Information-theoretic perspective on massive multiple-access

Yury Polyanskiy

Department of EECS MIT

yp@mit.edu

SkolTech Mini Course, Jul. 2018

Legal notice: Some images in this presentation are borrowed from publicly available sources. The copyright on these images belongs to their original creators. For full copyright information please contact the author.

Lecture plan

1 Lecture 1: Short packets. Classical MAC.

- Motivation: Why work on MAC now? What is new?
- Finite blocklength IT: a few results
- Classical MAC IT

2 Lecture 2: Gaussian MAC. Modulation. CDMA.

- Orthogonal modulation (TDMA, FDMA, CDMA) and non-orthogonal (NOMA).
- ► Gaussian MAC. TIN. TIN+SIC. Rate-Splitting.
- Spectral efficiency and E_b/N_0 .
- Randomly-spread CDMA. Effect of MUD.

③ Lecture 3: Massive MAC. Information theoretic analysis.

- Number of users scales with blocklength $K = \mu n$.
- ▶ Per-user probability of error (PUPE). Absence of strong converse.
- Gaussian-process achievability bound.

4 Lecture 4: Random-access

- Survey of attempts to formalize random-access.
- Our take: random-access = same-codebook.
- Achievability bound.
- Lattice-based coding scheme.

How does your cell phone work?

- Cell phone is powered on.
- Announces its presence on PRACH.
- Base station (periodically) gives permission to send.
- Summary:
 - Random-Access is very low duty cycle.
 - BS makes access ORTHOGONAL across users
 - bulk of communication is over an interference-free single-user AWGN.
- What's new in 5G?

- Smart Agriculture
- Advanced Metering systems
- Fire alarms
- Home security and automation
- Oilfield and pipeline monitoring

- M-health
- Smart parking, intelligent traffic
- Waste and recycling
 - Asset tracking and geo-location
 - Animal tracking and livestock

Expected density: 100-500 devices per household/office

Soup of solutions

3

Two breeds of IoT

One basestation covers 10 km

IoT is about battery life

Q: What drains the battery? Examples (@ 3.3V):

	Arduino (w/o reg.)	XBee (Zigbee)	LP-WAN sensor
Sleep	5 uA	1 uA	1-2 uA
CPU Running	50 uA	40 uA	60 uA

IoT is about battery life

Q: What drains the battery? Examples (@ 3.3V):

	Arduino (w/o reg.)	XBee (Zigbee)	LP-WAN sensor
Sleep	5 uA	1 uA	1-2 uA
CPU Running	50 uA	40 uA	60 uA
Radio Xmit		40 mA	20 mA

IoT is about battery life

Q: What drains the battery? Examples (@ 3.3V):

	Arduino (w/o reg.)	XBee (Zigbee)	LP-WAN sensor
Sleep	5 uA	1 uA	1-2 uA
CPU Running	50 uA	40 uA	60 uA
Radio Xmit		40 mA	20 mA

- Duty-cycle of 1 sec / 20 min radio lasts 6-10 yr / AA bat.
- Caveat: Calculation assumes single-user
- Key problem: Energy usage will grow with # of sensors deployed. How much?
- Sad: depends on technology? Happy: IT comes to rescue!

Outline

Envisioned solution:

- To save battery: sensors sleep all the time, except transmissions.
- ... uncoordinated transmissions.
- ... they wake up, blast the packet, go back to sleep.
- Focus on low-energy (low E_b/N_0)
- Focus on fundamental limits
- ... but with low-complexity solutions (single-user-only decoding).

Outline

Envisioned solution:

- To save battery: sensors sleep all the time, except transmissions.
- ... uncoordinated transmissions.
- ... they wake up, blast the packet, go back to sleep.
- Focus on low-energy (low E_b/N_0)
- Focus on fundamental limits
- ... but with low-complexity solutions (single-user-only decoding).

Issues we need to understand:

- 1 packets are short: finite-blocklength (FBL) info theory
- 2 multiple-access channel: Classical MAC
- 3 low-complexity MAC: modulation, CDMA, multi-user detection
- massive random-access: many users, same-codebook codes (NEW)

Outline

Envisioned solution:

- To save battery: sensors sleep all the time, except transmissions.
- ... uncoordinated transmissions.
- ... they wake up, blast the packet, go back to sleep.
- Focus on low-energy (low E_b/N_0)
- Focus on fundamental limits
- ... but with low-complexity solutions (single-user-only decoding).

Issues we need to understand:

- 1 packets are short: finite-blocklength (FBL) info theory
- 2 multiple-access channel: Classical MAC
- 3 low-complexity MAC: modulation, CDMA, multi-user detection
- massive random-access: many users, same-codebook codes (NEW)

Supporting 10 users at 1Mbps is much easier than 1M users at 10bps.

FBL Info Theory: short intro

Case study: 1000-bit BSC

- Consider channel $BSC(n = 1000, \delta = 0.11)$
- How many data bits can we transmit with (block) $P_e \leq 10^{-3}$?
- Attempt 1: Repetition

k = 47 bits via [21,1,21]-code

• Attempt 2: Reed-Muller

k = 112 bits via [64,7,32]-code

• Shannon's prediction: C = 0.5 bit so

 $k \approx 500$ bit

Case study: 1000-bit BSC

- Consider channel $BSC(n = 1000, \delta = 0.11)$
- How many data bits can we transmit with (block) $P_e \leq 10^{-3}$?
- Attempt 1: Repetition

k = 47 bits via [21,1,21]-code

• Attempt 2: Reed-Muller

k = 112 bits via [64,7,32]-code

• Shannon's prediction: C = 0.5 bit so

 $k \approx 500$ bit

• Finite blocklength IT:

 $414 \le k \le 416$

Abstract communication problem

Goal: Decrease corruption of data caused by noise

Goal: Decrease corruption of data caused by noise

Solution: Code to diminish probability of error P_e .

Key metrics: Rate and P_e

- 1. More redundancy Bad: loses rate
- 2. Increase blocklength!

- 1. More redundancy Bad: loses rate
- 2. Increase blocklength!

- 1. More redundancy Bad: loses rate
- 2. Increase blocklength!

- 1. More redundancy Bad: loses rate
- 2. Increase blocklength!

Channel coding: Shannon capacity

Channel coding: Shannon capacity

Channel coding: Gaussian approximation

Channel coding: Gaussian approximation

Classical results:

- Vertical asymptotics: fixed rate, reliability function Elias, Dobrushin, Fano, Shannon-Gallager-Berlekamp
- Horizontal asymptotics: fixed ϵ , strong converse, \sqrt{n} terms Wolfowitz, Weiss, Dobrushin, Strassen, Kemperman

XXI century:

- Tight non-asymptotic bounds
- Remarkable precision of normal approximation
- Extended results on *horizontal* asymptotics AWGN, $O(\log n)$, cost constraints, feedback, *etc.*

Finite blocklength fundamental limit

Definition

$$R^*(n,\epsilon) = \max\left\{\frac{1}{n}\log M : \exists (n, M, \epsilon)\text{-code}\right\}$$

(max. achievable rate for blocklength n and prob. of error ϵ)

Rough summary: For ergodic channels

$$R^*(n,\epsilon) \approx C - \sqrt{\frac{V}{n}}Q^{-1}(\epsilon)$$

MAC tutorial

Connection to CLT

- Let $P_{Y^n|X^n} = P_{Y|X}^n$ be memoryless.
- Converse bounds (roughly):

$$R^*(n,\epsilon)\lesssim \epsilon$$
-th quantile of $rac{1}{n}\lograc{dP_{Y^n|X^n}}{dQ_{Y^n}}$

• Achievability bounds (roughly):

$$R^*(n,\epsilon)\gtrsim\epsilon$$
-th quantile of $rac{1}{n}\lograc{dP_{Y^n|X^n}}{dQ_{Y^n}}$

Connection to CLT

- Let $P_{Y^n|X^n} = P_{Y|X}^n$ be memoryless.
- Converse bounds (roughly):

$$R^*(n,\epsilon)\lesssim \epsilon$$
-th quantile of $rac{1}{n}\lograc{dP_{Y^n|X^n}}{dQ_{Y^n}}$

• Achievability bounds (roughly):

$$R^*(n,\epsilon)\gtrsim\epsilon$$
-th quantile of $rac{1}{n}\lograc{dP_{Y^n|X^n}}{dQ_{Y^n}}$

- Info-density $i(X^n;Y^n) = \log \frac{dP_{Y^n|X^n}}{dQ_{Y^n}}$ is a sum of iid.
- Choice of Q_{Y^n} is an art. Often c.a.o.d. works. Then, $\mathbb{E}[i(X^n;Y^n]=nC.$
- So by CLT

$$R^*(n,\epsilon)\approx\epsilon\text{-quantile of }\mathcal{N}(C,V\!/n)$$

FBL achievability bounds

- A random transformation A $\stackrel{P_{Y|X}}{\longrightarrow}$ B
- (M, ϵ) codes:

$$W \to \mathsf{A} \to \mathsf{B} \to \hat{W}$$
 $W \sim Unif\{1, \dots, M\}$
 $\mathbb{P}[W \neq \hat{W}] \le \epsilon$

• For every $P_{XY} = P_X P_{Y|X}$ define information density:

$$\boldsymbol{\imath}(\boldsymbol{x};\boldsymbol{y}) \triangleq \log \frac{dP_{Y|X=x}}{dP_Y}(\boldsymbol{y})$$

- $\mathbb{E}[\imath(X;Y)] = I(X;Y)$
- $\operatorname{Var}[\imath(X;Y)|X] = V$
- Memoryless channels: $i(A^n; B^n) = \text{sum of iid.}$

$$i(A^n; B^n) \stackrel{d}{\approx} nI(A; B) + \sqrt{nVZ}, \qquad Z \sim \mathcal{N}(0, 1)$$

- Goal: Prove FBL bounds. As by-product: $R^*(n,\epsilon)\gtrsim C-\sqrt{\frac{V}{n}}Q^{-1}(\epsilon)$

Theorem (Dependence Testing Bound)

For any P_X there exists a code with M codewords and

$$\epsilon \leq \mathbb{E}\left[\exp\left\{-\left|\imath_{X;Y}(X;Y) - \log\frac{M-1}{2}\right|^{+}\right\}\right]$$

Highlights:

- Strictly stronger than Feinstein-Shannon
- ... and no optimization over $\gamma!$
- Easier to compute than RCU
- Easier asymptotics: $\epsilon \leq \mathbb{E}\left[e^{-n|\frac{1}{n}i(X^n;Y^n)-R|^+}\right]$ $\approx Q\left(\sqrt{\frac{n}{V}}\{I(X;Y)-R\}\right)$
- Has a form of *f*-divergence: $1 \epsilon \ge D_f(P_{XY} || P_X P_Y)$

DT bound: Proof

- Codebook: random $C_1, \ldots C_M \sim P_X$ iid
- Feinstein decoder:

$$\hat{W} = \mathsf{smallest}\,\, j\,\,\mathsf{s.t.}\,\,\imath_{X;Y}(C_j;Y) > \gamma$$

• *j*-th codeword's probability of error:

$$\mathbb{P}[\operatorname{error} | W = j] \le \underbrace{\mathbb{P}[\iota_{X;Y}(X;Y) \le \gamma]}_{@} + (j-1) \underbrace{\mathbb{P}[\iota_{X;Y}(\bar{X};Y) > \gamma]}_{@}$$

- In (a): C_j too far from YIn (b): C_k with k < j is too close to Y
- Average over W:

$$\mathbb{P}[\operatorname{error}] \leq \mathbb{P}\left[\imath_{X;Y}(X;Y) \leq \gamma\right] + \frac{M-1}{2} \mathbb{P}\left[\imath_{X;Y}(\bar{X};Y) > \gamma\right]$$

DT bound: Proof

• Recap: for every γ there exists a code with

$$\epsilon \leq \mathbb{P}\left[\imath_{X;Y}(X;Y) \leq \gamma\right] + \frac{M-1}{2} \mathbb{P}\left[\imath_{X;Y}(\bar{X};Y) > \gamma\right] \,.$$

- Key step: closed-form optimization of γ .
- Introduce $\bar{X} \perp \!\!\!\perp Y : \imath_{X;Y} = \log \frac{dP_{XY}}{dP_{\bar{X}Y}}$
- We have

$$P_{XY}\left[\frac{dP_{XY}}{dP_{\bar{X}Y}} \le e^{\gamma}\right] + \frac{M-1}{2}P_{\bar{X}Y}\left[\frac{dP_{XY}}{dP_{\bar{X}Y}} > e^{\gamma}\right]$$

Bayesian dependence testing! Optimum threshold: Ratio of priors $\Rightarrow \boxed{\gamma^* = \log \frac{M-1}{2}}$

• Change of measure argument:

$$P\left[\frac{dP}{dQ} \le \tau\right] + \tau Q\left[\frac{dP}{dQ} > \tau\right] = \mathbb{E}_P\left[\exp\left\{-\left|\log\frac{dP}{dQ} - \log\tau\right|^+\right\}\right]$$

FBL Converse bounds

- Take a random transformation $A \xrightarrow{P_{Y|X}} B$ (think $A = \mathcal{A}^n$, $B = \mathcal{B}^n$, $P_{Y|X} = P_{Y^n|X^n}$)
- Input distribution P_X induces $P_Y = P_{Y|X} \circ P_X$ $P_{XY} = P_X P_{Y|X}$

• Fix code:

$$W \stackrel{encoder}{\longrightarrow} X \to Y \stackrel{decoder}{\longrightarrow} \hat{W}$$

 $W \sim Unif[M]$ and M = # of codewords Input distribution P_X associated to a code:

$$P_X[\cdot] \triangleq \frac{\# \text{ of codewords } \in (\cdot)}{M}$$
.

• Goal: Upper bounds on $\log M$ in terms of $\epsilon \triangleq \mathbb{P}[error]$ As by-product: $R^*(n, \epsilon) \lesssim C - \sqrt{\frac{V}{n}}Q^{-1}(\epsilon)$

Implies *weak converse*:

$$R^*(n,\epsilon) \le \frac{C}{1-\epsilon} + o(1)$$
.

Proof: ϵ -small $\implies H(W|\hat{W})$ -small $\implies I(X;Y) \approx H(W) = \log M$

A (very long) proof of Fano via channel substitution

Consider two distributions on (W, X, Y, \hat{W}) :

$$\begin{split} \mathbb{P}: \quad P_{WXY\hat{W}} = P_W \times P_{X|W} \times P_{Y|X} \quad \times P_{\hat{W}|Y} \\ \mathsf{DAG}: \quad W \to X \to Y \to \hat{W} \end{split}$$

$$\begin{aligned} \mathbb{Q}: \quad Q_{WXY\hat{W}} &= P_W \times P_{X|W} \times Q_Y \quad \times P_{\hat{W}|Y} \\ \text{DAG:} \quad W \to X_Y \to \hat{W} \end{aligned}$$

Under \mathbb{Q} the channel is useless:

$$\mathbb{Q}[W = \hat{W}] = \sum_{m=1}^{M} P_W(m) Q_{\hat{W}}(m) = \frac{1}{M} \sum_{m=1}^{M} Q_{\hat{W}}(m) = \frac{1}{M}$$

Next step: data-processing for relative entropy $D(\cdot || \cdot)$

Data-processing for $D(\cdot || \cdot)$

Data-processing for $D(\cdot || \cdot)$

Apply to transform: $(W, X, Y, \hat{W}) \mapsto 1\{W \neq \hat{W}\}$:

$$\begin{split} D(P_{WXY\hat{W}} \| Q_{WXY\hat{W}}) &\geq d(\,\mathbb{P}[W = \hat{W}] \,\|\,\mathbb{Q}[W = \hat{W}]\,) \\ &= d(1 - \epsilon || \frac{1}{M}) \end{split}$$

where $d(x||y) = x \log \frac{x}{y} + (1-x) \log \frac{1-x}{1-y}$.

A proof of Fano via channel substitution

So far:

$$D(P_{WXY\hat{W}} \| Q_{WXY\hat{W}}) \ge d(1 - \epsilon \| \frac{1}{M})$$

Lower-bound RHS:

$$d(1-\epsilon \| \frac{1}{M}) \ge (1-\epsilon) \log M - h(\epsilon)$$

Analyze LHS:

$$\begin{split} D(P_{WXY\hat{W}} \| Q_{WXY\hat{W}}) &= D(P_{XY} \| Q_{XY}) \\ &= D(P_X P_{Y|X} \| P_X Q_Y) \\ &= D(P_{Y|X} \| Q_Y | P_X) \end{split}$$

 $\left(\text{Recall: } D(P_{Y|X} \| Q_Y | P_X) = \mathbb{E}_{x \sim P_X} [D(P_{Y|X=x} \| Q_Y)]\right)$

A proof of Fano via channel substitution: last step

Putting it all together:

$$(1-\epsilon)\log M \leq D(P_{Y|X}||Q_Y|P_X) + h(\epsilon) \quad \forall Q_Y \quad \forall \mathsf{code}$$

Two methods:

1 Compute $\sup_{P_X} \inf_{Q_Y}$ and recall

$$\inf_{Q_Y} D(P_{Y|X} || Q_Y | P_X) = I(X; Y)$$

2 Take $Q_Y = P_Y^* =$ the caod (capacity achieving output dist.) and recall

$$D(P_{Y|X} || P_Y^* | P_X) \le \sup_X I(X; Y) \qquad \forall P_X$$

Conclude:

$$(1-\epsilon)\log M \le \sup_{P_X} I(X;Y) + h(\epsilon)$$

Important: Second method is particularly useful for FBL!

Tightening: from $D(\cdot||\cdot)$ to $eta_{lpha}(\cdot,\cdot)$

Question: How about replacing $D(\cdot || \cdot)$ with other divergences?

Tightening: from $D(\cdot||\cdot)$ to $eta_{lpha}(\cdot,\cdot)$

Question: How about replacing $D(\cdot || \cdot)$ with other divergences?

	$D(\cdot \cdot)$	relative entropy (KL divergence)	weak converse
Ser.	$D_{\lambda}(\cdot \cdot)$	Rényi divergence	strong converse
	$eta_lpha(\cdot,\cdot)$	Neyman-Pearson ROC curve	FBL bounds

Tightening: from $D(\cdot||\cdot)$ to $eta_lpha(\cdot,\cdot)$

Question: How about replacing $D(\cdot || \cdot)$ with other divergences?

	$D(\cdot \cdot)$	relative entropy (KL divergence)	weak converse
Ser.	$D_{\lambda}(\cdot \cdot)$	Rényi divergence	strong converse
	$eta_lpha(\cdot,\cdot)$	Neyman-Pearson ROC curve	FBL bounds

Note: Using β_{α} is aka *meta-converse*.

... and leads to
$$R^*(n,\epsilon) \leq C - \sqrt{\frac{V}{n}Q^{-1}(\epsilon)}$$

General meta-converse principle

Steps:

- Select auxiliary channel $Q_{Y|X}$ (art) E.g.: $Q_{Y|X=x}$ = center of a cluster of x
- Prove converse bound for channel $Q_{Y|X}$ E.g.: $\mathbb{Q}[W = \hat{W}] \lesssim \frac{\# \text{ of clusters}}{M}$
- Compute distance $D(\mathbb{P} \| \mathbb{Q})$ between two spaces

$$\mathbb{P}: \ P_{WXY\hat{W}} = P_W \ \times \ P_{X|W} \ \times \ P_{Y|X} \ \times \ P_{\hat{W}|Y}$$

VS.

$$\mathbb{Q}: \ P_{WXY\hat{W}} = P_W \ \times \ P_{X|W} \ \times \ Q_{Y|X} \ \times \ P_{\hat{W}|Y}$$

- Apply data processing: $D(P_{W,\hat{W}} || Q_{W,\hat{W}}) \le D(P_{X,Y} || Q_{X,Y})$
- Key observation: This inequality connects $\mathbb{P}[\text{error}]$, $\mathbb{Q}[\text{error}]$ and distance $D(\mathbb{P}|||\mathbb{Q})$.

FBL: summary

• All in all, these methods allow us to conclude:

$$R^*(n,\epsilon) \approx C - \sqrt{\frac{V}{n}}Q^{-1}(\epsilon)$$

for a wide range of channels.

• Typically, V = Var[i(X; Y)|X] for cap.ach. distribution X.

FBL: summary

• All in all, these methods allow us to conclude:

$$R^*(n,\epsilon) \approx C - \sqrt{\frac{V}{n}}Q^{-1}(\epsilon)$$

for a wide range of channels.

- Typically, V = Var[i(X;Y)|X] for cap.ach. distribution X.
- Example: The AWGN Channel

$$\begin{array}{ccc} & Z \sim \mathcal{N}(0, \sigma^2) \\ \downarrow & & \downarrow \\ X & \longrightarrow & \bigoplus & Y \end{array}$$

Codewords $x^n \in \mathbb{R}^n$ satisfy power-constraint: $\sum_{j=1}^n |x_j|^2 \leq nP$

$$C(P) = \frac{1}{2}\log(1+P), \qquad V(P) = \frac{\log^2 e}{2} \left(1 - \frac{1}{(1+P)^2}\right)$$

• Curious property of Gaussian noise: $V(P) \leq \frac{\log^2 e}{2}$

FBL: summary

• All in all, these methods allow us to conclude:

$$R^*(n,\epsilon) \approx C - \sqrt{\frac{V}{n}}Q^{-1}(\epsilon)$$

for a wide range of channels.

- Typically, V = Var[i(X; Y)|X] for cap.ach. distribution X.
- Example: The AWGN Channel

Below for Gaussian MAC we focus on m.i./capacity. By FBL there \exists codes within $O(\frac{1}{\sqrt{n}})$ uniformly in P.

Codewords $x^n \in \mathbb{R}^n$ satisfy power-constraint: $\sum_{j=1}^n |x_j|^2 \leq nP$

$$C(P) = \frac{1}{2}\log(1+P), \qquad V(P) = \frac{\log^2 e}{2}\left(1 - \frac{1}{(1+P)^2}\right)$$

• Curious property of Gaussian noise: $V(P) \leq \frac{\log^2 e}{2}$

Classical multiple-access IT

IT vs networks view on MAC

• Core problem: many users, one channel

IT vs networks view on MAC

- Core problem: many users, one channel
- Networking folks:

• ALOHA protocol (slotted) achieves:

$$\sum_{i} R_i \approx 0.37C$$

 Open problem: what max fraction η* achievable? State of the art [Tsybakov-Lihanov'87]: 0.476 ≤ η* ≤ 0.568 (collision resolution codes)

IT vs networks view on MAC

- Core problem: many users, one channel
- Networking folks:

• ALOHA protocol (slotted) achieves:

$$\sum_{i} R_i \approx 0.37C$$

- Open problem: what max fraction η* achievable? State of the art [Tsybakov-Lihanov'87]: 0.476 ≤ η* ≤ 0.568 (collision resolution codes)
- IT: We want $\sum_i R_i \gg C$!
- How? By exploiting physics of collision.

2-user MAC: IT formalism

- 2-input channel: $P_{Y|X_1,X_2}$ (memoryless)
- Random messages $W_1 \in [2^{nR_1}], W_2 \in [2^{nR_2}]$
- Encoders: $X_1^n = f_1(W_1), X_2^n = f_2(W_2)$
- Joint decoder: $(\hat{W}_1, \hat{W}_2) = g(Y)$
- Joint probability of error:

$$\mathbb{P}[W_1 = \hat{W}_1, W_2 = \hat{W}_2] \ge 1 - \epsilon \,.$$

2-user MAC: IT formalism

- 2-input channel: $P_{Y|X_1,X_2}$ (memoryless)
- Random messages $W_1 \in [2^{nR_1}], W_2 \in [2^{nR_2}]$
- Encoders: $X_1^n = f_1(W_1)$, $X_2^n = f_2(W_2)$
- Joint decoder: $(\hat{W}_1, \hat{W}_2) = g(Y)$
- Joint probability of error:

$$\mathbb{P}[W_1 = \hat{W}_1, W_2 = \hat{W}_2] \ge 1 - \epsilon.$$

• FBL fundamental limit (region):

$$R^*(n,\epsilon) = \{(R_1,R_2): \exists (2^{nR_1},2^{nR_2},\epsilon)\text{-code}\}$$

• Asymptotics: [·] = closure

$$C_{\epsilon} = \left[\liminf_{n \to \infty} R^*(n, \epsilon)\right], \qquad C = \bigcap_{\epsilon > 0} C_{\epsilon}$$

2-user MAC: capacity region

Theorem (Ahlswede-Liao (capacity) + Dueck (Strong converse))

$$C = C_{\epsilon} = \left[\cos \left\{ \bigcup_{P_{X_1}, P_{X_2}} \operatorname{Penta}(P_{X_1}, P_{X_2}) \right\} \right]$$

$$\operatorname{Penta}(P_{X_1}, P_{X_2}) \triangleq \left\{ \begin{array}{c} R_1 + R_2 \leq I(X_1, X_2; Y) \\ (R_1, R_2) : & R_1 \leq I(X_1; Y | X_2) \\ & R_2 \leq I(X_2; Y | X_1) \end{array} \right\}$$

- $co\{\cdot\}$ convex hull
- Fun fact: w/o syncronization $C = [\bigcup \text{Penta}]$ but w/o $co\{\cdot\}$!

Theorem (Ahlswede-Liao (capacity) + Dueck (Strong converse))

$$C = C_{\epsilon} = \left[\operatorname{co} \left\{ \bigcup_{P_{X_1}, P_{X_2}} \operatorname{Penta}(P_{X_1}, P_{X_2}) \right\} \right]$$

$$\operatorname{Penta}(P_{X_1}, P_{X_2}) \triangleq \begin{cases} R_1 + R_2 \leq I(X_1, X_2; Y) \\ (R_1, R_2) : & R_1 \leq I(X_1; Y | X_2) \\ & R_2 \leq I(X_2; Y | X_1) \end{cases}$$

- $co\{\cdot\}$ convex hull
- Fun fact: w/o syncronization $C = [\bigcup \text{Penta}]$ but w/o $\operatorname{co}\{\cdot\}$!
- Not true with cost constraints. In that case need time-sharing:

$$C = \bigcup_{X_1, X_2, U} \left\{ \begin{array}{c} R_1 + R_2 \le I(X_1, X_2; Y|U) \\ (R_1, R_2) : & R_1 \le I(X_1; Y|X_2, U) \\ & R_2 \le I(X_2; Y|X_1, U) \end{array} \right\}$$

Capacity = Union of pentagons

$$\operatorname{Penta}(P_{X_1}, P_{X_2}) \triangleq \left\{ \begin{array}{c} R_1 + R_2 \leq I(X_1, X_2; Y) \\ (R_1, R_2) : & R_1 \leq I(X_1; Y | X_2) \\ R_2 \leq I(X_2; Y | X_1) \end{array} \right\}$$

Note: After taking $\bigcup_{P_{X_1},P_{X_2}}$ and convex-hull, resulting region may be curvilinear!

MAC theorem: standard proof (outline)

Theorem

$$C = C_{\epsilon} = \left[\cos \left\{ \bigcup_{P_{X_1}, P_{X_2}} \operatorname{Penta}(P_{X_1}, P_{X_2}) \right\} \right]$$

Here is a standard proof

- Weak-converse:
 - sum-rate

$$R_1 + R_2 \lesssim \frac{1}{n} I(X_1^n, X_2^n; Y^n) \le \frac{1}{n} \sum_{i=1}^n I(X_{1i}, X_{2i}; Y_i).$$

• genie gives X_1^n to decoder

$$R_2 \lesssim \frac{1}{n} I(X_2^n; Y^n | X_1^n) \le \frac{1}{n} \sum_{i=1}^n I(X_{2i}; Y_i | X_{1i})$$

• Hence $(R_1, R_2) \in \frac{1}{n} \sum_i \text{Penta}(P_{X_{1i}}, P_{X_{2i}})$

MAC theorem: standard proof (outline)

Theorem

$$C = C_{\epsilon} = \left[\cos \left\{ \bigcup_{P_{X_1}, P_{X_2}} \operatorname{Penta}(P_{X_1}, P_{X_2}) \right\} \right]$$

Here is a standard proof

- Achievability:
 - Fix P_{X_1}, P_{X_2} .
 - Generate codewords for user i from $(P_{X_1})^{\otimes n}$ iid
 - Decode via joint-typicality
 - ► Have $(M_1 1)(M_2 1)$ possibilities with both \hat{W}_1, \hat{W}_2 wrong (each w.p. $\leq 2^{-nI(X_1, X_2; Y)}$)
 - Have $M_i 1$ possibilities with \hat{W}_i wrong (each w.p. $\leq 2^{-nI(X_i;Y|X_{\bar{i}})}$)
 - ▶ Hence, if $(R_1, R_2) \in \text{Penta}(P_{X_1}, P_{X_2})$ all three types of errors are small.
 - Let us understand this more carefully...

MAC achievability: details I

- Gen. $M_1 = 2^{nR_1}$ codewords $C_i \stackrel{iid}{\sim} (P_{X_1})^{\otimes n}$
- Gen. $M_2 = 2^{nR_2}$ codewords $D_i \stackrel{iid}{\sim} (P_{X_2})^{\otimes n}$
- True message $W_1 = i_0, W_2 = j_0.$
- Decoder sees y^n . How to decode?

MAC achievability: details I

- Gen. $M_1 = 2^{nR_1}$ codewords $C_i \stackrel{iid}{\sim} (P_{X_1})^{\otimes n}$
- Gen. $M_2 = 2^{nR_2}$ codewords $D_i \stackrel{iid}{\sim} (P_{X_2})^{\otimes n}$
- True message $W_1 = i_0, W_2 = j_0.$
- Decoder sees y^n . How to decode?
- Why is this not the same as decoding single-user $M_1 \times M_2$ -size code?

MAC achievability: details I

- Gen. $M_1 = 2^{nR_1}$ codewords $C_i \stackrel{iid}{\sim} (P_{X_1})^{\otimes n}$
- Gen. $M_2 = 2^{nR_2}$ codewords $D_i \stackrel{iid}{\sim} (P_{X_2})^{\otimes n}$
- True message $W_1 = i_0, W_2 = j_0.$
- Decoder sees y^n . How to decode?
- Why is this not the same as decoding single-user $M_1 \times M_2$ -size code?

• Extra structure: $(C_{i_0}, D_j) \not \perp (C_{i_0}, D_{j_0})$

MAC achievability: details II

- Decoder sees y^n . How to decode?
- A good test for rejecting $(M_1 1)(M_2 1)$ codewords in (P_{12}) : (T_{12}) $i(c_i, d_i; y^n) \le \gamma_{12} \Rightarrow$ remove (i, j) from consideration

•
$$i(c,d;y^n) \triangleq \log \frac{P_{Y^n|X_1^n,X_2^n}(y^n|c,d)}{P_{Y^n}(y^n)}$$

• Standard bound: $\forall i \neq i_0, j \neq j_0$:

$$\mathbb{P}[i(C_i, D_j; Y^n) > \gamma_{12}] \le e^{-\gamma_{12}}$$

• Set $\gamma_{12} = \log(M_1M_2) + \tau$ then test (T_{12}) filters all $(i, j) \in (P_{12})$

MAC achievability: details III

- Decoder sees y^n . How to decode?
- A good test for rejecting $(M_2 1)$ codewords in (P_2) :

 (T_2) $i(d_j; y^n | c_i) \le \gamma_2 \implies$ remove (i, j) from consideration

- $i(d; y^n | c) \triangleq \log \frac{P_{Y^n | X_1^n, X_2^n}(y^n | c, d)}{P_{Y^n | X_1^n}(y^n | c)}$
- Standard bound: $\forall j \neq j_0$:

$$\mathbb{P}[i(D_j; Y^n | C_{i_0}) > \gamma_2] \le e^{-\gamma_2}$$

• Set $\gamma_2 = \log(M_2) + \tau$ then test (T_2) filters all $(i_0, j) \in (P_2)$

• Decoder sees y^n . How to decode?

(T_{12})	$i(c_i, d_j; y^n) \le n(R_1 + R_2) + \tau$	\Rightarrow remove (i, j)
(T_1)	$i(c_i; y^n d_j) \le nR_1 + \tau$	\Rightarrow remove (i, j)
(T_2)	$i(d_j; y^n c_i) \le nR_2 + \tau$	\Rightarrow remove (i, j)

This achieves:

$$\epsilon \leq 3e^{-\tau} + \mathbb{P}\left[\left\{i(X_1^n, X_2^n; Y^n) \le n(R_1 + R_2) + \tau\right\} \cup \left\{i(X_1^n; Y^n | X_2^n) \le nR_1 + \tau\right\} \cup \left\{i(X_2^n; Y^n | X_1^n) \le nR_2 + \tau\right\}\right]$$

• By CLT a (R_1, R_2) within $\frac{1}{\sqrt{n}}$ of the boundary of Penta is achievable.

• Decoder sees y^n . How to decode?

(T_{12})	$i(c_i, d_j; y^n) \le n(R_1 + R_2) + \tau$	\Rightarrow remove (i, j)
(T_1)	$i(c_i; y^n d_j) \le nR_1 + \tau$	\Rightarrow remove (i, j)
(T_2)	$i(d_j; y^n c_i) \le nR_2 + \tau$	\Rightarrow remove (i, j)

This achieves:

$$\epsilon \leq 3e^{-\tau} + \mathbb{P}\left[\left\{i(X_1^n, X_2^n; Y^n) \le n(R_1 + R_2) + \tau\right\} \cup\right]$$

 $\{i(X_1^n; Y^n | X_2^n) \le nR_1 + \tau\} \cup \{i(X_2^n; Y^n | X_1^n) \le nR_2 + \tau\} \Big| .$

- By CLT a (R_1, R_2) within $\frac{1}{\sqrt{n}}$ of the boundary of Penta is achievable.
- Typical decoding
 - ► Use (T₁₂) rule this is like decoding single-user M₁ × M₂-code (LDPC+LDGM structure!)
 - After applying it, most often get only one (true) message left (!)

• Decoder sees y^n . How to decode?

(T_{12})	$i(c_i, d_j; y^n) \le n(R_1 + R_2) + \tau$	\Rightarrow remove (i, j)
(T_1)	$i(c_i; y^n d_j) \le nR_1 + \tau$	\Rightarrow remove (i, j)
(T_2)	$i(d_j; y^n c_i) \le nR_2 + \tau$	\Rightarrow remove (i, j)

This achieves:

$$\epsilon \leq 3e^{-\tau} + \mathbb{P}\left[\left\{i(X_1^n, X_2^n; Y^n) \le n(R_1 + R_2) + \tau\right\} \cup \right]$$

 $\{i(X_1^n; Y^n | X_2^n) \le nR_1 + \tau\} \cup \{i(X_2^n; Y^n | X_1^n) \le nR_2 + \tau\} \ .$

- By CLT a (R_1, R_2) within $\frac{1}{\sqrt{n}}$ of the boundary of Penta is achievable.
- Typical decoding
 - ► Use (T₁₂) rule this is like decoding single-user M₁ × M₂-code (LDPC+LDGM structure!)
 - After applying it, most often get only one (true) message left (!)
 - Unless $R_1 = I(X_1; Y|X_2) + O(\frac{1}{\sqrt{n}}).$
 - ▶ In this case, many (*i*, *j*)'s remain. But they are all in one column!
 - ► Hence decode W₂. Conditioned on X₂ decode M₁-code.

 $Y = X_1 + X_2 \qquad X_i \in \{0, 1\}, Y \in \{0, 1, 2\}$

• Maximal sum-rate:

$$C_{sum} = \max_{A,B} I(A, B; Y) = \max H(A + B) = \frac{3}{2} \log 2$$

• Each user can send 1 bit/ch.use. But together $\frac{3}{2}$ bit/ch.use. How?

• Take $R_1 = 1$. Then $X_2 \rightarrow Y$ sees channel:

• Take $R_1 = 1$. Then $X_2 \rightarrow Y$ sees channel:

• Take $R_1 = 1$. Then $X_2 \rightarrow Y$ sees channel:

• successive interference cancellation (SIC):

 $Y=X_1+X_2 \qquad X_i\in\{0,1\}, Y\in\{0,1,2\}$ • Analyzing FBL achievability we can show: (maximal sumrate)

$$R_{sum}^*(n,\epsilon) \ge \frac{3}{2} - \sqrt{\frac{1}{4n}}Q^{-1}(\epsilon) + O(\log n).$$

• Open problem: Prove $R^*_{sum}(n,\epsilon) \leq \frac{3}{2} + \sqrt{\frac{1}{n}K_{\epsilon}}$

 $Y=X_1+X_2 \qquad X_i\in\{0,1\}, Y\in\{0,1,2\}$ • Analyzing FBL achievability we can show: (maximal sumrate)

$$R_{sum}^*(n,\epsilon) \ge \frac{3}{2} - \sqrt{\frac{1}{4n}}Q^{-1}(\epsilon) + O(\log n).$$

- Open problem: Prove $R^*_{sum}(n,\epsilon) \leq \frac{3}{2} + \sqrt{\frac{1}{n}K_{\epsilon}}$
- ... not even asking for $K_{\epsilon} < 0$
- ... So far best-known result (Ahslwede): $R^*_{sum} \leq \frac{3}{2} + c \sqrt{\frac{1}{n} \log n}$

 $Y=X_1+X_2 \qquad X_i\in\{0,1\}, Y\in\{0,1,2\}$ • Analyzing FBL achievability we can show: (maximal sumrate)

$$R_{sum}^*(n,\epsilon) \ge \frac{3}{2} - \sqrt{\frac{1}{4n}}Q^{-1}(\epsilon) + O(\log n).$$

- Open problem: Prove $R^*_{sum}(n,\epsilon) \leq \frac{3}{2} + \sqrt{\frac{1}{n}K_{\epsilon}}$
- ... not even asking for $K_{\epsilon} < 0$
- ... So far best-known result (Ahslwede): $R^*_{sum} \leq \frac{3}{2} + c \sqrt{\frac{1}{n} \log n}$
- The state is so bad that even for $\epsilon = 0$ we only know (Fano):

$$R^*_{sum}(n,\epsilon=0) \le \frac{3}{2}$$

• Open problem: Prove $\lim_{n\to\infty} R^*_{sum}(n,\epsilon=0) < \frac{3}{2}$.

 $Y=X_1+X_2 \qquad X_i\in\{0,1\}, Y\in\{0,1,2\}$ • Analyzing FBL achievability we can show: (maximal sumrate)

$$R_{sum}^*(n,\epsilon) \ge \frac{3}{2} - \sqrt{\frac{1}{4n}}Q^{-1}(\epsilon) + O(\log n).$$

- Open problem: Prove $R^*_{sum}(n,\epsilon) \leq \frac{3}{2} + \sqrt{\frac{1}{n}K_{\epsilon}}$
- Conjecture: [Ajjanagadde-P.'15] for all $0 < \alpha < 1$

$$\max_{A^n \perp B^n} H_{\alpha}(A^n + B^n) = nH_{\alpha}(\frac{1}{4}, \frac{1}{2}, \frac{1}{4})$$

where $H_{\alpha}(\cdot)$ is Renyi entropy.

• If true implies Open problem. How?

MAC: revisit weak-converse (genie)

Optimizing $Q_{Y|X_1}$:

$$\log M_1 \le \frac{I(X_1; Y | X_2) + h(\epsilon)}{1 - \epsilon}$$

MAC: revisit weak-converse (genie)

$$\begin{array}{c} \dots \text{ apply data processing of } D(\cdot||\cdot) \dots \\ \Downarrow \\ d(1-\epsilon\|_{\frac{1}{M_1}}) \leq D(P_{Y|X_1X_2}\|Q_Y|P_{X_1}P_{X_2}) \end{array}$$

Optimizing Q_Y :

$$\log M_1 M_2 \le \frac{I(X_1, X_2; Y) + h(\epsilon)}{1 - \epsilon}$$

Together with previous: full (pentagon) weak converse

MAC: towards strong-converse

... use Renyi
$$D_{\lambda}(\cdot \| \cdot)$$
 ...
 \downarrow
 $D_{\lambda}(P_{X_1X_2Y} \| P_{X_1}P_{X_2}Q_Y) \ge d_{\lambda}(1 - \epsilon \| \frac{1}{M_1M_2})$

Selecting $\lambda = 1 + \frac{1}{\sqrt{n}}$ yields (for BAC)

$$\log M_1, M_2 \le \sup_{A^n \sqcup B^n} H_{\alpha_n}(A^n + B^n) + K\sqrt{n}$$

with $\alpha_n = 1 - \frac{1}{\sqrt{n}}$.

• Trivially generalizes to *K*-user MAC:

$$Penta = \{(R_1, \dots, R_K) : \sum_{i \in S} R_i \le I(X_S; Y | X_{S^c}) \forall S \subset [K]\}$$

- Classic IT: Fix K let $n \to \infty$.
- Use joint probability of error:

$$\mathbb{P}[W_1 = \hat{W}_1, \dots, W_K = \hat{W}_k] \ge 1 - \epsilon.$$

• New **FBL** issue: for K = 100 need 2^{100} tests in achievability.

• Trivially generalizes to *K*-user MAC:

$$Penta = \{(R_1, \dots, R_K) : \sum_{i \in S} R_i \le I(X_S; Y | X_{S^c}) \forall S \subset [K]\}$$

- Classic IT: Fix K let $n \to \infty$.
- Use joint probability of error:

$$\mathbb{P}[W_1 = \hat{W}_1, \dots, W_K = \hat{W}_k] \ge 1 - \epsilon.$$

- New **FBL** issue: for K = 100 need 2^{100} tests in achievability.
- What is new today?
 - Many-user scaling [D. Guo et al]: $K = \mu n, n \to \infty$
 - ▶ New probability of error [P.'17]: $\frac{1}{K} \sum_{i} \mathbb{P}[W_i \neq \hat{W}_i] \leq \epsilon$
 - Same-codebook coding [P.'17]: $X_i \in \mathcal{C}$ for all *i*.

Gaussian MAC. Modulation

Let's put on our engineering boots.

The classical model: K-user multiple-access channel

The classical model: K-user multiple-access channel

• Users send coded waveforms $X_j(t)$

Tech note: synchronized block coding

- Additive Gaussian noise Z(t)
- Base station's job: estimate X_j from the knowledge of Y(t)

How to avoid inter-user interference?

These are called orthogonal schemes

Key problem: resources divided among active and inactive (!) users (or need costly resource ack/grant protocol)

in IoT most are inactive \Rightarrow huge waste of bandwidth

Orthogonal and non-orthogonal multiple access (NOMA)

This "pie-slicing" philosophy comes from:

- Given: W Hz bandwidth and duration T sec:
- By XYZ Theorem: d.o.f. n = 2WT

 $XYZ \in \{ \text{ Kotelnikov, Nyquist, Shannon, Slepian, } \dots \}$

• TDMA, FDMA, CDMA: just different bases in \mathbb{R}^{2WT} . (Fine print: CDMA = Orthogonal CDMA here).

Orthogonal and non-orthogonal multiple access (NOMA)

This "pie-slicing" philosophy comes from:

- Given: W Hz bandwidth and duration T sec:
- By XYZ Theorem: d.o.f. n = 2WT

- TDMA, FDMA, CDMA: just different bases in \mathbb{R}^{2WT} . (Fine print: CDMA = Orthogonal CDMA here).
- Is there value in having K > n? (non-orthogonal signalling)
- Is it even possible to have K > n or even $K \gg n$?

Orthogonal and non-orthogonal multiple access (NOMA)

This "pie-slicing" philosophy comes from:

- Given: W Hz bandwidth and duration T sec:
- By XYZ Theorem: d.o.f. n = 2WT

- TDMA, FDMA, CDMA: just different bases in \mathbb{R}^{2WT} . (Fine print: CDMA = Orthogonal CDMA here).
- Is there value in having K > n? (non-orthogonal signalling)
- Is it even possible to have K > n or even $K \gg n$?
- Silly: Take n = 1 and let user j send a bit via $\{0, 2^j\}$.

This "pie-slicing" philosophy comes from:

- Given: W Hz bandwidth and duration T sec:
- By XYZ Theorem: d.o.f. n = 2WT

- TDMA, FDMA, CDMA: just different bases in \mathbb{R}^{2WT} . (Fine print: CDMA = Orthogonal CDMA here).
- Is there value in having K > n? (non-orthogonal signalling)
- Is it even possible to have K > n or even $K \gg n$?
- Silly: Take n = 1 and let user j send a bit via $\{0, 2^j\}$.
- ... cheating: user K's power is 2^{2K} larger than user 1's.

This "pie-slicing" philosophy comes from:

- Given: W Hz bandwidth and duration T sec:
- By XYZ Theorem: d.o.f. n = 2WT

- TDMA, FDMA, CDMA: just different bases in \mathbb{R}^{2WT} . (Fine print: CDMA = Orthogonal CDMA here).
- Is there value in having K > n? (non-orthogonal signalling)
- Is it even possible to have K > n or even $K \gg n$?
- Silly: Take n = 1 and let user j send a bit via $\{0, 2^j\}$.
- ... cheating: user K's power is 2^{2K} larger than user 1's.
- Challenge: users only allowed to send ± 1 , can we have $K \gg n$?

Achieving capacity of K-user BAC with zero-error

$$Y = \sum_{j=1}^{K} X_j \qquad X_i \in \{\pm 1\}$$

- Known: $C_{sum}(K) = H(Bin(K, 1/2)) \approx \frac{1}{2} \log K$.
- IOW, for sending 1-bit (each) the frame-length $n \approx \frac{2K}{\log_2 K} \ll K$.

How can K > n users signal in n dimensions simultaneously?

Achieving capacity of K-user BAC with zero-error

$$Y = \sum_{j=1}^{K} X_j \qquad X_i \in \{\pm 1\}$$

- Known: $C_{sum}(K) = H(Bin(K, 1/2)) \approx \frac{1}{2} \log K$.
- IOW, for sending 1-bit (each) the frame-length $n \approx \frac{2K}{\log_2 K} \ll K$.

How can K > n users signal in n dimensions simultaneously?

• Lindström, Cantor-Mills, Khachatrian-Martirossian: even with zero-error!

First, recall a particularly nice orthogonal basis:

(each user is modulating his row)

• K.-M. noticed you can add more rows!

Recursive construction (Cantor-Mills, Khachatrian-Martirossian)

How can K > n users signal in n dimensions simultaneously?

• Walsh-Hadamard basis:

• K.-M. signals:

• Key property: $x \mapsto xA_m$ is injective on $\{\pm 1\}^{K_m}$, $K_m = \frac{m}{2}2^m + 1$

Recursive construction (Cantor-Mills, Khachatrian-Martirossian)

How can K > n users signal in n dimensions simultaneously?

• Walsh-Hadamard basis:

• K.-M. signals:

$$A_{1} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \quad A_{2} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & 1 & -1 \\ \hline 1 & 1 & 1 & -1 \end{bmatrix} \quad \widetilde{A}_{m+1} = \begin{bmatrix} A_{m} & A_{m} \\ A_{m} & -A_{m} \\ 1 & \cdots & 1 & 1 & -1 & \cdots & 1 \\ 1 & \cdots & 1 & 1 & -1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \cdots & 1 & 1 & \cdots & -1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \cdots & 1 & 1 & \cdots & -1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \cdots & 1 & 1 & \cdots & -1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \cdots & 1 & 1 & \cdots & -1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \cdots & 1 & 1 & \cdots & -1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \cdots & 1 & 1 & \cdots & -1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 2^{m} \\ \end{array}$$

- Key property: $x \mapsto xA_m$ is injective on $\{\pm 1\}^{K_m}$, $K_m = \frac{m}{2}2^m + 1$
- Number of users at dimension $n: K \approx \frac{1}{2}n \log_2 n$ (optimal!)

Recursive construction (Cantor-Mills, Khachatrian-Martirossian)

How can K > n users signal in n dimensions simultaneously?

• Walsh-Hadamard basis:

K.-M. signals:

- Key property: $x \mapsto xA_m$ is injective on $\{\pm 1\}^{K_m}$, $K_m = \frac{m}{2}2^m + 1$
- Number of users at dimension $n: K \approx \frac{1}{2}n \log_2 n$ (optimal!)
- Idea: $(\pm 1)^{2^m} \cdot H_m$ has many "holes"; add ± 1 -vectors there.

- Want to show: v is decodable from $v\tilde{A}_m$ for any $v \in \{\pm 1\}^{\otimes K_m}$ and $v_{2K_{m-1}+1} = 0$.
- Equivalently: $v \in \{0,1\}^{\otimes K_m}$ (just use $v \mapsto \frac{1+v}{2}$)

$$\widetilde{A}_{m+1} = \begin{bmatrix} A_m & A_m \\ A_m & -A_m \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ 2^m & \vdots & 2^m & \vdots & 2^m \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ 2^m & \vdots & 2^m & \vdots & 2^m \\ \end{bmatrix}$$

- Want to show: v is decodable from $v\tilde{A}_m$ for any $v \in \{\pm 1\}^{\otimes K_m}$ and $v_{2K_{m-1}+1} = 0$.
- Equivalently: $v \in \{0, 1\}^{\otimes K_m}$ (just use $v \mapsto \frac{1+v}{2}$) • Let v = [x y z] and

$$[x\,y\,z]\tilde{A}_m = [g\,h]$$

$$\widetilde{A}_{m+1} = \begin{bmatrix} A_m & A_m \\ A_m & -A_m \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ 2^m & \vdots & 2^m & \vdots & 2^m \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ 2^m & \vdots & 2^m & \vdots & 2^m \\ \vdots & 2^m & 2^$$

- Want to show: v is decodable from $v\tilde{A}_m$ for any $v \in \{\pm 1\}^{\otimes K_m}$ and $v_{2K_{m-1}+1} = 0$.
- Equivalently: $v \in \{0,1\}^{\otimes K_m}$ (just use $v \mapsto \frac{1+v}{2}$) • Let $v = [x \, y \, z]$ and

$$[x \, y \, z] \tilde{A}_m = [g \, h] \Rightarrow \quad g - h = [x \, y \, z] \begin{pmatrix} 0\\ 2A_{m-1}\\ 2I_{2^{m-1}} \end{pmatrix}$$

$$\widetilde{A}_{m+1} = \begin{bmatrix} A_m & A_m \\ A_m & -A_m \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ x^m & \vdots & x^m & \vdots \\ x^m & x^m & x^m & x^m \\ x^m & x^m & x^m & x^m \\ x^m & x^$$

- Want to show: v is decodable from $v\tilde{A}_m$ for any $v \in \{\pm 1\}^{\otimes K_m}$ and $v_{2K_{m-1}+1} = 0$.
- Equivalently: $v \in \{0,1\}^{\otimes K_m}$ (just use $v \mapsto \frac{1+v}{2}$) • Let $v = [x \, y \, z]$ and

$$[x y z]\tilde{A}_m = [g h] \Rightarrow g - h = [x y z] \begin{pmatrix} 0\\ 2A_{m-1}\\ 2I_{2m-1} \end{pmatrix}$$

*)
$$2z_{\ell} = (g-h)_1 + (g-h)_{\ell} - 2y \cdot v_{\ell} \qquad \ell = 2, \dots, 2^{m-1}$$

where v_{ℓ} is sum of 1-st and ℓ -th column of A_{m-1}

$$\tilde{A}_{m+1} = \begin{bmatrix} A_m & A_m \\ A_m & -A_m \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ x^m & \vdots & x^m & \vdots \\ x^m & x^m & x^m & x^m \\ x^m & x^m & x^m & x^m \\ x^m & x^m \\ x^m & x^m & x^m \\ x^m & x^$$

- Want to show: v is decodable from $v\tilde{A}_m$ for any $v \in \{\pm 1\}^{\otimes K_m}$ and $v_{2K_{m-1}+1} = 0$.
- Equivalently: $v \in \{0,1\}^{\otimes K_m}$ (just use $v \mapsto \frac{1+v}{2}$) • Let $v = [x \, y \, z]$ and

$$[x \, y \, z] \tilde{A}_m = [g \, h] \Rightarrow \quad g - h = [x \, y \, z] \begin{pmatrix} 0\\ 2A_{m-1}\\ 2I_{2m-1} \end{pmatrix}$$

()
$$2z_{\ell} = (g-h)_1 + (g-h)_{\ell} - 2y \cdot v_{\ell} \qquad \ell = 2, \dots, 2^{m-1}$$

where v_ℓ is sum of 1-st and ℓ -th column of A_{m-1}

- Key: v_{ℓ} 's entries are $\{0, 2\}$. Take mod 4 of (*) and decode z_{ℓ} 's !
- Subtracting z_{ℓ} 's we get system:

$$\begin{bmatrix} x \ y \end{bmatrix} \begin{pmatrix} A_{m-1} & A_{m-1} \\ A_{m-1} & -A_{m-1} \end{pmatrix} = \begin{bmatrix} g' \ h' \end{bmatrix}$$

$$\widetilde{A}_{m+1} = \begin{bmatrix} A_m & A_m \\ A_m & -A_m \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ x^m & \vdots & x^m & \vdots \\ x^m & x^m & x^m & x^m \\ x^m & x^m & x^m & x^m \\ x^m & x^m \\ x^m & x^m & x^m \\ x^m & x^m \\$$

- Want to show: v is decodable from $v\tilde{A}_m$ for any $v \in \{\pm 1\}^{\otimes K_m}$ and $v_{2K_{m-1}+1} = 0$.
- Equivalently: $v \in \{0,1\}^{\otimes K_m}$ (just use $v \mapsto \frac{1+v}{2}$) • Let $v = [x \, y \, z]$ and

$$[x \, y \, z] \tilde{A}_m = [g \, h] \Rightarrow \quad g - h = [x \, y \, z] \begin{pmatrix} 0\\ 2A_{m-1}\\ 2I_{2^{m-1}} \end{pmatrix}$$

(*)
$$2z_{\ell} = (g-h)_1 + (g-h)_{\ell} - 2y \cdot v_{\ell} \qquad \ell = 2, \dots, 2^{m-1}$$

where v_{ℓ} is sum of 1-st and ℓ -th column of A_{m-1}

- Key: v_{ℓ} 's entries are $\{0, 2\}$. Take mod 4 of (*) and decode z_{ℓ} 's !
- Subtracting z_{ℓ} 's we get system:

$$\begin{bmatrix} x \, y \end{bmatrix} \begin{pmatrix} A_{m-1} & A_{m-1} \\ A_{m-1} & -A_{m-1} \end{pmatrix} = \begin{bmatrix} g' \, h' \end{bmatrix} \quad \Rightarrow x A_{m-1} = \frac{g' + h}{2}$$
Yury Polyanskiy MAC tutorial

$$\widetilde{A}_{m+1} = \begin{bmatrix} A_m & A_m \\ A_m & -A_m \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ x^m & \vdots & x^m & \vdots \\ x^m & x^m & x^m & x^m \\ x^m & x^m & x^m & x^m \\ x^m &$$

- Want to show: v is decodable from $v\tilde{A}_m$ for any $v \in \{\pm 1\}^{\otimes K_m}$ and $v_{2K_{m-1}+1} = 0$.
- Equivalently: $v \in \{0,1\}^{\otimes K_m}$ (just use $v \mapsto \frac{1+v}{2}$) • Let $v = [x \, y \, z]$ and

$$[x \, y \, z] \tilde{A}_m = [g \, h] \Rightarrow \quad g - h = [x \, y \, z] \begin{pmatrix} 0\\ 2A_{m-1}\\ 2I_{2m-1} \end{pmatrix}$$

(*)
$$2z_{\ell} = (g-h)_1 + (g-h)_{\ell} - 2y \cdot v_{\ell} \qquad \ell = 2, \dots, 2^{m-1}$$

where v_{ℓ} is sum of 1-st and ℓ -th column of A_{m-1}

- Key: v_{ℓ} 's entries are $\{0, 2\}$. Take mod 4 of (*) and decode z_{ℓ} 's !
- Subtracting z_{ℓ} 's we get system:

$$\begin{bmatrix} x \, y \end{bmatrix} \begin{pmatrix} A_{m-1} & A_{m-1} \\ A_{m-1} & -A_{m-1} \end{pmatrix} = \begin{bmatrix} g' \, h' \end{bmatrix} \quad \Rightarrow x A_{m-1} = \frac{g' + h'}{2} \quad \Rightarrow \text{ induct}$$

Reflections

- When user inputs are constrained (to ±1), can have K ≫ n and still recover inputs.
- Total information grows with K: $H(X_1 + \cdots + X_K) \sim \frac{1}{2} \log K$. (This is similar to $\frac{1}{2} \log(1 + KP)$ in GMAC.)
- Lots of smart ideas in MAC codes.

- When user inputs are constrained (to ±1), can have K ≫ n and still recover inputs.
- Total information grows with K: $H(X_1 + \cdots + X_K) \sim \frac{1}{2} \log K$. (This is similar to $\frac{1}{2} \log(1 + KP)$ in GMAC.)
- Lots of smart ideas in MAC codes.
- Information theory structures it all into:

$$C = \bigcup_{X_1, \dots, X_K, U} \{ (R_1, \dots, R_K) : R_S \le I(X_S; Y | X_{S^c}, U) \}$$

- When user inputs are constrained (to ±1), can have K ≫ n and still recover inputs.
- Total information grows with K: $H(X_1 + \cdots + X_K) \sim \frac{1}{2} \log K$. (This is similar to $\frac{1}{2} \log(1 + KP)$ in GMAC.)
- Lots of smart ideas in MAC codes.
- Information theory structures it all into:

$$C = \bigcup_{X_1, \dots, X_K, U} \{ (R_1, \dots, R_K) : R_S \le I(X_S; Y | X_{S^c}, U) \}$$

• Similar to how all the smarts (Reed-Muller, BCH, LDPC, Polar, ...) are hidden behind

$$C = \max_X I(X;Y)$$

- When user inputs are constrained (to ±1), can have K ≫ n and still recover inputs.
- Total information grows with K: $H(X_1 + \dots + X_K) \sim \frac{1}{2} \log K$. (This is similar to $\frac{1}{2} \log(1 + KP)$ in GMAC.)
- Lots of smart ideas in MAC codes.
- Information theory structures it all into:

$$C = \bigcup_{X_1, \dots, X_K, U} \{ (R_1, \dots, R_K) : R_S \le I(X_S; Y | X_{S^c}, U) \}$$

• Similar to how all the smarts (Reed-Muller, BCH, LDPC, Polar, ...) are hidden behind

$$C = \max_X I(X;Y)$$

• We understand that "pie-slicing" point of view of radio-MAC is wrong. What is right?

2-user Gaussian MAC

$$Y = X_1 + X_2 + Z$$
$$Z \stackrel{iid}{\sim} \mathcal{N}(0, 1)$$
$$\mathbb{E}[(X_1)^2] \le P_1, \mathbb{E}[(X_2)^2] \le P_2$$

2-user Gaussian MAC

$$Y = X_1 + X_2 + Z$$
$$Z \stackrel{iid}{\sim} \mathcal{N}(0, 1)$$
$$\mathbb{E}[(X_1)^2] \le P_1, \mathbb{E}[(X_2)^2] \le P_2$$

• Evaluating capacity region:

$$R_1 + R_2 \leq I(X_1, X_2; Y) \leq \frac{1}{2} \log(1 + P_1 + P_2)$$

$$R_i \leq I(X_i; Y | X_{\hat{i}}) = I(X_i; X_i + Z) \leq \frac{1}{2} \log(1 + P_i)$$

2-user Gaussian MAC

$$Y = X_1 + X_2 + Z$$
$$Z \stackrel{iid}{\sim} \mathcal{N}(0, 1)$$
$$\mathbb{E}[(X_1)^2] \le P_1, \mathbb{E}[(X_2)^2] \le P_2$$

• Evaluating capacity region:

$$\begin{aligned} R_1 + R_2 &\leq I(X_1, X_2; Y) \leq \frac{1}{2} \log(1 + P_1 + P_2) \\ R_i &\leq I(X_i; Y | X_{\hat{i}}) = I(X_i; X_i + Z) \leq \frac{1}{2} \log(1 + P_i) \end{aligned}$$

2-GMAC rates for TDMA

2-GMAC rates for TDMA

2-GMAC rates for TDMA

Note: low-complexity decoder – two users are decoded separately.

2-GMAC rates for FDMA

- Here is a FDMA:
 - Use Fourier transform to change n=time to n=frequency.
 - Partition block: $n = \lambda n + (1 \lambda)n$
 - User 1 sends in λn : $R_1 = \frac{\lambda}{2} \log(1 + \frac{P_1}{\lambda})$

• User 2 sends in
$$\bar{\lambda}n$$
: $R_2 = \frac{\bar{\lambda}}{2}\log(1 + \frac{P_2}{\bar{\lambda}})$

2-GMAC rates for FDMA

- Here is a FDMA:
 - Use Fourier transform to change n=time to n=frequency.
 - Partition block: $n = \lambda n + (1 \lambda)n$
 - User 1 sends in λn : $R_1 = \frac{\lambda}{2} \log(1 + \frac{P_1}{\lambda})$

• User 2 sends in
$$\bar{\lambda}n$$
: $R_2 = \frac{\bar{\lambda}}{2}\log(1 + \frac{P_2}{\bar{\lambda}})$

2-GMAC rates for FDMA

- Here is a FDMA:
 - Use Fourier transform to change n=time to n=frequency.
 - Partition block: $n = \lambda n + (1 \lambda)n$
 - User 1 sends in λn : $R_1 = \frac{\lambda}{2} \log(1 + \frac{P_1}{\lambda})$

• User 2 sends in
$$\bar{\lambda}n$$
: $R_2 = \frac{\bar{\lambda}}{2}\log(1 + \frac{P_2}{\bar{\lambda}})$

2-GMAC rates for TIN

- Treat-interference-as-noise (TIN):
 - Each user treats the other as noise (single-user decoders)
 - Random coding ensures noise is Gaussian.

• Rates:
$$R_1 = \frac{1}{2}\log(1 + \frac{P_1}{1+P_2}), R_2 = \frac{1}{2}\log(1 + \frac{P_2}{1+P_1})$$

 $\frac{1}{2}\log(1+P_1)$

2-GMAC rates for TIN

- Treat-interference-as-noise (TIN):
 - Each user treats the other as noise (single-user decoders)
 - Random coding ensures noise is Gaussian.

• TIN point can be inside/outside TDMA.

 $\frac{1}{2}\log(1+P_1)$

$$Y = X_1 + X_2 + Z$$
$$Z \stackrel{iid}{\sim} \mathcal{N}(0, 1)$$
$$\mathbb{E}[(X_1)^2] \le P_1, \mathbb{E}[(X_2)^2] \le P_2$$

• Consider a corner point:

$$R_1 = \frac{1}{2}\log(1 + \frac{P_1}{1 + P_2}), \qquad R_2 = \frac{1}{2}\log(1 + P_2).$$

 $\frac{1}{2}\log(1+\frac{P_2}{1+P_1})$

 R_2

 $\frac{1}{2}\log(1+P_1+P_2)$

 R_1

 $\frac{1}{2}\log(1+\frac{P_1}{1+P_2})$

$$R_1 = \frac{1}{2}\log(1 + \frac{P_1}{1 + P_2}), \qquad R_2 = \frac{1}{2}\log(1 + P_2).$$

• User 1 can be decoded by TIN. But then can subtract it out!

- R_2 $Y = X_1 + X_2 + Z$ $\frac{1}{2}\log(1+P_1+P_2)$ $Z \stackrel{iid}{\sim} \mathcal{N}(0,1)$ $\frac{1}{2}\log(1+\frac{P_2}{1+P_1})$ $\mathbb{E}[(X_1)^2] \le P_1, \mathbb{E}[(X_2)^2] \le P_2$ R_1 $\frac{1}{2}\log(1+\frac{1}{1})$
 - Consider a corner point:

$$R_1 = \frac{1}{2}\log(1 + \frac{P_1}{1 + P_2}), \qquad R_2 = \frac{1}{2}\log(1 + P_2).$$

• User 1 can be decoded by TIN. But then can subtract it out!

- R_2 $Y = X_1 + X_2 + Z$ $\frac{1}{2}\log(1+P_1+P_2)$ $Z \stackrel{iid}{\sim} \mathcal{N}(0,1)$ $\frac{1}{2}\log(1 +$ $\mathbb{E}[(X_1)^2] \le P_1, \mathbb{E}[(X_2)^2] \le P_2$ R_1 $\frac{1}{2}\log(1 +$
 - Consider a corner point:

$$R_1 = \frac{1}{2}\log(1 + \frac{P_1}{1 + P_2}), \qquad R_2 = \frac{1}{2}\log(1 + P_2).$$

User 1 can be decoded by TIN. But then can subtract it out!

• So far: achieved three optimal points via SU-decoding. Any more?

Rate-splitting

$$Y = X_1 + X_2 + Z$$
$$Z \stackrel{iid}{\sim} \mathcal{N}(0, 1)$$
$$\mathbb{E}[(X_1)^2] \le P_1, \mathbb{E}[(X_2)^2] \le P_2$$

• Split user 1 into two virtual users 1A and 1B:

$$R_1 = R_{1A} + R_{1B}, \quad P_1 = P_{1A} + P_{1B}$$

- A funny order of decoding:
 - Decode X_{1A} via TIN: $R_{1A} = \frac{1}{2} \log(1 + \frac{P_{1A}}{1 + P_{1B} + P_2})$
 - Subtract X_{1A} , decode X_2 : $R_2 = \frac{1}{2} \log(1 + \frac{P_2}{1 + P_{1B}})$
 - Subtract X_2 , decode X_{1B} : $R_{1B} = \frac{1}{2} \log(1 + P_{1B})$
- Simple check:

$$R_{1A} + R_{1B} + R_2 = \frac{1}{2}\log(1 + P_1 + P_2)$$
 sumrate optimal

by varying $P_{1A} + P_{1B} = P_1$ can achieve any point!!

K-user GMAC

[t]

$$Y(t) = X_1(t) + \dots + X_K(t) + Z(t)$$

• Assume equal-power setting $P_i = P$. Capacity region (sumrate):

$$\sum_{i=1}^{K} R_i \le \frac{1}{2} \log(1 + KP)$$

K-user GMAC

[t]

 $Y(t) = X_1(t) + \dots + X_K(t) + Z(t)$

- single-user decoders achieve:
 - FDMA optimal at symmetric point: $R_i = \frac{1}{2K} \log(1 + KP)$
 - TIN+SIC achieves all vertices.
 - Rate-Splitting all points of optimal sumrate.
- Is that it? Let us see...

• So total capacity:

$$C_{sum} = \frac{1}{2}\log_2(1 + KP) \qquad bit/rdof$$

growing to ∞ as $K \to \infty$.

• So total capacity:

$$C_{sum} = \frac{1}{2}\log_2(1 + KP) \qquad \frac{bit/rdof}{}$$

growing to ∞ as $K \to \infty$.

• But at the same time, per-user rate:

$$C_{sym} = \frac{1}{2K} \log_2(1 + KP) \to 0.$$

• The crucial performance metric: HRH energy-per-bit

$$\frac{E_b}{N_0} \triangleq \frac{\text{total energy spent}}{2 \times \text{total } \# \text{ bits}} = \frac{nKP}{2nC_{sum}}$$

So total capacity:

$$C_{sum} = \frac{1}{2}\log_2(1 + KP) \qquad \frac{bit/rdof}{}$$

growing to ∞ as $K \to \infty$.

• But at the same time, per-user rate:

$$C_{sym} = \frac{1}{2K} \log_2(1 + KP) \to 0.$$

• The crucial performance metric: HRH energy-per-bit

$$\frac{E_b}{N_0} \triangleq \frac{\text{total energy spent}}{2 \times \text{total } \# \text{ bits}} = \frac{nKP}{2nC_{sum}}$$

• Capacity \nearrow , but each user works harder and moves fewer bits/sec!

So total capacity:

$$C_{sum} = \frac{1}{2}\log_2(1 + KP) \qquad \frac{bit/rdof}{}$$

growing to ∞ as $K \to \infty$.

• But at the same time, per-user rate:

$$C_{sym} = \frac{1}{2K} \log_2(1 + KP) \to 0.$$

• The crucial performance metric: HRH energy-per-bit

$$\frac{E_b}{N_0} \triangleq \frac{\text{total energy spent}}{2 \times \text{total } \# \text{ bits}} = \frac{nKP}{2nC_{sum}}$$

• As
$$K \to \infty$$
:

$$\frac{E_b}{N_0} = \frac{KP}{\log(1+KP)} \to \infty \qquad !!!$$

• Capacity \nearrow , but each user works harder and moves fewer bits/sec!

• Correct scaling: $P_{tot} = KP$ should be fixed!

- Studying this tradeoff is the favorite pastime of ComSoc
- Sp.eff. $\rho \triangleq \frac{\text{total } \# \text{ of data bits}}{\text{total real d.o.f.}}$

$$\rho = \frac{1}{2}\log(1 + KP), \qquad \frac{E_b}{N_0} = \frac{KP}{\log(1 + KP)}$$

• regardless of K :

(and any sumrate-optimal arch)

$$\frac{E_b}{N_0} = \frac{2^{2\rho} - 1}{2\rho} \ge -1.59 \ dB$$

- Studying this tradeoff is the favorite pastime of ComSoc
- Sp.eff. $\rho \triangleq \frac{\text{total } \# \text{ of data bits}}{\text{total real d.o.f.}}$

$$\rho = \frac{1}{2}\log(1 + KP), \qquad \frac{E_b}{N_0} = \frac{KP}{\log(1 + KP)}$$

regardless of K: (and any summate-optimal arch)

$$\frac{E_b}{N_0} = \frac{2^{2\rho} - 1}{2\rho} \ge -1.59 \ dB$$

• Compare to TIN: $\rho = \frac{K}{2} \log_2(1 + \frac{P}{1 + (K-1)P}) \xrightarrow{K \to \infty} \frac{1}{2 \ln 2} \frac{P_{tot}}{1 + P_{tot}}$

- Studying this tradeoff is the favorite pastime of ComSoc
- Sp.eff. $\rho \triangleq \frac{\text{total } \# \text{ of data bits}}{\text{total real d.o.f.}}$

$$\rho = \frac{1}{2}\log(1 + KP), \qquad \frac{E_b}{N_0} = \frac{KP}{\log(1 + KP)}$$

regardless of K: (and any summate-optimal arch)

$$\frac{E_b}{N_0} = \frac{2^{2\rho} - 1}{2\rho} \ge -1.59 \ dB$$

• Compare to TIN: $\rho = \frac{K}{2} \log_2(1 + \frac{P}{1 + (K-1)P}) \xrightarrow{K \to \infty} \frac{1}{2 \ln 2} \frac{P_{tot}}{1 + P_{tot}}$

$$\rho = \frac{1}{2\ln 2} \frac{P_{tot}}{1 + P_{tot}}, \qquad \frac{E_b}{N_0} = (1 + P_{tot}) \ln 2$$

Spectral efficiency vs. $\frac{E_b}{N_a}$

- Studying this tradeoff is the favorite pastime of ComSoc
- Sp.eff. $\rho \triangleq \frac{\text{total } \# \text{ of data bits}}{\text{total real d o f}}$

$$\rho = \frac{1}{2}\log(1 + KP), \qquad \frac{E_b}{N_0} = \frac{KP}{\log(1 + KP)}$$

regardless of K : (and any sumrate-optimal arch)

$$\frac{E_b}{N_0} = \frac{2^{2\rho} - 1}{2\rho} \ge -1.59 \ dB$$

• Compare to TIN: $\rho = \frac{K}{2} \log_2(1 + \frac{P}{1 + (K-1)P}) \xrightarrow{K \to \infty} \frac{1}{2 \ln 2} \frac{P_{tot}}{1 + P_{tot}}$

$$\rho = \frac{1}{2\ln 2} \frac{P_{tot}}{1 + P_{tot}}, \qquad \frac{E_b}{N_0} = (1 + P_{tot})\ln 2$$

• IMPORTANT: $\rho \leq \frac{1}{2 \ln 2} = 0.72$ bit/rdof

• IMPORTANT: Essentially optimal for low sp.eff.

- Given that TIN is not bad for low sp.eff., let us try to achieve it.
- **Problem:** Per-user rate $= \frac{\rho}{K}$ and is very small for large K.

- Given that TIN is not bad for low sp.eff., let us try to achieve it.
- **Problem:** Per-user rate $= \frac{\rho}{K}$ and is very small for large K. Aside:
 - For IT Soc: Channel with C = 0.5 and channel with C = 0.001 are not fundamentally different.
 - For ComSoc: First channel is OK (turbo/LDPC/polar), second is a nightmare.
 - Why? First, SNR needs to be brought up to a reasonable level.
 - This is the idea of modulation.

- Given that TIN is not bad for low sp.eff., let us try to achieve it.
- **Problem:** Per-user rate $= \frac{\rho}{K}$ and is very small for large K. Aside:
 - For IT Soc: Channel with C = 0.5 and channel with C = 0.001 are not fundamentally different.
 - For ComSoc: First channel is OK (turbo/LDPC/polar), second is a nightmare.
 - Why? First, SNR needs to be brought up to a reasonable level.
 - This is the idea of modulation.
 - ► Another issue: how do you do TIN practically? A code with ±1 entries will create a very non-Gaussian interference!

- Given that TIN is not bad for low sp.eff., let us try to achieve it.
- **Problem:** Per-user rate $= \frac{\rho}{K}$ and is very small for large K.
- Solution: each user modulates some N-signature $s_i \in \mathbb{R}^N$

• Think of N-blocks as new super-symbols. Effective channel:

$$Y^N = s_1 B_1 + s_2 B_2 + \dots + s_K B_k + Z^N, \qquad ||s_i|| = 1$$

- ▶ Set $\beta = \frac{K}{N}$
- new power-constraint: $\mathbb{E}[B_i^2] \leq NP = \frac{P_{tot}}{\beta}$.
- new rate: $\frac{\rho N}{K} = \frac{\rho}{\beta}$ in bits / one *B*-symbol.
- with proper choice should have $\frac{\rho}{\beta} \sim 1$ as ComSoc likes.

• *N*-blocks are new super-symbols. Effective channel:

$$Y^N = s_1 B_1 + s_2 B_2 + \dots + s_K B_k + Z^N, \qquad ||s_i|| = 1$$

- Set $\beta = \frac{K}{N}$
- new power-constraint: $\mathbb{E}[B_i^2] \leq NP = \frac{P_{tot}}{\beta}$.
- Side observation:
 - If s_i's are chosen orthogonally and K = N, this is FDMA (hence optimal).
 - ▶ But incurs FBL loss important when $K \sim n$. Ignore for now.
 - So why not do so? Many reasons:
 - K may vary, but N should be constant.
 - Requires central distribution of signatures among ACTIVE users.
 - Asynchrony kills orthogonality
 - Early Qualcomm: random-like s_i's resolve all issues, and are good enough for TIN !

• *N*-blocks are new super-symbols. Effective channel:

$$Y^N = s_1 B_1 + s_2 B_2 + \dots + s_K B_k + Z^N, \qquad ||s_i|| = 1$$

• Set
$$\beta = \frac{K}{N}$$

• new power-constraint: $\mathbb{E}[B_i^2] \leq NP = \frac{P_{tot}}{\beta}$.

• Idea 1: Decode via matched-filter + SU decoders:

$$\hat{B}_i = \langle s_i, Y^N \rangle = B_i + \tilde{Z}_i, \quad \text{Var}[\tilde{Z}_i] = 1 + NP \sum_{j \neq i} |\langle s_i, s_j \rangle|^2$$

- Idea 2: Select s_i randomly. (attractive sys. arch.)
- When s_i 's are random and N large:

$$|\langle s_i, s_j \rangle| \approx \frac{1}{\sqrt{N}}$$
 w.h.p.

• So SU-decoder sees effective SNR = $\frac{NP}{1+(K-1)P} = \frac{P_{tot}}{1+P_{tot}} \frac{1}{\beta}$

• *N*-blocks are new super-symbols. Effective channel:

$$Y^N = s_1 B_1 + s_2 B_2 + \dots + s_K B_k + Z^N, \qquad ||s_i|| = 1$$

- Set $\beta = \frac{K}{N}$
- new power-constraint: $\mathbb{E}[B_i^2] \leq NP = \frac{P_{tot}}{\beta}$.
- random (non-orthogonal) signatures
- matched-filter + SU-decoder
- End result:

$$\rho_{CDMA} = \frac{\beta}{2} \log_2(1 + \frac{P_{tot}}{1 + P_{tot}} \frac{1}{\beta}) \qquad \frac{E_b}{N_0} = \frac{P_{tot}}{2\rho_{CDMA}}$$

- As $\beta \to \infty$ we approach TIN.
- ► So classical CDMA folks (Viterbi...) were only trying to achieve TIN.

• As $\beta \to \infty$ we approach TIN.

► So classical CDMA folks (Viterbi...) were only trying to achieve TIN.

CDMA: going beyond TIN

- Set $\beta = \frac{K}{N}$
- new power-constraint: $\mathbb{E}[B_i^2] \leq NP = \frac{P_{tot}}{\beta}$.
- random (non-orthogonal) signatures
- matched-filter + SU-decoder

$$\rho_{CDMA} = \frac{\beta}{2} \log_2(1 + \frac{P_{tot}}{1 + P_{tot}} \frac{1}{\beta}) \qquad \frac{E_b}{N_0} = \frac{P_{tot}}{2\rho_{CDMA}}$$

. . .

• So far we considered matched-filter arch.:

$$\hat{B}_1 = \langle s_1, Y^N \rangle$$

$$\hat{B}_K = \langle s_K, Y^N \rangle$$

• Can we do better?

CDMA: going beyond TIN

- Set $\beta = \frac{K}{N}$
- new power-constraint: $\mathbb{E}[B_i^2] \leq NP = \frac{P_{tot}}{\beta}$.
- random (non-orthogonal) signatures
- matched-filter + SU-decoder

$$\rho_{CDMA} = \frac{\beta}{2} \log_2(1 + \frac{P_{tot}}{1 + P_{tot}} \frac{1}{\beta}) \qquad \frac{E_b}{N_0} = \frac{P_{tot}}{2\rho_{CDMA}}$$

• So far we considered matched-filter arch.:

$$\hat{B}_1 = \langle s_1, Y^N \rangle$$

$$\hat{B}_K = \langle s_K, Y^N \rangle$$

- Can we do better? Yes! via multi-user detection (MUD).
- In one of two ways:
 - Signal-processing: Estimate B^K via MMSE or decorrelator. Note: does not leverage knowledge of distribution of B_i

. . .

▶ Coding: Use joint-decoding of \hat{B}^K also leveraging knowledge that (e.g.) $B_i = \pm 1$

• Set $\beta = \frac{K}{N}$

w

- new power-constraint: $\mathbb{E}[B_i^2] \leq NP = \frac{P_{tot}}{\beta}$.
- random (non-orthogonal) signatures
- matched-filter + SU-decoder

$$\rho_{CDMA} = \frac{\beta}{2} \log_2(1 + \frac{P_{tot}}{1 + P_{tot}} \frac{1}{\beta}) \qquad \frac{E_b}{N_0} = \frac{P_{tot}}{2\rho_{CDMA}}$$

- multi-user detectors (MUD) improve performance of random-CDMA.
- E.g. MMSE detector yields (Tse-Hanly/Verdú-Shamai formula)

$$\rho_{MMSE} = \frac{\beta}{2} \log_2(1 + P_1 - \frac{1}{4}\mathcal{F}), \qquad P_1 = \frac{P_{tot}}{\beta}$$

here $\mathcal{F} = (\sqrt{P_1(1 + \sqrt{\beta})^2 + 1} - \sqrt{P_1(1 - \sqrt{\beta})^2 + 1})^2$

- Set $\beta = \frac{K}{N}$
- new power-constraint: $\mathbb{E}[B_i^2] \leq NP = \frac{P_{tot}}{\beta}$.
- random (non-orthogonal) signatures
- matched-filter + SU-decoder

$$\rho_{CDMA} = \frac{\beta}{2} \log_2(1 + \frac{P_{tot}}{1 + P_{tot}} \frac{1}{\beta}) \qquad \frac{E_b}{N_0} = \frac{P_{tot}}{2\rho_{CDMA}}$$

- multi-user detectors (MUD) improve performance of random-CDMA.
- E.g. MMSE detector yields (Tse-Hanly/Verdú-Shamai formula)

$$\rho_{MMSE} = \frac{\beta}{2}\log_2(1+P_1-\frac{1}{4}\mathcal{F}), \qquad P_1 = \frac{P_{tot}}{\beta}$$

where $\mathcal{F} = (\sqrt{P_{1}(1+\sqrt{\beta})^{2}+1} - \sqrt{P_{1}(1-\sqrt{\beta})^{2}+1})^{2}$

- Allows to beat TIN's $\rho \leq 0.72$ bit/rdof bottleneck.
- Still, industry converged to OFDM : spectrum is too precious.

- Set $\beta = \frac{K}{N}$
- new power-constraint: $\mathbb{E}[B_i^2] \leq NP = \frac{P_{tot}}{\beta}$.
- random (non-orthogonal) signatures
- matched-filter + SU-decoder

$$\rho_{CDMA} = \frac{\beta}{2} \log_2(1 + \frac{P_{tot}}{1 + P_{tot}} \frac{1}{\beta}) \qquad \frac{E_b}{N_0} = \frac{P_{tot}}{2\rho_{CDMA}}$$

- multi-user detectors (MUD) improve performance of random-CDMA.
- E.g. MMSE detector yields (Tse-Hanly/Verdú-Shamai formula)

$$\rho_{MMSE} = \frac{\beta}{2}\log_2(1+P_1-\frac{1}{4}\mathcal{F}), \qquad P_1 = \frac{P_{tot}}{\beta}$$

where $\mathcal{F} = (\sqrt{P_1(1+\sqrt{\beta})^2+1} - \sqrt{P_1(1-\sqrt{\beta})^2+1})^2$

- Allows to beat TIN's $\rho \leq 0.72$ bit/rdof bottleneck.
- Still, industry converged to **OFDM**: spectrum is too precious.
- IoT: centralized orthogonalization impossible! Comeback of MUD?

New problems: many users with short packets

The classical model: K-user multiple-access channel

The classical model: K-user multiple-access channel

$$Y(t) = X_1(t) + \dots + X_K(t) + Z(t)$$

- Before: Fix K, let $n \to \infty$. Few users. Large payloads.
- Now: Huge K. Small payload.
- Random-access: User activity random, uncoordinated

On number of sensors (user density)

1

• Key metric: μ in users/rdof

$$u = \frac{\text{\# of active users per frame}}{\text{size of frame}}$$

• K_{tot} sensors sending with period T_{per} (sec) in band B (Hz)

$$\mu = \frac{K_{tot}}{2BT_{per}}$$

- Futuristic example:
 - ▶ City of 10⁶.
 - Each house has 10^2 devices.
 - Each dev sends every 10 min, $T_{per} = 600$ s.
 - sub-GHz bandwidth is scarce: ISM B = 20 MHz.
 - $\blacktriangleright \ \mu \approx 4 \cdot 10^{-3}.$

On number of sensors (user density)

• Key metric: μ in users/rdof

$$u = \frac{\text{\# of active users per frame}}{\text{size of frame}}$$

• K_{tot} sensors sending with period T_{per} (sec) in band B (Hz)

$$\mu = \frac{K_{tot}}{2BT_{per}}$$

- Futuristic example:
 - ▶ City of 10⁶.
 - Each house has 10^2 devices.
 - Each dev sends every 10 min, $T_{per} = 600$ s.
 - sub-GHz bandwidth is scarce: ISM B = 20 MHz.
 - $\blacktriangleright \ \mu \approx 4 \cdot 10^{-3}.$
- Another point of view:
 - Traditional comm: focus on sp.eff. ρ vs $\frac{E_b}{N_0}$. Why?
 - $\frac{\rho B}{K}$ = per-user speed?
 - or is it $\frac{\rho B}{\text{speed}}$ = number of happy users?

Problem 1 large $K \to \infty$, fixed payload $\log_2 M$

Relevant asymptotics: $K, n \to \infty$ with $\frac{K}{n} = \mu$.

Problem 2 "user-centric" probability of error

$$P_e \triangleq \frac{1}{K} \sum_j \mathbb{P}[\hat{X}_j \neq X_j]$$

Problem 3 "random-access"

indistiguishable users (same-codebook), non-asymptotics.

Recap: MAC setting and performance metrics

- Perfectly synchronized K-user Gaussian MAC with blocklength n
- Each user transmits $\log_2 M \approx 10^2$ bits.
- Figures of merit: energy-per-bit and user density

$$\frac{E_b}{N_0} \triangleq \frac{\mathbb{E}[\|X^n\|^2]}{2\log_2 M} \qquad \mu \triangleq \frac{K}{n}$$

Recap: MAC setting and performance metrics

- Perfectly synchronized K-user Gaussian MAC with blocklength n
- Each user transmits $\log_2 M \approx 10^2$ bits.
- Figures of merit: energy-per-bit and user density

$$\frac{E_b}{N_0} \triangleq \frac{\mathbb{E}[\|X^n\|^2]}{2\log_2 M} \qquad \mu \triangleq \frac{K}{n}$$

Problem 1: "massive" number of users

- Number of users $K = \mu n$ scales linearly with blocklength!
- Q: Why scale linearly? A: # of devices waking up \asymp time.
- Q: Ok, but what μ should we look at?

Recap: MAC setting and performance metrics

- Perfectly synchronized K-user Gaussian MAC with blocklength n
- Each user transmits $\log_2 M \approx 10^2$ bits.
- Figures of merit: energy-per-bit and user density

$$\frac{E_b}{N_0} \triangleq \frac{\mathbb{E}[\|X^n\|^2]}{2\log_2 M} \qquad \mu \triangleq \frac{K}{n}$$

Problem 1: "massive" number of users

- Number of users $K = \mu n$ scales linearly with blocklength!
- Q: Why scale linearly? A: # of devices waking up \asymp time.
- Q: Ok, but what μ should we look at?

A:
$$\mu \sim 10^{-3}$$
. Here is why:

- ▶ City of 10⁶.
- Each house has 10^2 devices.
- Each dev sends 1-10 times/hour.
- sub-GHz bandwidth is scarce, unlikely to ever get > 20 MHz.
- ▶ $\Rightarrow \frac{K}{n} \approx 10^{-3} \dots 10^{-2}$. This relation is unlikely to change soon.

Recap: MAC setting and performance metrics

- Perfectly synchronized K-user Gaussian MAC with blocklength n
- Each user transmits $\log_2 M$ bits.
- Figures of merit: energy-per-bit and user density

$$\frac{E_b}{N_0} \triangleq \frac{\mathbb{E}[\|X^n\|^2]}{2\log_2 M} \qquad \mu \triangleq \frac{K}{n}$$

Problem 1: "massive" number of users

- Number of users $K = \mu n$ scales linearly with blocklength!
- [Chen-Chen-Guo'17]: Fix per-user power to P (i.e. codeword $\|c\|_2^2 \leq nP$), then

$$\log M^*_{user}(K = \mu n, n, P) \approx \frac{1}{2\mu} \log(1 + \mu n P)$$

- Note: this corresponds to $\frac{E_b}{N_0} \to \infty$.
- Our work: What about finite $\frac{E_b}{N_0}$?

New twists compared to classic MAC

Problem 1 large
$$K \to \infty$$
, fixed payload $\log_2 M$
Relevant asymptotics: $K, n \to \infty$ with $\frac{K}{n} = \mu$.

Problem 2 "user-centric" probability of error

$$P_e \triangleq \frac{1}{K} \sum_j \mathbb{P}[\hat{X}_j \neq X_j]$$

Problem 3 "random-access"

indistiguishable users (same-codebook), non-asymptotics.

Recap: MAC setting and performance metrics

- Perfectly synchronized K-user Gaussian MAC with blocklength n
- Each user transmits $\log_2 M$ bits.
- Figures of merit: energy-per-bit and user density

$$\frac{E_b}{N_0} \triangleq \frac{\mathbb{E}[\|X^n\|^2]}{2\log_2 M} \qquad \mu \triangleq \frac{K}{n}$$

• Regime:
$$K = \mu n, n \to \infty$$
.

Problem 2: "user-centric" prob. of error

• For finite $\frac{E_b}{N_0}$ we have (Why? See next...)

$$\mathbb{P}[W_1 = \hat{W}_1, \dots W_K = \hat{W}_K] o 0 \qquad \text{as } n o \infty$$

• \Rightarrow NEED to switch to per-user P_e , PUPE :

$$P_e = \frac{1}{K} \sum_{i=1}^{K} \mathbb{P}[W_i \neq \hat{W}_i]$$

Theorem

Suppose K users send one bit each with finite energy \mathcal{E} over the GMAC (with arbitrary n): $Y^n = \sum_{i=1}^K X_i + Z^n$. Then we have

$$\mathbb{P}[X_1 = \hat{X}_1, \dots, X_K = \hat{X}_K] \le \frac{\mathcal{E}\frac{\log e}{2} + \log 2}{\log K}.$$

And, thus, classical probability of error $\rightarrow 1$ as $K \rightarrow \infty$.

Theorem

Suppose K users send one bit each with finite energy \mathcal{E} over the GMAC (with arbitrary n): $Y^n = \sum_{i=1}^K X_i + Z^n$. Then we have

$$\mathbb{P}[X_1 = \hat{X}_1, \dots, X_K = \hat{X}_K] \le \frac{\mathcal{E}\frac{\log e}{2} + \log 2}{\log K}$$

And, thus, classical probability of error $\rightarrow 1$ as $K \rightarrow \infty$.

Proof:

- WLOG can assume: $Y = \sum c_i W_i + Z$, where $c_i \in \mathbb{R}^n$ and $W_i \sim \text{Ber}(1/2)$.
- Genie: Reveal vector of W_i 's to within Hamming-distance 1.
- New problem: See $Y = c_U + Z$, $U \sim [K]$. Goal: find U.

Theorem

Suppose K users send one bit each with finite energy \mathcal{E} over the GMAC (with arbitrary n): $Y^n = \sum_{i=1}^K X_i + Z^n$. Then we have

$$\mathbb{P}[X_1 = \hat{X}_1, \dots, X_K = \hat{X}_K] \le \frac{\mathcal{E}\frac{\log e}{2} + \log 2}{\log K}$$

And, thus, classical probability of error $\rightarrow 1$ as $K \rightarrow \infty$.

Proof:

- WLOG can assume: $Y = \sum c_i W_i + Z$, where $c_i \in \mathbb{R}^n$ and $W_i \sim \text{Ber}(1/2)$.
- Genie: Reveal vector of W_i 's to within Hamming-distance 1.
- New problem: See $Y = c_U + Z$, $U \sim [K]$. Goal: find U.
- Fano + Capacity calculation:

$$\mathbb{P}[U = \hat{U}] \log K - \log 2 \le I(c_U; Y)$$

Theorem

Suppose K users send one bit each with finite energy \mathcal{E} over the GMAC (with arbitrary n): $Y^n = \sum_{i=1}^K X_i + Z^n$. Then we have

$$\mathbb{P}[X_1 = \hat{X}_1, \dots, X_K = \hat{X}_K] \le \frac{\mathcal{E}\frac{\log e}{2} + \log 2}{\log K}$$

And, thus, classical probability of error $\rightarrow 1$ as $K \rightarrow \infty$.

Proof:

- WLOG can assume: $Y = \sum c_i W_i + Z$, where $c_i \in \mathbb{R}^n$ and $W_i \sim \text{Ber}(1/2)$.
- Genie: Reveal vector of W_i 's to within Hamming-distance 1.
- New problem: See $Y = c_U + Z$, $U \sim [K]$. Goal: find U.
- Fano + Capacity calculation:

$$\mathbb{P}[U = \hat{U}] \log K - \log 2 \le I(c_U; Y) \le \frac{n}{2} \log \left(1 + \frac{\mathcal{E}}{n}\right) \le \frac{\log e}{2} \mathcal{E}$$

Theorem (AWGN)

Suppose K users send one bit each with finite energy \mathcal{E} over the GMAC (with arbitrary n): $Y^n = \sum_{i=1}^K X_i + Z^n$. Then we have

$$\mathbb{P}[X_1 = \hat{X}_1, \dots, X_K = \hat{X}_K] \le \frac{\mathcal{E}\frac{\log e}{2} + \log 2}{\log K}$$

Same proof:

Theorem (BSC)

Let G be a $K \times n$ generating matrix with $\leq \mathcal{E}$ ones per row. Then over $BSC(\delta)$ and all n:

$$1 - \mathbb{P}[\text{block error}] \le \frac{d(\delta \| \bar{\delta}) \mathcal{E} + \log 2}{\log K}$$

Theorem (AWGN)

Suppose K users send one bit each with finite energy \mathcal{E} over the GMAC (with arbitrary n): $Y^n = \sum_{i=1}^K X_i + Z^n$. Then we have

$$\mathbb{P}[X_1 = \hat{X}_1, \dots, X_K = \hat{X}_K] \le \frac{\mathcal{E}\frac{\log e}{2} + \log 2}{\log K}$$

Same proof:

Theorem (BSC)

Let G be a $K \times n$ generating matrix with $\leq \mathcal{E}$ ones per row. Then over $BSC(\delta)$ and all n:

$$1 - \mathbb{P}[\text{block error}] \le \frac{d(\delta \| \bar{\delta}) \mathcal{E} + \log 2}{\log K}$$

Puzzle: Genie + Fano method fails for BEC! (Proof by induction works.)

K-user GMAC under PUPE: surprise

• Per-user probability of error as

$$P_e = \frac{1}{K} \sum_{i=1}^{K} \mathbb{P}[W_i \neq \hat{W}_i].$$

- Let's forget about $K = \mu n$ and consider ...
- Classical regime: K-fixed, power P fixed, $n \to \infty$. Symmetric capacity

$$C_{sym}(K) = \frac{1}{2K} \log(1 + KP) \,.$$

But no strong converse (!)

$$C_{sym,\epsilon}(K) > C_{sym}(K-1) \qquad \forall \epsilon \gtrsim \frac{1 + \log_e K}{K}$$

• Lesson: When PUPE above $\frac{\log K}{K}$, far from usual GMAC+JPE.

K-user GMAC under PUPE: no strong converse

• Let $C_{sym,\epsilon}(K)$ be the max achievable symmetric rate (K-fixed, $n \to \infty$) under PUPE

$$\frac{1}{K} \sum_{i=1}^{K} \mathbb{P}[W_i \neq \hat{W}_i] \le \epsilon \,.$$

K-user GMAC under PUPE: no strong converse

• Let $C_{sym,\epsilon}(K)$ be the max achievable symmetric rate (K-fixed, $n \to \infty)$ under PUPE

$$\frac{1}{K}\sum_{i=1}^{K} \mathbb{P}[W_i \neq \hat{W}_i] \le \epsilon \,.$$

Theorem (P.-Telatar'16)

We have:
$$C_{sym,\epsilon}(K,\epsilon) = \begin{cases} \frac{1}{2K}\log(1+KP), & \epsilon < 1/K\\ \geq \frac{1}{2(K-1)}\log(1+(K-1)P), & \epsilon \gtrsim \frac{1+\log_e K}{K} \end{cases}$$

- Note that sequence: $\frac{1}{2K}\log(1+KP)$ is monotonically decreasing.
- First part: by union bound PUPE $\leq \epsilon$ implies JPE $\leq K\epsilon$ + strong-converse for GMAC.

K-user GMAC under PUPE: no strong converse

• Let $C_{sym,\epsilon}(K)$ be the max achievable symmetric rate (K-fixed, $n\to\infty)$ under PUPE

$$\frac{1}{K} \sum_{i=1}^{K} \mathbb{P}[W_i \neq \hat{W}_i] \le \epsilon \,.$$

Theorem (P.-Telatar'16)

We have:
$$C_{sym,\epsilon}(K,\epsilon) = \begin{cases} \frac{1}{2K}\log(1+KP), & \epsilon < 1/K\\ \geq \frac{1}{2(K-1)}\log(1+(K-1)P), & \epsilon \gtrsim \frac{1+\log_e K}{K} \end{cases}$$

- Note that sequence: $\frac{1}{2K}\log(1+KP)$ is monotonically decreasing.
- First part: by union bound PUPE $\leq \epsilon$ implies JPE $\leq K\epsilon$ + strong-converse for GMAC.
- Second part: Choose codebooks for symmetric-rate point of (K-1)-GMAC
- Each user sends 0 w.p. $\epsilon.$ Then w.p. $1-(1-\epsilon)^K$ only (K-1) are active.

New twists compared to classic MAC

Problem 2 "user-centric" probability of error

$$P_e \triangleq \frac{1}{K} \sum_j \mathbb{P}[\hat{X}_j \neq X_j]$$

Problem 3 "random-access"

indistiguishable users (same-codebook), non-asymptotics.

Recap: MAC setting and performance metrics

- Perfectly synchronized K-user Gaussian MAC with blocklength n
- Each user transmits $\log_2 M$ bits.
- Figures of merit: energy-per-bit and user density

$$\frac{E_b}{N_0} \triangleq \frac{\mathbb{E}[\|X^n\|^2]}{2\log_2 M} \qquad \mu \triangleq \frac{K}{n}$$

• Regime:
$$K = \mu n$$
, $n \to \infty$.

• **PUPE** definition: $P_e \triangleq \frac{1}{K} \sum_{j=1}^{K} \mathbb{P}[X_j \neq \hat{X}_j].$

Next: new results

Recap: MAC setting and performance metrics

- Perfectly synchronized K-user Gaussian MAC with blocklength n
- Each user transmits $\log_2 M$ bits.
- Figures of merit: energy-per-bit and user density

$$\frac{E_b}{N_0} \triangleq \frac{\mathbb{E}[\|X^n\|^2]}{2\log_2 M} \qquad \mu \triangleq \frac{K}{n}$$

• Regime:
$$K = \mu n$$
, $n \to \infty$.

• **PUPE** definition: $P_e \triangleq \frac{1}{K} \sum_{j=1}^{K} \mathbb{P}[X_j \neq \hat{X}_j].$

Next: new results

- Converse bound (via reduction to known problems)
- Achievability bound (via Gaussian process theory)

Theorem

Communication with (μ, M, ϵ) is asymptotically $(n \to \infty)$ feasible only if both of these hold:

$$(1-\epsilon)\mu\log_2 M \leq \frac{1}{2}\log_2(1+\mu P_{tot})+\mu h(\epsilon)$$
$$\frac{1}{M} \geq Q\left(\sqrt{\frac{P_{tot}}{\mu}}+Q^{-1}(1-\epsilon)\right)$$

where $P_{tot} = 2\mu \log_2 M \cdot \frac{E_b}{N_0}$ is the total received power.

• First bound: A working code recovers $W \in [M]^K$ with Hamming distortion $\leq \epsilon$. Comparing sum-capacity with rate-distortion function we get the bound.

Theorem

Communication with (μ, M, ϵ) is asymptotically $(n \to \infty)$ feasible only if both of these hold:

$$(1-\epsilon)\mu\log_2 M \leq \frac{1}{2}\log_2(1+\mu P_{tot})+\mu h(\epsilon)$$
$$\frac{1}{M} \geq Q\left(\sqrt{\frac{P_{tot}}{\mu}}+Q^{-1}(1-\epsilon)\right)$$

where $P_{tot} = 2\mu \log_2 M \cdot \frac{E_b}{N_0}$ is the total received power.

- Second bound: To get small $\frac{E_b}{N_0}$ one necessarily needs to code over large payloads (i.e. $\log_2 M \gg 1$) this is [PPV'11].
- Namely, we use the genie argument. At least one of K users should have $P_e \leq \epsilon.$
- Even if that user communicated alone over a $n = \infty$ AWGN channel, he'd need large total energy-per-bit if M is small.

Theorem

Communication with (μ, M, ϵ) is asymptotically $(n \to \infty)$ feasible only if both of these hold:

Theorem (Thrampoulidis-Zadik-P.'18)

For each $\beta > 0$ there exists codes with $\frac{E_b}{N_0} = \frac{\beta^2}{2\log_2 M}$ and PUPE ϵ provided that

$$\theta \mu \log M + \mu h(\theta) < \frac{1}{2} \log(1 + \beta^2 \theta \mu) + \frac{\log e}{2} \left(\frac{\psi(\beta, \theta, \mu)}{1 + \beta^2 \theta \mu} - 1 \right)$$

for all $\theta \in [\epsilon,1]$ where

$$\psi(\beta,\theta,\mu) = \sqrt{1+\beta^2\theta\mu} - \frac{\beta\mu}{\sqrt{2\pi}}e^{-\frac{1}{2}(Q^{-1}(\theta))^2}$$

Theorem (Thrampoulidis-Zadik-P.'18)

For each $\beta > 0$ there exists codes with $\frac{E_b}{N_0} = \frac{\beta^2}{2\log_2 M}$ and PUPE ϵ provided that

$$\theta \mu \log M + \mu h(\theta) < \frac{1}{2} \log(1 + \beta^2 \theta \mu) + \frac{\log e}{2} \left(\frac{\psi(\beta, \theta, \mu)}{1 + \beta^2 \theta \mu} - 1 \right)$$

for all $\theta \in [\epsilon,1]$ where

$$\psi(\beta,\theta,\mu) = \sqrt{1+\beta^2\theta\mu} - \frac{\beta\mu}{\sqrt{2\pi}}e^{-\frac{1}{2}(Q^{-1}(\theta))^2}$$

Proof outline:

- Use random gaussian codebooks
- Use maximum likelihood decoder (not optimal!): $\min ||Y \sum_i c_i||_2$
- Use information-density thresholding trick
- Use Gaussian process theory (Gordon's lemma) to evaluate the bound

- Generate codewords $c_m^{(j)} \stackrel{iid}{\sim} \mathcal{N}(0, PI_n)$, $j \in [K], m \in [M]$, where $P = \frac{\beta^2}{n}$
- Use ML decoder (suboptimal!):

$$\hat{W} = \operatorname{argmin}_{w_1, \dots, w_K} \|Y - (c_{w_1}^{(1)} + \dots + c_{w_K}^{(K)})\|_2^2$$

Define

$$F(S_0) = \{ \exists (m_j)_{j \in S_0} : \|Y - (c(S_0^c) + \sum_{j \in S_0} c_{m_j}^{(j)})\|_2 \le \|Y - c([K])\|_2, m_j \ne 0 \}$$

• We have:

$$\mathbb{P}[d_H(W, \hat{W}) = t] \le \mathbb{P}\left[\bigcup_{S_0: |S_0| = t} F(S_0)\right]$$

- Main goal: Show $\mathbb{P}\left[\bigcup_{S_0:|S_0|=t}F(S_0)\right] \to 0$ for all $t = \theta n, \theta \in [\epsilon, 1]$.
- Intermediate step: Bound $\mathbb{P}[F(S_0)|c_{[K]}, Y, W_{[K]}]$

• Define information density

$$i_t(u; y|v) = \frac{n}{2}\log(1+Pt) + \frac{\log e}{2} \left(\frac{\|y-v\|_2^2}{1+P't} - \|y-u-v\|_2^2\right),$$

• Define $c(T) = \sum_{j \in T} c_{W_j}^{(j)}$, $c' = \sum_{j \in S_0} c_{m_j}^{(j)}$ for some $m_j \neq W_j$. Then:

$$\{\|Y - (c(S_0^c) + c')\|_2 \le \|Y - c([K])\|_2\} = \{i_t(c'; Y | c(S_0^c)) \ge i_t(c(S_0); Y | c(S_0^c))\} \le \|Y - c([K])\|_2\} \le \|Y - c([K])\|_2$$

• Let $A_1, \ldots, A_K \stackrel{iid}{\sim} \mathcal{N}(0, PI_n)$ and $B = \sum_i A_i + Z$. For any $S_0 \in \binom{[K]}{t}$: $\log \frac{dP_{A_{S_0}|A_{S_0^c},B}}{dP_{A_{S_0^c}}} = i_t(u; y|v) ,$

where $u = \sum_{j \in S_0} A_j$, $v = \sum_{j \in S_0^c} A_j$ and y = B.

• And thus we get:

$$\mathbb{P}\left[i_t(c';Y|c(S_0^c)) > \gamma|Y,c_{[K]},W_{[K]}\right] \le e^{-\gamma}$$

• We have shown (via union bound):

 $\mathbb{P}[F(S_0)|c_{[K]}, Y, W_{[K]}] \le M^t \exp\{-i_t(c(S_0); Y|c(S_0^c))\}.$

• So we now use a smart union bound:

$$\mathbb{P}\left[\cup_{S_0} F(S_0)\right] \le M^t \binom{K}{t} \exp\{-\gamma\} + \mathbb{P}[I_t \le \gamma],$$

where $I_t = \min_{S_0} i_t(c(S_0); Y | c(S_0^c))$

- Left to study the extrema of Gaussian matrix $G\in\mathbb{R}^{n\times\mu n}$ with $\overset{iid}{\sim}\mathcal{N}(0,1)$

$$\Phi \triangleq \frac{1}{n} \min \left\{ \left\| \frac{\beta}{\sqrt{n}} Gx + Z \right\|_2 : x \in \{0, 1\}^{\mu n}, \|x\|_0 = \theta \mu n \right\}$$

• After dualizing norm, we get a problem:

$$\mathbb{P}[\min_{u} \max_{v} A_{u,v} \le c] \le ?$$

• We have shown (via union bound):

 $\mathbb{P}[F(S_0)|c_{[K]}, Y, W_{[K]}] \le M^t \exp\{-i_t(c(S_0); Y|c(S_0^c))\}.$

• So we now use a smart union bound:

$$\mathbb{P}\left[\cup_{S_0} F(S_0)\right] \le M^t \binom{K}{t} \exp\{-\gamma\} + \mathbb{P}[I_t \le \gamma],$$

where $I_t = \min_{S_0} i_t(c(S_0); Y | c(S_0^c))$

- Left to study the extrema of Gaussian matrix $G\in\mathbb{R}^{n\times\mu n}$ with $\overset{iid}{\sim}\mathcal{N}(0,1)$

$$\Phi \triangleq \frac{1}{n} \min\left\{ \left\| \frac{\beta}{\sqrt{n}} Gx + Z \right\|_2 : x \in \{0, 1\}^{\mu n}, \|x\|_0 = \theta \mu n \right\}$$

• After dualizing norm, we get a problem:

$$\mathbb{P}[\min_{u} \max_{v} A_{u,v} \le c] \le \mathbb{P}[\min_{u} \max_{v} B_{u,v} \le c]$$

• Gaussian comparison method: Bound extrema of A via extrema of a simpler process B

Theorem (Slepian)

Let $\{A_v\}_{v \in \mathcal{V}}$ and $\{B_v\}_{v \in \mathcal{V}}$ be zero-mean Gaussian processes, s.t. $\operatorname{Cov}(A) \leq \operatorname{Cov}(B)$ and $\operatorname{Var}[A_v] = \operatorname{Var}[B_v]$ for all v then

 $\mathbb{E}[\max_{v} A_{v}] \ge \mathbb{E}[\max_{v} B_{v}]$

Theorem (Slepian)

Let $\{A_v\}_{v \in \mathcal{V}}$ and $\{B_v\}_{v \in \mathcal{V}}$ be zero-mean Gaussian processes, s.t. $\operatorname{Cov}(A) \leq \operatorname{Cov}(B)$ and $\operatorname{Var}[A_v] = \operatorname{Var}[B_v]$ for all v then

 $\max_{v} A_{v} \succeq \max_{v} B_{v} \qquad (stoch. \ domination)$

Theorem (Slepian)

Let $\{A_v\}_{v \in \mathcal{V}}$ and $\{B_v\}_{v \in \mathcal{V}}$ be zero-mean Gaussian processes, s.t. $\operatorname{Cov}(A) \leq \operatorname{Cov}(B)$ and $\operatorname{Var}[A_v] = \operatorname{Var}[B_v]$ for all v then

 $\max_{v} A_{v} \succeq \max_{v} B_{v} \qquad (stoch. \ domination)$

Theorem (Gordon)

Let
$$\{A_{u,v}\}$$
 and $\{B_{u,v}\}$ be zero-mean Gaussian processes, s.t.
1 $\operatorname{Var}[A_{u,v}] = \operatorname{Var}[B_{u,v}]$
2 $\mathbb{E}[A_{u,v}A_{u,v'}] \leq \mathbb{E}[B_{u,v}B_{u,v'}]$ for all u, v, v'
3 $\mathbb{E}[A_{u,v}A_{u',v'}] \geq \mathbb{E}[B_{u,v}B_{u',v'}]$ for all $u \neq u', v, v'$. Then:
 $\min_{u} \max_{v} A_{u,v} \succeq \min_{u} \max_{v} B_{u,v}$

Theorem (Slepian)

Let $\{A_v\}_{v \in \mathcal{V}}$ and $\{B_v\}_{v \in \mathcal{V}}$ be zero-mean Gaussian processes, s.t. $\operatorname{Cov}(A) \leq \operatorname{Cov}(B)$ and $\operatorname{Var}[A_v] = \operatorname{Var}[B_v]$ for all v then

 $\max_{v} A_{v} \succeq \max_{v} B_{v} \quad (stoch. \ domination)$

Theorem (Gordon)

Let
$$\{A_{u,v}\}$$
 and $\{B_{u,v}\}$ be zero-mean Gaussian processes, s.t.
1 $\operatorname{Var}[A_{u,v}] = \operatorname{Var}[B_{u,v}]$
2 $\mathbb{E}[A_{u,v}A_{u,v'}] \leq \mathbb{E}[B_{u,v}B_{u,v'}]$ for all u, v, v'
3 $\mathbb{E}[A_{u,v}A_{u',v'}] \geq \mathbb{E}[B_{u,v}B_{u',v'}]$ for all $u \neq u', v, v'$. Then:
 $\min_{u} \max_{v} A_{u,v} \succeq \min_{u} \max_{v} B_{u,v}$

Remark: 2) implies $A_u^* = \max_v A_{u,v} \succeq B_u^* = \max_v B_{u,v}$. 3) implies $\{A_u^*\}$ is "more-correlated" than $\{B_u^*\}$

User density vs. Energy-per-bit: best bounds

User density vs. Energy-per-bit: CDMA (w/o MUD)

User density vs. Energy-per-bit: TDMA

User density vs. Energy-per-bit: higher reliability

Problem 3: Information theory of random-access

Prior work on MAC/random-access

lt's a mess...

lt's a mess...

- Channel model: collision vs. additive
- Noise model: noiseless, stochastic or worst-case
- Coding with or without feedback (as in CSMA)
- Probability of error: zero, vanishing or fixed > 0.
- Probability of error: per-user vs all-users
- User activity: always-on vs sporadic
- finite blocklength vs $n \to \infty$
- Various asymptotics: $K = \text{const}, n \to \infty$ vs both $K, n \to \infty$

Classification by user activity

Classification by user activity

Classification by user activity

[Liao'72], [Ahlswede'73]

- Orthogonal schemes TDMA/FDMA
- Rate splitting [Rimoldi-Urbanke'99]
- Finite blocklength [MolavianJazi-Laneman'14-16]
- Many-user [Chen-Guo'14]

- Non-orthogonal CDMA, MUD
- Randomly-spread CDMA

[Tse-Hanly'99], [Verdú-Shamai'99]

- [Mathys'90]
- LDS, SCMA

- Non-orthogonal CDMA, MUD
- Randomly-spread CDMA

[Tse-Hanly'99], [Verdú-Shamai'99]

- [Mathys'90]
- LDS, SCMA

- Many-access [Chen-Chen-Guo'17]
- Blind-detection for CDMA
- [BarDavid-Plotnik-Rom'93]
- conflict-avoiding codes

[Bassalygo-Pinsker'83], B.Tsybakov

Key definition: random-access code

Definition (P.'17)

 $f:[M] \to \mathbb{R}^n$ is a random-access code for K_a users if \exists list- K_a decoder g s.t.

$$\mathbb{P}[W_j \notin g(f(W_1) + \dots + f(W_{K_a}) + Z)] \le \epsilon \qquad \forall j \in [K_a]$$

where $W_i \stackrel{iid}{\sim} \operatorname{Unif}[M]$.

For $\epsilon = 0$ this was studied:

- Noiseless channels: B_r -codes [Dyackhov-Rykov'81]
- Worst-case noise: superimposed codes [Ericson-Gyorfi'88, Furedi-Ruszinkó'99]

Key definition: random-access code

Definition (P.'17)

 $f:[M]\to \mathbb{R}^n$ is a random-access code for K_a users if \exists list- K_a decoder g s.t.

$$\mathbb{P}[W_j \notin g(f(W_1) + \dots + f(W_{K_a}) + Z)] \le \epsilon \qquad \forall j \in [K_a]$$

where $W_i \stackrel{iid}{\sim} \operatorname{Unif}[M]$.

For $\epsilon > 0$ this is:

- Just compressed sensing: $Y = X\beta + Z$, X is K_a -out-of-M sparse.
- \Rightarrow studied by many, but not w.r.t. $\frac{E_b}{N_0}$ and not with $M = 2^{\Theta(n)}$.

Same-codebook codes = compressed sensing

- random-access = all users share same codebook
- ... obviously decoding is upto permutation of users
- New problems: capacity/error-exponent/zero-error capacity
- Equivalent to compressed-sensing [Jin-Kim-Rao'11]

Same-codebook codes = compressed sensing

- random-access = all users share same codebook
- ... obviously decoding is upto permutation of users
- New problems: capacity/error-exponent/zero-error capacity
- Equivalent to compressed-sensing [Jin-Kim-Rao'11]
- Let same-codebook (column) vectors be $c_1, \ldots c_j$.

$$X = \begin{pmatrix} c_1 & | & \cdots & | & c_M \end{pmatrix}$$

- Let $\beta \in \{0,1\}^M$ with $\beta_j = 1$ if codeword j was transmitted
- Then the problem is:

 $Y = X\beta + Z, \qquad \mathsf{Goal:} \ \mathbb{E}[\|\beta - \hat{\beta}(Y)\|] \to \min$

(linear regression with sparsity $\|\beta\|_0 = K_a$ aka comp.sensing).

Same-codebook codes = compressed sensing

- random-access = all users share same codebook
- ... obviously decoding is upto permutation of users
- New problems: capacity/error-exponent/zero-error capacity
- Equivalent to compressed-sensing [Jin-Kim-Rao'11]
- Let same-codebook (column) vectors be $c_1, \ldots c_j$.

$$X = \begin{pmatrix} c_1 & | & \cdots & | & c_M \end{pmatrix}$$

- Let $\beta \in \{0,1\}^M$ with $\beta_j = 1$ if codeword j was transmitted
- Then the problem is:

 $Y = X\beta + Z, \qquad \mathsf{Goal:} \ \mathbb{E}[\|\beta - \hat{\beta}(Y)\|] \to \min$

(linear regression with sparsity $\|\beta\|_0 = K_a$ aka comp.sensing).

• The famous $n \sim 2K_a \log_e M$ is just TIN :

$$\log_e M \approx \frac{n}{2} \log_e (1 + \frac{P}{1 + (K_a - 1)P}) \approx \frac{n}{2K_a}$$

So all the L_1 (LASSO) frenzy is just to achieve TIN (hehe...)

Key definition: random-access code

Definition (P.'17)

 $f:[M] \to \mathbb{R}^n$ is a random-access code for K_a users if $\exists \text{ list-} K_a \text{ decoder} g \text{ s.t.}$

$$\mathbb{P}[W_j \notin g(f(W_1) + \dots + f(W_{K_a}) + Z)] \le \epsilon \qquad \forall j \in [K_a]$$

where $W_i \stackrel{iid}{\sim} \operatorname{Unif}[M]$.

This definition is answer to many prayers, but ... Bad news: Asymptotics of $K_a = \mu n$, $n \to \infty$ is nonsense.

Prototypical random-access code: ALOHA

Slotted ALOHA protocol (shaded slots indicate collision)

- *n*-frame is partitioned into $L = \frac{n}{n_1}$ subframes of length n_1
- Each of K_a users places his n_1 -codeword into a random subframe.
- Per-user error: $P_e \approx \mathbb{P}[\text{Bino}(K_a 1, \frac{1}{L}) > 0] \approx \frac{K_a}{L} e^{-\frac{K_a}{L}}$

Main result 2: random-coding bound

II. RANDOM CODING BOUND

Theorem 1. Fix P' < P. There exists an (M, n, ϵ) random-access code for K_a -user GMAC satisfying power-constraint P and

$$\epsilon \le \sum_{t=1}^{K_a} \frac{t}{K_a} \min(p_t, q_t) + p_0, \qquad (3)$$

where

$$p_0 = \frac{\binom{K_a}{2}}{M} + K_a \mathbb{P}\left[\frac{1}{n} \sum_{j=1}^n Z_j^2 > \frac{P}{P'}\right], \quad (4)$$

$$p_t = e^{-nE(t)},\tag{5}$$

$$E(t) = \max_{0 \le \rho, \rho_1 \le 1} -\rho \rho_1 t R_1 - \rho_1 R_2 + E_0(\rho, \rho_1)$$
$$E_0 = \rho_1 a + \frac{1}{2} \log(1 - 2b\rho_1)$$

$$a = \frac{\rho}{2}\log(1 + 2P't\lambda) + \frac{1}{2}\log(1 + 2P't\mu) \quad (6)$$

$$b = \rho\lambda - \frac{\mu}{1 + 2P't\mu}, \ \mu = \frac{\rho\lambda}{1 + 2P't\lambda}$$
(7)

$$\lambda = \frac{P't - 1 + \sqrt{D}}{4(1 + \rho_1 \rho)P't},$$
(8)

$$D = (P't - 1)^{2} + 4P't\frac{1 + \rho\rho_{1}}{1 + \rho}$$

$$R_{1} = \frac{1}{n}\log M - \frac{1}{n}\log(t!)$$
(9)

$$R_2 = \frac{1}{n} \log \begin{pmatrix} K_a \\ t \end{pmatrix} \tag{10}$$

$$q_t = \inf_{\gamma} \mathbb{P}[I_t \le \gamma] + \exp\{n(R_1 + R_2) - \gamma\}$$

Remark: For classical regime K_a -fixed, $n \to \infty$ and $\epsilon \to 0$

$$C_{random-access}(K_a) = \frac{1}{2K_a}\log(1+K_aP).$$

- Generate M codewords: $c_i \sim \mathcal{N}(0, P)^{\otimes n}$.
- WLOG, users send $c_1, c_2, \ldots, c_{K_a}$.
- Decoder sees

$$Y = c_1 + \dots + c_{K_a} + Z$$

- Define sum-codewords $c(S) \triangleq \sum_{i \in S} c_i$
- ML-decoder (not optimal!)

$$\hat{S} = \arg\min_{S} \|c(S) - Y\|.$$

• Error-analysis:

$$\begin{split} P_{e} &\leq \sum_{t=1}^{K_{a}} \frac{t}{K_{a}} \mathbb{P}[t\text{-misguessed}] \\ \mathbb{P}[t\text{-misguessed}] &\leq \boxed{\mathbb{P}\left[\bigcup_{S \in \binom{K_{a}}{t}} S' \in \binom{M-K_{a}}{t} \| c(S) - c(S') + Z \| \leq \|Z\|\right]} \end{split}$$

- **Concrete** M codewords: $a \rightarrow M(0, \mathcal{P})^{\otimes n}$ **Analysis I**:
 - Condition on Z, c_1, \ldots, c_{K_a}
 - Use Chernoff + Gallager ρ -trick for $\mathbb{P}[\cup_{S'} \cdots | c_1^{K_a}, Z]$
 - \bullet Use another Gallager $\rho\text{-trick}$ for $\mathbb{P}[\cup_S\cdots|Z]$
 - Finally take expectation over \boldsymbol{Z}
- INIL-decoder (not optimali)

$$\hat{S} = \arg\min_{S} \|c(S) - Y\|.$$

• Error-analysis:

$$\begin{split} P_{e} &\leq \sum_{t=1}^{K_{a}} \frac{t}{K_{a}} \mathbb{P}[t\text{-misguessed}] \\ \mathbb{P}[t\text{-misguessed}] &\leq \boxed{\mathbb{P}\left[\bigcup_{S \in \binom{K_{a}}{t}} S' \in \binom{M-K_{a}}{t} \| c(S) - c(S') + Z \| \leq \|Z\|\right]} \end{split}$$

Concrete M codewords: $a \in \mathcal{M}(0, \mathcal{P})^{\otimes n}$ **Analysis I**:

- Condition on Z, c_1, \ldots, c_{K_a}
- Use Chernoff + Gallager ρ -trick for $\mathbb{P}[\cup_{S'} \cdots | c_1^{K_a}, Z]$
- Use another Gallager ρ -trick for $\mathbb{P}[\cup_S \cdots | Z]$
- Finally take expectation over \boldsymbol{Z}
- INIL-decoder (not optimali)

Analysis II:

- Define information density appropriately
- Use Feinstein's trick to bound $\mathbb{P}[\bigcup_{S} \bigcup_{S'} \cdots] \leq \mathbb{P}[i_{min}(X_1^{K_a}; Y) < \gamma] + {K_a \choose t} {M \choose t} e^{-\gamma}$ $i_{min} = \min_S i_t(c(S); Y|c(S^c))$
- $i_{min} \approx \max$ of Gaussian process indexed by t-subsets of $[K_a]$

$$\mathbb{P}[t-\text{misguessed}] \le \mathbb{P}\left[\bigcup_{S \in \binom{K_a}{t}} \bigcup_{S' \in \binom{M-K_a}{t}} \|c(S) - c(S') + Z\| \le \|Z\|\right]$$

- **Concrete** M codewords: $a \in \mathcal{M}(0, \mathbb{P})^{\otimes n}$ **Analysis I**:
 - Condition on Z, c_1, \ldots, c_{K_a}
 - Use Chernoff + Gallager ρ -trick for $\mathbb{P}[\cup_{S'} \cdots | c_1^{K_a}, Z]$
 - Use another Gallager $\rho\text{-trick}$ for $\mathbb{P}[\cup_S\cdots|Z]$
 - Finally take expectation over \boldsymbol{Z}
- IVIL-decoder (not optimali)

Analysis II:

- Define information density appropriately
- Use Feinstein's trick to bound $\mathbb{P}[\bigcup_{S} \bigcup_{S'} \cdots] \leq \mathbb{P}[i_{min}(X_1^{K_a}; Y) < \gamma] + {\binom{K_a}{t}}{\binom{M}{t}}e^{-\gamma}$ $i_{min} = \min_S i_t(c(S); Y|c(S^c))$
- $i_{min} \approx \max$ of Gaussian process indexed by t-subsets of $[K_a]$

 $\begin{array}{c|c} \mathbb{D}[t] \text{ missureced} & \subset & \mathbb{D} \\ \hline \textbf{Classical IT}: \text{ term } S \text{ goes } \rightarrow 0 \text{ if } I(X_S; Y|X_{S^c}) > \sum_{i \in S}^{C(I)} R_i \\ \hline \end{array}$

Numerical evaluation

Energy-per-bit vs. number of users. Payload k = 100 bit, frame n = 30000 rdof, $P_{\rho} = 0.1$

Numerical evaluation

Energy-per-bit vs. number of users. Payload k = 100 bit, frame n = 30000 rdof, P = 0.1

Fundamental limits vs. ALOHA

Energy-per-bit vs. number of users. Payload k = 100 bit, frame n = 30000 rdof, P = 0.1

Fundamental limits vs. TIN (aka CDMA w/o MUD)

Fundamental limits vs. Coded Slotted ALOHA

... and randomly-spread CDMA w/ optimal MUD

Yury Polyanskiy

Energy-per-bit vs. number of users. Payload k = 100 bit, frame n = 30000 rdof, P = 0.1

MAC tutorial

New twists compared to classic MAC

Problem 2 "user-centric" probability of error

$$P_e \triangleq \frac{1}{K} \sum_j \mathbb{P}[\hat{X}_j \neq X_j]$$

indistiguishable users (same-codebook), non-asymptotics.

Low-complexity random-access over GMAC

Key challenge:

Providing multiple-access to massive number of UNCOORDINATED and infrequently communicating devices

Key challenge:

Providing multiple-access to massive number of UNCOORDINATED

and infrequently communicating devices

Typical scenario:

- Huge # of users $K_{\rm tot} \approx 10^6 10^7$
- Still large # of active users $K_a \approx 1 500$
- Small data payload, e.g. k = 100 bits
- Blocklength $n\sim 10^4$
- $\frac{k}{n} \ll 1$, but system spectral efficiency $\rho = \frac{K_a \cdot k}{n} \sim 1$

Key challenge:

Providing multiple-access to massive number of UNCOORDINATED

and infrequently communicating devices

Typical scenario:

- Huge # of users $K_{\rm tot} \approx 10^6 10^7$
- Still large # of active users $K_a \approx 1 500$
- Small data payload, e.g. k = 100 bits
- Blocklength $n\sim 10^4$
- $\frac{k}{n} \ll 1,$ but system spectral efficiency $\rho = \frac{K_a \cdot k}{n} \sim 1$

The goal is to communicate with the smallest possible energy-per-bit

Theorem (DT-TIN bound)

There exists $\mathcal{C} \subset B(0,\sqrt{nP})$ of size M such that

 $\mathbb{P}[X_1 \notin \{ \text{top-}K_a \text{ closest } c/w \text{ to } Y \}] \lesssim \mathbb{E}\left[e^{-|i(X;X+Z) - \log M|^+} \right]$

where $Y = X_1 + \cdots + X_{K_a} + Z$, X_i – uniform on C, $X \sim \mathcal{N}(0, P)^{\otimes n}$ and $Z \sim \mathcal{N}(0, 1)^{\otimes n}$.

Remarks:

- Decoder searches for top-K_a closest codewords
- Achieves about $\log M \approx nC_{TIN}(P) \sqrt{nV_{TIN}(P)}Q^{-1}(\epsilon)$ $C_{TIN}(P) = \frac{1}{2}\log\left(1 + \frac{P}{1+(K_a-1)P}\right), \quad V_{TIN}(P) = \frac{P\log^2 e}{1+K_aP}.$
- Spectral efficiency as $K_a \to \infty$ is bounded by $\frac{\log_2 e}{2} \approx 0.72$ bit.

Simple scheme I: Treat interference as noise (TIN)

Simple scheme II: T-fold ALOHA

Slotted ALOHA protocol (shaded slots indicate collision)

- Each user places his n₁-codeword into one of L subframes.
- Assume any *T*-fold collision is resolvable
- Per-user error: $P_e \approx \mathbb{P}[\text{Bino}(K_a 1, \frac{1}{L}) > T] \approx \left(\frac{K_a}{L}\right)^T e^{-\frac{K_a}{L}}$

Simple scheme II: T-fold ALOHA

Energy-per-bit vs. number of users. Payload k = 100 bit, frame n = 30000 rdof, $P_{a} = 0.1$

Simple scheme II: T-fold ALOHA

Energy-per-bit vs. number of users. Payload k = 100 bit, frame n = 30000 rdof, P = 0.1

Our scheme: high-level idea

- Send lattice points
- Decode sum of codewords via single-user decoder [Nazer-Gastpar'11]
- Use a subset of points forming a Sidon set (all sums $c_1 + c_2$ distinct)
- Single-lattice (no MMSE scaling): $R \approx \frac{1}{2K} \log^+ P$
- Nested-lattice (with MMSE scaling): $R \approx \frac{1}{2K} \log^+ \left(\frac{1}{K} + P\right)$

Warning: issues with same-dither

• Lose power-factor compared to $\frac{1}{2K}\log(1+KP)$

Sample performance of new scheme

Many ideas appeared separately:

- Compute-and-forward [Nazer-Gastpar'11]
- Explicit codes for the modulo-2 binary adder channel [Lindström'69, Bar-David et al.'93]
- 2-user codes for \mathbb{F}_q -adder MAC [Dumer-Zinoviev'78, Dumer'95]
- Concatenation of codes with good minimum distance and codes for the BAC [Ericson-Levenshtein'94]
- Concatenation of CoF inner codes with syndrome decoding for compressed sensing [Lee-Hong'16]

Three phases:

- Sidon set: $\{0,1\}^k \to \mathbb{F}_p^n$
- Compute-and-forward: $\mathbb{F}_p^n \to \mathbb{R}^{n_1}$
- T-fold ALOHA: Place n_1 -codeword in a random subframe

Inner code (CoF): Convert T-user GMAC into a mod-p (noiseless) adder MAC.

 $\mathbf{w}_1, \dots, \mathbf{w}_T$ are vectors in \mathbb{Z}_p \mathcal{C}_{lin} is linear code over \mathbb{Z}_p

Inner code (CoF): Convert T-user GMAC into a mod-p (noiseless) adder MAC.

Inner code (CoF): Convert T-user GMAC into a mod-p (noiseless) adder MAC. Outer code (BAC): C_{BAC} code for mod-p adder T-MAC Here: only p = 2

More on the CoF phase

- $\mathcal{C}_{\mathsf{lin}} \subset \{0,1\}^n$ is a binary linear code (shifted to $\pm \sqrt{P}$)
- Receive $\mathbf{y} = \sum_{i=1}^{T} \mathbf{x}_i + \mathbf{z}$, shift, rescale, take mod-2, get

$$\mathbf{y}_{\mathsf{CoF}} = [\mathbf{x} + \mathbf{z}] \bmod 2$$

where $\mathbf{x} = [\sum_i \mathbf{x}_i] \mod 2 \in \mathcal{C}_{\mathsf{lin}} \subset \{0, 1\}^n$

• The channel from x to y_{CoF} is a BMS with folded Gsn noise \implies Designing C_{lin} is a standard coding task Normal approximation: $\log |C_{lin}| \approx nC - \sqrt{nVQ^{-1}(\epsilon_{code})}$

More on the CoF phase

- $\mathcal{C}_{\mathsf{lin}} \subset \{0,1\}^n$ is a binary linear code (shifted to $\pm \sqrt{P}$)
- Receive $\mathbf{y} = \sum_{i=1}^{T} \mathbf{x}_i + \mathbf{z}$, shift, rescale, take mod-2, get

$$\mathbf{y}_{\mathsf{CoF}} = [\mathbf{x} + \mathbf{z}] \bmod 2$$

where $\mathbf{x} = [\sum_i \mathbf{x}_i] \mod 2 \in \mathcal{C}_{\mathsf{lin}} \subset \{0, 1\}^n$

• The channel from x to \mathbf{y}_{CoF} is a BMS with folded Gsn noise \implies Designing \mathcal{C}_{lin} is a standard coding task Normal approximation: $\log |\mathcal{C}_{lin}| \approx nC - \sqrt{nVQ^{-1}(\epsilon_{code})}$

What is lost in the conversion $\mathbf{y} \mapsto \mathbf{y}_{\mathsf{CoF}}$?

Sum-capacity of y grows like $\log(T \cdot P)$ Capacity of y_{CoF} only grows like $\log(P)$

More on the CoF phase

- $\mathcal{C}_{\mathsf{lin}} \subset \{0,1\}^n$ is a binary linear code (shifted to $\pm \sqrt{P}$)
- Receive $\mathbf{y} = \sum_{i=1}^{T} \mathbf{x}_i + \mathbf{z}$, shift, rescale, take mod-2, get

$$\mathbf{y}_{\mathsf{CoF}} = [\mathbf{x} + \mathbf{z}] \bmod 2$$

where $\mathbf{x} = [\sum_i \mathbf{x}_i] \mod 2 \in \mathcal{C}_{\mathsf{lin}} \subset \{0, 1\}^n$

• The channel from x to \mathbf{y}_{CoF} is a BMS with folded Gsn noise \implies Designing \mathcal{C}_{lin} is a standard coding task Normal approximation: $\log |\mathcal{C}_{lin}| \approx nC - \sqrt{nVQ^{-1}(\epsilon_{code})}$

What is lost in the conversion $y \mapsto y_{CoF}$?

Sum-capacity of y grows like $\log(T \cdot P)$ Capacity of y_{CoF} only grows like $\log(P)$

T-fold ALOHA reduces "power-loss" to 1/T instead of $1/K_a$

More on the BAC Phase

$$\mathbf{y}_{\mathsf{BAC}} = \left[\sum_{i=1}^{T} \mathbf{w}_{i}\right] \mod 2, \ \mathbf{w}_{1}, \dots, \mathbf{w}_{T} \in \mathcal{C}_{\mathsf{BAC}}$$

Need to decode a list $\{\mathbf{w}_1, \dots, \mathbf{w}_T\}$ Symmetric-capacity: $C_{sym} = \frac{1}{T}$

More on the BAC Phase

$$\mathbf{y}_{\mathsf{BAC}} = \left[\sum_{i=1}^{T} \mathbf{w}_{i}\right] \mod 2, \ \mathbf{w}_{1}, \dots, \mathbf{w}_{T} \in \mathcal{C}_{\mathsf{BAC}}$$

Need to decode a list $\{\mathbf{w}_1, \dots, \mathbf{w}_T\}$ Symmetric-capacity: $C_{sym} = \frac{1}{T}$

How to construct explicit codes?

- Let $H = [\mathbf{h}_1 | \cdots | \mathbf{h}_N]$ be the **parity-check matrix** of a T-error correcting code
- \Rightarrow all *T*-sums of columns are distinct
- Set $C_{\mathsf{BAC}} = \{\mathbf{h}_1, \dots, \mathbf{h}_N\}$
- BCH parity check matrix: $R_{BAC} = \frac{1}{T}$ (optimal!)
- Encoding: easy (just compute $\alpha, \alpha^3, \cdots, \alpha^{2T-1}$)

More on the BAC Phase

$$\mathbf{y}_{\mathsf{BAC}} = \left[\sum_{i=1}^{T} \mathbf{w}_{i}\right] \mod 2, \ \mathbf{w}_{1}, \dots, \mathbf{w}_{T} \in \mathcal{C}_{\mathsf{BAC}}$$

Need to decode a list $\{\mathbf{w}_1, \dots, \mathbf{w}_T\}$ Symmetric-capacity: $C_{sym} = \frac{1}{T}$

How to construct explicit codes?

- Let $H = [\mathbf{h}_1 | \cdots | \mathbf{h}_N]$ be the **parity-check matrix** of a T-error correcting code
- \Rightarrow all *T*-sums of columns are distinct
- Set $C_{\mathsf{BAC}} = \{\mathbf{h}_1, \dots, \mathbf{h}_N\}$
- BCH parity check matrix: $R_{BAC} = \frac{1}{T}$ (optimal!)
- Encoding: easy (just compute $\alpha, \alpha^3, \cdots, \alpha^{2T-1}$)

Problem: decoding complexity of BCH linear in $n = 2^k - 1$

More on the BAC Phase: Decoding BCH

Decoding:

- $\alpha_1, \ldots, \alpha_T \in \mathbb{F}_{2^k}$ are messages
- $\mathbf{y}_{\mathsf{BAC}} = He' \mathsf{syndrome}(!) \Rightarrow \mathsf{we know} \sum_{i} (\alpha_i)^s, s \leq 2T$
- Error locator: Berlekamp-Massey yields coeffs of

$$\sigma(z) = \prod_{i=1}^{T} (1 + \alpha_i z)$$

- Find roots of $\sigma(\cdot)$ e.g. via [Rabin'80]
- Invert roots: using the identity $\alpha^{-1} = \alpha^{2^k} 1$

Total complexity: $\mathcal{O}(kT^2\log^2(T)\log\log(T))$ operations in \mathbb{F}_{2^k}

The spectral efficiency $\rho = \frac{K_a \cdot k}{n}$ of our scheme is at most R_{lin} What if $\rho > 1$?

Solution: - work with p>2

- CoF phase requires good linear codes over \mathbb{F}_p
- BAC phase can be implemented using $H = [\mathbf{h}_1 | \cdots | \mathbf{h}_n]$ of a $[n = p^s 1, n k = 2T]$ Reed-Solomon code over \mathbb{F}_{p^s} with

$$\mathcal{C}_{\mathsf{BAC}} = \{ \alpha \mathbf{h}_i : \alpha \in \mathbb{F}_{p^s} \setminus \{0\}, i = 1, \dots, p^s - 1 \}$$

- Can use nested lattice to achieve the $1.53 \mathrm{dB}$ shaping gain
- Drawback: hard to analyze finite blocklength

Asymptotic optimum:
$$\left(\frac{E_b}{N_0}\right)^* = \frac{2^{2\rho}-1}{2\rho}$$
, with $\rho = \frac{K_a \cdot k}{n}$.
Let $L = \frac{K_a}{\alpha T}$ for $\alpha \in (0, 1]$ be number of subframes
 $P_e \approx \mathbb{P}[T\text{-collision}] = \Pr\left(\text{Binomial}\left(K_a - 1, \frac{\alpha T}{K_a}\right) \ge T\right)$
Linear code rate $R_{\text{lin}} = \frac{\rho}{\alpha}$

$$\Delta = \left(\frac{E_b}{N_0}\right) dB - \left(\frac{E_b}{N_0}\right)^* dB$$
$$\approx 6\rho \frac{1-\alpha}{\alpha} + 10 \log_{10}(\alpha)$$

T-Collision avoidance loss due to a $1/\alpha$ increase in spectral efficiency

Asymptotic optimum:
$$\left(\frac{E_b}{N_0}\right)^* = \frac{2^{2\rho}-1}{2\rho}$$
, with $\rho = \frac{K_a \cdot k}{n}$.
Let $L = \frac{K_a}{\alpha T}$ for $\alpha \in (0, 1]$ be number of subframes
 $P_e \approx \mathbb{P}[T\text{-collision}] = \Pr\left(\text{Binomial}\left(K_a - 1, \frac{\alpha T}{K_a}\right) \ge T\right)$
Linear code rate $R_{\text{lin}} = \frac{\rho}{\alpha}$

$$\Delta = \left(\frac{E_b}{N_0}\right) dB - \left(\frac{E_b}{N_0}\right)^* dB$$
$$\approx 6\rho \frac{1-\alpha}{\alpha} + 10 \log_{10}(\alpha) + 10 \log_{10}(T)$$

CoF loss from the reduction $\mathbf{y}\mapsto\mathbf{y}_{\mathsf{CoF}}$

Asymptotic optimum:
$$\left(\frac{E_b}{N_0}\right)^* = \frac{2^{2\rho}-1}{2\rho}$$
, with $\rho = \frac{K_a \cdot k}{n}$.
Let $L = \frac{K_a}{\alpha T}$ for $\alpha \in (0, 1]$ be number of subframes
 $P_e \approx \mathbb{P}[T\text{-collision}] = \Pr\left(\text{Binomial}\left(K_a - 1, \frac{\alpha T}{K_a}\right) \ge T\right)$
Linear code rate $R_{\text{lin}} = \frac{\rho}{\alpha}$

$$\Delta = \left(\frac{E_b}{N_0}\right) dB - \left(\frac{E_b}{N_0}\right)^* dB$$

$$\approx 6\rho \frac{1-\alpha}{\alpha} + 10\log_{10}(\alpha) + 10\log_{10}(T) - 10\log_{10}(1-2^{-2\rho})$$

Loss of +1 in computation rate

Asymptotic optimum:
$$\left(\frac{E_b}{N_0}\right)^* = \frac{2^{2\rho}-1}{2\rho}$$
, with $\rho = \frac{K_a \cdot k}{n}$.
Let $L = \frac{K_a}{\alpha T}$ for $\alpha \in (0, 1]$ be number of subframes
 $P_e \approx \mathbb{P}[T\text{-collision}] = \Pr\left(\text{Binomial}\left(K_a - 1, \frac{\alpha T}{K_a}\right) \ge T\right)$
Linear code rate $R_{\text{lin}} = \frac{\rho}{\alpha}$

$$\Delta = \left(\frac{E_b}{N_0}\right) dB - \left(\frac{E_b}{N_0}\right)^* dB$$
$$\approx 6\rho \frac{1-\alpha}{\alpha} + 10\log_{10}(\alpha) + 10\log_{10}(T) - 10\log_{10}(1-2^{-2\rho}) + 1.53$$

Shaping loss

MAC with random path-loss

K-user GMAC with random **path-loss**

$$Y(t) = \mathbf{H}_1 X_1(t) + \dots + \mathbf{H}_K X_K(t) + Z(t)$$

- More realistic model: waveforms added with random gains
- Standard work-around: use pilots
- Impossible without coordination!

• Step 1: Partition entire frame into subframes of length N

• Step 1: Partition entire frame into subframes of length N

 Step 2: Each user randomly selects a subframe for communication. Important: K and ⁿ/_N are chosen so that > T-fold collisions are improbable.

• Step 1: Partition entire frame into subframes of length N

- Step 2: Each user randomly selects a subframe for communication.
- Step 3: Users encode their data via sparse-graph (LDPC) codes

• Step 1: Partition entire frame into subframes of length N

- Step 2: Each user randomly selects a subframe for communication.
- Step 3: Users encode their data via sparse-graph (LDPC) codes
- Step 4: Decoder uses joint Tanner graph (LDPC+LDGM structure)
 - to iteratively decode data and learn the channel gains!

New multi-access protocol (2018): results

New multi-access protocol (2018): results

Other ideas for low-complexity schemes

- Work in progress by several groups
 - Narayanan-Chamberland
 - P.-Frolov
 - Durisi-Dalai
 - Popovski-Liva
 - ... (sorry to those I forgot)
- Methods we did not cover:
 - Coded Slotted ALOHA
 - ... including with MPR capability
 - iterative decoding same-codebook LDPCs
 - super-imposed codes
- Problem is even more interesting with fading
 - Random channel gains H_j help distinguish users.
 - With many users, order statistics of H_j 's becomes deterministic.

Outline - revisited

Envisioned solution:

- To save battery: sensors sleep all the time, except transmissions.
- ... uncoordinated transmissions.
- ... they wake up, blast the packet, go back to sleep.
- Focus on low-energy (low E_b/N_0)
- Focus on fundamental limits
- ... but with low-complexity solutions (single-user-only decoding).

Outline - revisited

Envisioned solution:

- To save battery: sensors sleep all the time, except transmissions.
- ... uncoordinated transmissions.
- ... they wake up, blast the packet, go back to sleep.
- Focus on low-energy (low E_b/N_0)
- Focus on fundamental limits
- ... but with low-complexity solutions (single-user-only decoding).

Issues we need to understand:

- 1 packets are short: finite-blocklength (FBL) info theory
- 2 multiple-access channel: Classical MAC
- 3 low-complexity MAC: modulation, CDMA, multi-user detection
- massive random-access: many users, same-codebook codes (NEW)

Supporting 10 users at 1Mbps is much easier than 1M users at 10bps.

Thank you!

Extra: More plots

ALOHA + codes repairing 5-fold collisions

Energy-per-bit vs. number of users. Payload k = 100 bit, frame n = 30000 rdof, P = 0.1

Other schemes...

10 - ALOHA - ALOHA + 5MAC NOMA: Treat interference as noise (TIN) NOMA: random-coding achievability - Lower bound - Coded ALOHA (irreg., rep. rate = 3.6) Coded ALOHA (2-regular) Random CDMA, BPSK, optimal MUD; K_a/N=1 8 6 Eb/N0, dB 2 -2 250 50 100 150 200 300 # active users

Energy-per-bit vs. number of users. Payload k = 100 bit, frame n = 30000 rdof, P = 0.1