Pxy, Px x Q).

Applying the data-processing for Rényi divergence we get

divergence of orden, see [13]. Since Hellinger divergence (29)
is an f-divergence for all\ > 0, # 1, the data-processingIn view of (28) andl — e > -, (29) implies
inequality automatically follows for Rényi divergenceaslI.
Additionally, we define a conditional Rényi divergence as dr(1— €||57) < DA(Pxy, Px x Qy). (30)
follows:
Da(Pasl| Qa5 Ps) Application of (26) completes the proof of (25).
AA A‘Bl AlBITB To obtain (6) observe a simple inequality:
= 11 log Y _ P (b) exp{(A — 1)Dx(Pajp=s||Qa5=s)} 1 1 N
beB dx(1—¢€ll==) > log (1 —€)"M"™ €) . 31
any DO Tyl (-0 ) @)
N log» > " Pp(b)P) 5(alb)QY A (alb) (18) If we take —1 < p < 0 and leth = - > 1 furth
o1 A|B A|B p<0andle 5 > 1 we can further

beBacA
= Dx(Pp x Pap||PB x QaB) -

Two obvious consequences of the definition are identities

Sup Dx(Pal|Qas|PB) = sup D\(PaiB=b||Qa|B=b)
B €
(20)
and
DA(Pag||Qas) = DA(P5|Qn) + DA(Pajsl|Qas|PS),
(21)
WherePg) is the A-tilting of Pp towards@ g given by

N _
P (6) 2 PR(0)Qp (b) exp{ (A - UDFlQe):

22
The binary Rényi divergence is given by

dx(pllq) Dx(lp 1 =pllllg 1 —q]) (23)

log (Pg' T+ (1 - p)M(1 - g)' ) (24)

B. Main result
Theorem 4:Any (M, ¢) code satisfies foh > 0, A # 1:

(19)

lower-boundd:

dr(1 —ell57) > log(1 —¢) +logM,  (32)

A
A—1
which together with (25) implies (6). [ |

As already mentioned, Theorem 4 extends Arimoto’s result.
First, as shown, inequality (25) is stronger than (6). Meezp
the family of bounds (25) includes Fano’s inequality:

(I—¢€)logM — h(e) <I(X;Y), (33)
which is obtained by takingh — 1 (see (15)). This does

not happen with (25) whep — 0. Second, inequality (25)
extends (6) tg > 0 as follows:

1 , \ '
€> (exp{—1+pEo(P,PX7PYX)}—Mm) :
(34)
If we now apply (34) to codes over the DMC of blocklength
n and take infimum over alPx» via Theorem 2 (similar to
the derivation of (10)) we get an exponential lower bound on

1 -1

A =ellar) < 73BT = L P Prix) - (@5) i or all (n,exp{nR},e¢) codes:
and in particular for any-1 < p < 0 we obtain (6) (letting
A= 1> ), ¢ > exp{-np R+ o(n)} (35)

Proof: The key observation is that Gallager's
Eo(p, Px, Py|x) for p > —1 is given by a Rényi divergencewherep* is found as a solution to
of order\ = s

A max Fo(p, Px, Py|x) = pR. (36)
Px

T )\Eo(/\fl—lapxapnx) = Dx(Pxy||Px xQy), (26)

where the auxiliary output distributio}j- is defined implicitly
via

dQy
dPy

(E [exp{Xi(X; Y)HY])% exp{Eo(152, Px, Py|x)} (27)

>

(Y)

Compared to the derivation of the sphere-packing bound
in [14], the bound (35) is much easier to obtain, but, alas,
p*R is always larger than the sphere-packing exponent. Note
also that forR > C' the solutionp* = 0 and (35) shows that
exponentially small probabilities are impossible for suates,

a fact also clear from (10).



I1l. A SECOND PROOF OHHEOREM4 in [16] as a maximization of a different information measure

Observe that in the proof of Theorem 4 the inequality (31based on Rényi entropy). A simple algorithm for its compu-

value for the capacity of ordex is obtained by maximizing

dx(1—¢€l|77) < Da(Pxy, Px X Qy). (37) two other information measures (based on Rényi divergence
§&e of themK\ (X;Y); see also [17].

To obtain the best bound we may minimize the right-hand si
The next result relate& ) (X;Y) to a proof of Theorem 4

over the choice of)y. However, as noted in [7], the identity

of Sibson [6] and also demonstrates a remarkable resemblance between the
properties ofK, (X;Y) and the mutual informatiof(X;Y").
Dy (Pxy||PxQy) = Dx(Pxy||PxQy) + DA(Qy||Qy) Theorem 5:For A > 0, A # 1 the following holds.

(38) 1) The functionfy(K,(X;Y)) is convex inPyx and con-
shows that such method does not lead to any improvement cave in Py x, where f5(z) = ﬁ exp{(1 — ANz} is

since @3-, defined in (27), is in fact the minimizer: monotonically increasing.
. % 2) For random variabled’— X —Y — Z forming a Markov
f D(P P = Dy\(P P . 39
Oy A Pxy[[PxQy) = Da(Pxy|[Px@y) (39) chain the following holds
This leads us naturally to the following asymmetric infor- K\(W:Z) < Kx\(X;Y). (49)

mation measure, introduced by Csiszar in [7]: i
3) If X andY take values in the same sgt, ..., M} and

K\(X;Y) 2 inf D5(Pxv||PxQy). (40) X is equiprobable, then
Y
: . _ 1
In the special case of discretex (40) was introduced by PY‘X:Q}&HSKA(X’Y) =d\(1 =€) (50)

Sibson in [6]. Using Sibson identity (38) we obtain the

. 1 . . )
following equivalent expressions fdt(X;Y) if ¢ <1— 4; and minimum is equal to zero otherwise.

Proof: Property 1 follows by noticing that

K\(X;Y) = Di(Pxv|[PxQy) (41) 1
= 2 B(T - LP Ry @) HENGY) = Y (Z PX(x)pQX(ym)
1 yeB \zeA

A \ > ) (51)
= 37 logz ZPX () Py x (ylz) | (43) and applying convexity (concavity) af~ for A < 1 (A > 1).
yEB \z€A The concavity inPy|x follows from Minkowski inequality.
Notice that in [15] for the purpose of finding an efficient TO Show Property 3, consider an arbitrafyy with P[X #
algorithm for computingup », Eo(p, Px, Py|x) Arimoto has Y] = s. Thenthe d_ata—processmg for Rényi divergence applied
shown a variational representation & (and therefore for t0 the transformatior.X,Y) — 1{X # Y} shows

K); see (42)) different from (40). D(Pxy||PxQy) > dx(1 — s||%), (52)
An important property ofK, (X;Y") shown by Csiszar [7] L L .
is the following: Since the function in the left-hand side is decreasing for al

s <1-— 2, we find that

i K\(X;Y)>da(1—¢||L). 53
Py\x:g[l)l(n;éy]se AXY) 2 da(1 — ell5y) (53)

sup K\ (X;Y) = infsup DA (Py | x—.[|Qy) .  (44)
Px Qy ¢

One application of (44) is a direct proof of Theorem 2: . L
provided that < 1 — 4. On the other hand, the lower bound

sup K\ (X1X2;Y1Y2) is achieved by the kerndby |y defined as:
Px, x,
= inf Dx(Py, 1 x1—z: Py, X0 —a 45 l—e, z=y
1\23/2 flufz Al Y| X1=211Y2| Xo LQviv,)  (45) PY\X(y|I) _{ . vdy (54)
< 0 inf sup DA(PYHX] =z PY2|X2212||QY1 Qyz)(46) .M71 .
v1 @Yy @122 The proof of Property 2 is the key step. Notice because
= inf sup DA(Py,|x,=2,) of the asymmetric nature oK, (X;Y) we must prove two
Y{ ””fl cus D (P 47 statements separately:
+ gu sup APy Xo=a2) (47) ", “data post-processing” iff — Y — Z form a Markov
= sup Ka(X131) + sup K (X2; Ya). (48) ~ chain. then
Px, Px, KX(X,Z)SKA(X,Y) (55)

Note that the more cumbersome original proofs of Theorem 2
relied on the Karush-Kuhn-Tucker conditions, which requir
additional justification in non-discrete settings.

We notice as a side remark that the maximunkof( X; Y) Qz(b) = Z Qy (y)Pzpy (bly) . (56)
over Px is known as the capacity of order It was defined yeB

This inequality follows from the following argument. For
an arbitrary@y denote



Then by the data-processing for Rényi divergence we Theorem 7:Every (n, M, ¢) feedback code for a memory-
have: less channe({A™, B", (Py|x)") satisfies (62) and in particu-
lar (10).

Dx(Pxz||PxQz) < Dx(Pxy||[PxQy). (57) Proof: Take an arbitrary(n, M, ¢) feedback code. Then
Taking infimum overQy and using the definition of it induces a certain joint distribution of#¥, Y™) according to
K\(X; Z) shows (55). L
“data pre-processing”: iV — X — Y form a Markov Pyyn(w,y") = — HPy\x(ydfi(wval)), (63)
chain, then M3

K\(W;Y) < Kx\(X;Y). (58) wheref; : {1,...,M} x B=!' — A, i =1,...,n are the
. . encoder maps. The decoder estimiéfes obtained as a (gos-
Consider the computation oD(Pxy[|[PxQy). For a gjn\y randomized) function of ™ and therefordl’ — Y™ — 11"

fixed Qy the random variabléX,Y") is distributed either form a Markov chain. By Theorem 5 (Property 2) we have
as Pxy or as PxQy. Observe that applying random

transformation Py xy to (X,Y) we obtain (W,Y) KA(W; W) < Kx(W;Y™), (64)
distributed either asPyy or as Py Qy (the Markov

property is needed to see that the distributionvisfis 2nd by Theorem 5 (Property 3) we have

Py in the alternative hypothesis). Then by the data- L 1 Mool
processing for Rényi divergence: KXW W) 2 y— log (L= M 4et) . (65)
Dx(Pwy||PwQy) < Dx(Pxy||PxQy), (59) To conclude the proof we need to show that
which implies (58) after taking infimum ovepy . K\(W;Y™"™) <nsup K)\(X;Y). (66)
Px
|
Proof of Theorem 4:Notice that an(), ¢) code defines To that end consider the following chain:
four random variables forming a Markov chaii — X —Y — (W Y™
W, whereW is the message (equiprobable én,..., M}), ’\A ’
X is the channel inpufy” is the channel output anid’ is the = Qi)nf Dx(Pwyn||[PwQyn) (67)
decoder estimate of the messdge Then Properties 2 and 3 v
(Theorem 5) together imply Theorem 4. [ ] = inf | Dx(Pyyn—1||PwQyn-1)
Inequality (25) applied to an arbitrarin, M, €) code for Qvn
the channelPy .| x~ states that + Da(Py, jyn1w||Qy, jyn s |P151i\2/n1)} (68)
da(1 = €f|g7) < EA(X™5Y™), (60) -
where X has the distribution induced by the encoder. Max- Qi,Iif,l _DA(PWWHHPWQWH)
imizing the right-hand side of (60) over altx. is particu- . )
larly simple for memoryless channels since whp.|x. = + inf nill)A(PYn\Y"*WHQYn\Y"*l |PWyn1)} (69)
(Py|x)", then by (48) we have i
sup K(X™;Y™) =nsup K\(X;Y) (61) = Qi,?lf,l DA(Pywy =1 [[Pw Qyn-1)
X Px B
. A
and hence from (60) we get the following result: + é@f DA(Py, jyn-1w||Qv, [Py )] (70)
Corollary 6: Every (n, M, ¢) code for a memoryless chan- "L
nel (A", B™, (Py|x)") satisfies < Qinf Dy (Pyyn—1||PwQyn-1)
yn—1 |
dr(1—e||) < nsup K\(X;Y). (62)
M Px —i—énf SUEDA(PYHIXH—:EHQYTL)} (71)
. . . . . . e Yn z€
As explained in Section Il inequality (62) further simplgieo .
either (10) whem\ > 1 or to (35) when\ < 1. - Qi,Iif,l Da(Pwy || Pw @y )
IV. CODES WITH FEEDBACK +sup KA(X3Y) (72)
In [18] Shannon showed that the capacity of a DMC does = K, (W;Y" ') +sup K\(X;Y), (73)
notincrease even if we allow the encoder to use a full nassele Px

instantaneous feedback. In _this Sect?on we demonstrat_e thghere (68) is by (21), (69) follows since the first term does no
moreover, the non-asymptotic bound in Corollary 6, coregudepend oMy, |y~-1, (70) follows by restricting the infimum
to hold even in the setting of Shannon feedback. A Precigg,. .-, = Qy,, (71) is by (20), (72) is by (44), and (73)
definition of the feedback code can also bee found in [& bynthe definition of Ky in (40). The proof of (66) now
Problem 2.1.27], for example. follows from (73) by induction. |



V. GENERALIZATION TO OTHER DIVERGENCE MEASURES 1)

Notice that the key Properties 2 and 3 Bf, needed for
the proof of Theorem 4 also hold (with the same proof) if the
Rényi divergenceD, in (40) is replaced by any other func-
tion of a pair of distributions, satisfying the data-pragiag
inequality; for example, any-divergence works as well. This
section formalizes this idea.

First, consider a measurable sp&¢eand, a pair of distribu-
tions P and@ on it and a transition probability kernéy vy
from W to W. Applying Py to P and@ we obtain a pair
of distribution P’ and Q":

> P (' |w) P(w)

2)

P'(w')

weW
Q) = > Pyw|w)Qw). (75)
weW

Definition 1: A function D(P||Q) assigning an extended
real number to a pair of distributions is called a generdlize
divergence, or g-divergenceif for any Py, we have

D(P'|Q") < D(P||Q). (76)

4)

Note that restricting transformations to those mappiigo

W is made without loss of generality, as we can consider
that the spaceVN is rich enough to contain copies of any
A and B considered in the given problem and therefore, the
functionD satisfies the data-processing inequality with respect

Any (M,e) code for the random transformation
(A,B, Py x) satisfies

S(1—ellgy) <

sup
Px

sup K(X;Y)
Px

inf sup D(Pxvy||PxQy) (82)

Y Px

glf D(Pxy||PxQy) (80)
(81)

<

For random variableB” — X —Y — Z forming a Markov
chain the following holds

KW;2) < K(X;Y). (83)

If X andY are taking values in the same gét... M}
and X is equiprobable, then

KXGY) =81 -dld)  (84)

min
Py | x P[X#Y]<e
if e < 1— %
otherwise.
If D(P||Q) is an f-divergence, then we have an equality
in (82) and

sup D(Pxy||PxQy)

X

and minimum is equal toy (% ||&)

= SUPD(PY\X:zHQY)- (85)
TEA
In particular, forC(X;Y) we have

sup K(X;Y) = infsup D(Py|x=,[|Qy).  (86)
Px Qy zeA

to transformations from to B as well.
Examples ofg-divergences:
o All f-divergences [12], [17], in particular total variation
relative entropy and Hellinger divergence [13].

« Rényidivergence; note that it is a non-decreasing functio

of the Hellinger divergence.

e —f.(P,Q) for any 0 < o < 1. This example shows
that the class ofj-divergences is larger than just non
decreasing functions of-divergences, since 3. (P, Q)
cannot be obtained from anf+divergencé

To any g-divergence D(P||Q) we define a binaryg-

Remark:What this theorem shows is that many of the prop-
erties of D, are common to alj-divergences. However, what

'makesD, special is additivity under products:

Di(P1P2||Q1Q2) = DA(P1]|Q1) + DA(P2]|Qz2),  (87)

which results in identities like (38) and (21), and in turn in

single-letter bounds like (10).

Proof: Notice that any hypothesis test betweRry and
PxQy is a random transformation fro’A x B to {0,1}.
Applying the data-processing property fbrwe get that any
test attaining probabilities of succe$s— ¢ and1 — 3 over

divergence(pl||q) as the divergence between the distributioanY and Px x Qy, respectively, must satisfy

on {0,1} given by P(1) = p andQ(1) = g; formally,

S(pllg) 2 D(p 1= pllllg 1 —q) - (78)

(1 —€l|fi-c) < D(Pxy,Px x Qy).
Note that the data-processing property implies that whemev

(88)

Following the approach of Sibson [6] and Csiszar [7] for any < p’ < ¢ we have

g-divergence we define an information measure

K(X;Y) 2 glf D(Pxy||[PxQy). (79)
The following theorem summarizes the results that can
obtained by the same methods as above:

Theorem 8:Consider gj-divergenceD(P||Q). Then all of
the following hold:

3Assume otherwise, then we would have (see Theorem 8, Pyofethat

inf Bo (Pxy||PxQy)
Px

= inf Ba(Py|x=u Qv ) (77
TEA

but it is easy to construct a counter-example where this doe$old.

5('llg) < o(pllq) (89)

and a similar monotonicity in the second argument. Since by
%’ eorem 3,6;_ < 4; and ;; < 1 — e by assumption, we
ave from (88):

5(1 — 6||%) S D(ny,PX X Qy)

Therefore, taking first infimum over &)y and the supremum
over all Px we get (80). Then (81) is by definition (79)
and (82) is obvious.

Proofs of (83) and (84) are exact repetition of the proofs
of Properties 2 and 3 in Theorem 5, since there we have not

(90)



used any special properties of the Rényi divergence, éxc@n] A. Reényi, “On measures of entropy and information,Firoc. 4th Berke-
the data-processing property.

Finally,

when D(P||Q) is

D(Pxy||PxQy) is linear in Px and convex inQy.

Thus the equality in (82) follows from the minimax theore

by

interchangingsup and inf exactly as explained by

Csiszar [7] in the proof of (44). (85) follows from linearit

of D(Pxy||PxQy) in Px. Finally, (86) follows from (85) [14]

and the equality in (82). [ |

Remark:Examples of the application of Theorem 8 (Propi5]

erty 1) include:

Fano’s inequality: takéD to be the relative entropy.
Theorem 4: takeD to be Rényi divergenc®,.
Wolfowitz strong converse, e.g. [5, Theorem 9]: tgdkeo

be an f-divergence appearing in the DT-bound [5, (78)]

f=lz—"

If we apply Theorem 8 with ag-divergence given by
—Ba(P,Q), 0 < a < 1, we get the following (equivalent)
form of Theorem 3:

Corollary 9: Every (M, ¢) code satisfies for al) < o < 1:

inf sup Ba(Pxy||PxQy)
Px Qy

! 1 1
< m-ﬁ-(g—m) |Oz—1—|—t€|Jr ,(91)

where Px ranges over all input distributions of, and Qy
ranges over all out distributions dh

Takinga = 1 — ¢ in (91) one recovers Theorem 3. The

additional benefit of stating the minimax problem in thisnfor

is that it demonstrates that to bound the cardinality of aecod

for a givene, it is not required to evaluaté, for « = 1—e. In
fact, determining the value g%, for any « sufficiently close
to 1 — e also works. This is useful whefi, is computed via
a Neyman-Pearson lemma.

(1]

(2]
(3]
(4
(5]

(6]
(7]
(8]
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