Information Theoretic Methods in Statistics and Computer Science Instructor: Yury Polyanskiy

1 Strong Data Processing Inequality and Distributed Estimation

1.1 More on Strong Data Processing Inequalities

Proposition 1 (Tensorisation). For a given number n, two measures P_{X} and $P_{Y \mid X}$, the following tensorisation holds

$$
\eta_{\mathrm{KL}}\left(P_{X}^{\otimes n}, P_{Y \mid X}^{\otimes n}\right)=\eta_{\mathrm{KL}}\left(P_{X}, P_{Y \mid X}\right)
$$

In particular, if $\left(X_{i}, Y_{i}\right) \stackrel{\text { i.i.d. }}{\sim} P_{X, Y}$, then $\forall P_{U \mid X^{n}}$ then

$$
I\left(U ; Y^{n}\right) \leq \eta_{\mathrm{KL}}\left(P_{X}, P_{Y \mid X}\right) \times I\left(U ; X^{n}\right)
$$

Proof. Without loss of generality (by induction) it is sufficient to prove the proposition for $n=2$. It is always useful to keep in mind the following diagram

$$
\begin{align*}
& \text { Let } \eta=\eta_{\mathrm{KL}}\left(P_{X}, P_{Y \mid X}\right) \\
& \qquad \begin{aligned}
I\left(U ; Y_{1}, Y_{2}\right) & =I\left(U ; Y_{1}\right)+I\left(U ; Y_{2} \mid Y_{1}\right) \\
& \leq \eta\left[I\left(U ; X_{1}\right)+I\left(U ; X_{2} \mid Y_{1}\right)\right] \\
& =\eta\left[I\left(U ; X_{1}\right)+I\left(U ; X_{2} \mid X_{1}\right)+I\left(U ; X_{1} \mid Y_{1}\right)-I\left(U ; X_{1} \mid Y_{1}, X_{2}\right)\right] \\
& \leq \eta\left[I\left(U ; X_{1}\right)+I\left(U ; X_{2} \mid Y_{1}\right)\right] \\
& =\eta I\left(U ; X_{1}, X_{2}\right)
\end{aligned}
\end{align*}
$$

Where 1.1 is due to the fact that conditioned on $Y_{1}, U-X_{2}-Y_{2}$ is still a Markov chain, 1.2 is because $U-X_{1}-Y_{1}$ is a Markov chain and 1.3 follows from the fact that $X_{2}-U-X_{1}$ is a Markov chain even when condition Y_{1}.

This tensorisation property can be used for correlation estimation. Suppose Alice have samples $\left\{X_{i}\right\}_{i \geq 1} \stackrel{\text { i.i.d. }}{\sim} B(1 / 2)$ and Bob have samples $\left\{Y_{i}\right\}_{i \geq 1} \stackrel{\text { i.i.d. }}{\sim} B(1 / 2)$ such that the $\left(X_{i}, Y_{i}\right)$ are i.i.d. with $\mathbb{E}\left[X_{i} Y_{i}\right]=\rho \in[-1,1]$. The goal is for Bob to send W to Alice with $H(W)=B$ bits and for Alice to estimate $\hat{\rho}=\hat{\rho}\left(X^{\infty}, W\right)$ with objective

$$
R^{*}(B)=\inf _{W, \hat{\rho}} \sup _{\rho} \mathbb{E}\left[(\rho-\hat{\rho})^{2}\right]
$$

Notice that if Bob sends $W=\left(Y_{1}, \ldots, Y_{B}\right)$ then the optimal estimator is $\hat{\rho}\left(X^{\infty}, W\right)=\frac{1}{n} \sum_{i=1}^{B} X_{i} Y_{i}$ which has error $\frac{1}{B}$, hence $R^{*}(B) \leq \frac{1}{B}$.

Theorem 1. The optimal rate when $B \rightarrow \infty$ is given by

$$
R^{*}\left(X^{\infty}, W\right)=\frac{1+o(1)}{2 \ln 2} \cdot \frac{1}{B}
$$

Proof. Fix $P_{W \mid Y^{\infty}}$, we get the following decomposition

Note that once the messages W are fixed we have a parameter estimation problem $\left\{Q_{\rho}, \rho \in\right.$ $[-1,1]\}$ where Q_{ρ} is a distribution of $\left(X^{\infty}, W\right)$ when A^{∞}, B^{∞} are ρ-correlated. Since we minimize MMSE, we know from the Bayesian Cramer-Rao lower bound (van Trees inequality) ${ }^{1}$ that $R^{*}(B) \geq$ $\frac{1+o(1)}{\min _{\rho} I_{F}(\rho)} \geq \frac{1+o(1)}{I_{F}(0)}$ where $I_{F}(\rho)$ is the Fisher Information of the family $\left\{Q_{\rho}\right\}$.

Recall, that we also know from the local approximation that

$$
D\left(Q_{\rho} \| Q_{0}\right)=\frac{\rho^{2}}{2 \ln (2)} I_{F}(0)+o\left(\rho^{2}\right)
$$

Furthermore, notice that under $\rho=0$ we have X^{∞} and W independent and thus

$$
\begin{aligned}
D\left(Q_{\rho} \| Q_{0}\right) & =D\left(P_{X^{\infty}, W}^{\rho} \| P_{X^{\infty}, W}^{0}\right) \\
& =D\left(P_{X^{\infty}, W}^{\rho} \| P_{X^{\infty}}^{\rho} \times P_{W}^{\rho}\right) \\
& =I\left(W ; X^{\infty}\right) \\
& \leq \rho^{2} I\left(W ; Y^{\infty}\right) \\
& \leq \rho^{2} B
\end{aligned}
$$

hence $I_{F}(0) \leq 2 \ln 2 B+o(1)$ which in turns implies the theorem. For full details, the upper bound and the extension to interactive communication between Alice and Bob see $[\mathrm{Had}+19]$.

1.2 Post Strong Data Processing Inequality (Post-SDPI)

Definition 1. Given a conditional measure $P_{Y \mid X}$, define

$$
\begin{aligned}
\eta_{\mathrm{KL}}^{(p)}\left(P_{Y \mid X}\right) & =\sup _{P_{X}, P_{U \mid Y}}\left\{\frac{I(U ; X)}{I(U ; Y)}: X \rightarrow Y \rightarrow U\right\} \\
& =\sup _{P_{X}} \eta_{\mathrm{KL}}\left(P_{Y}, P_{X \mid Y}\right)
\end{aligned}
$$

where $P_{Y}(\cdot)=P_{X} \times P_{Y \mid X}(\mathcal{X}, \cdot)$.
It is easy to see that by the data processing inequality, $\eta_{\mathrm{KL}}^{(p)}\left(P_{Y \mid X}\right) \leq 1$. This bound can be achieved with equality in some non trivial cases, in example let $P_{Y} \mid X=\mathrm{BEC}_{\tau}$ and $X \rightarrow Y \rightarrow U$ be given by

[^0]Then we can compute $I(Y ; U)=H(U)=h(\varepsilon \bar{\tau})$ and $I(X ; U)=H(U)-H(U \mid X)=h(\varepsilon \bar{\tau})-\varepsilon h(\tau)$ hence

$$
\begin{aligned}
\eta_{\mathrm{KL}}^{(p)}\left(P_{Y \mid X}\right) & \geq \frac{I(X ; U)}{I(Y ; U)} \\
& =1-h(\tau) \frac{\varepsilon}{h(\varepsilon \bar{\tau})}
\end{aligned}
$$

This last term tends to 1 when ε tends to 0 hence

$$
\eta_{\mathrm{KL}}^{(p)}\left(\mathrm{BEC}_{\tau}\right)=1
$$

even though Y is not a one to one function of X.
The second bad news is that by taking $\varepsilon=\frac{1}{2}$, we have that $\eta_{\mathrm{KL}}^{(p)}\left(\right.$ Unif, $\left.\mathrm{BEC}_{\tau}\right)>1-\tau$ for $\tau \rightarrow 1$. Thus, the natural conjecture that for any BMS we should have $\eta_{\mathrm{KL}}^{(p)}(\mathrm{Unif}, \mathrm{BMS})=\eta_{\mathrm{KL}}(\mathrm{BMS})$ is incorrect.

Nevertheless, the post-SDPI constant is often non-trivial, most importantly for the BSC:

Theorem 2.

$$
\eta_{\mathrm{KL}}^{(p)}\left(\mathrm{BSC}_{\delta}\right)=(1-2 \delta)^{2}
$$

to prove the theorem, the following lemma is of help.
Lemma 1. If for any X and Y in $\{0,1\}$ we have

$$
p_{X, Y}(x, y)=f(x)\left(\frac{\delta}{1-\delta}\right)^{1(x \neq y)} g(Y)
$$

for some functions f and g, then $\eta_{\mathrm{KL}}\left(P_{Y \mid X}\right) \leq(1-2 \delta)^{2}$
Proof. It is known that for binary input chanels $P_{Y \mid X}$ [PW17].

$$
\eta_{\mathrm{KL}}\left(P_{Y \mid X}\right) \leq H^{2}\left(P_{Y \mid X=0} \| P_{Y \mid X=1}\right)-\frac{H^{4}\left(P_{Y \mid X=0} \| P_{Y \mid X=1}\right)}{4}
$$

If we let $\phi=\frac{g(0)}{g(1)}$, then we have $p_{Y \mid X=0}=B\left(\frac{\lambda}{\phi+\lambda}\right)$ and $p_{Y \mid X=1}=B\left(\frac{1}{1+\phi \lambda}\right)$ and a simple check shows that

$$
\begin{aligned}
\max _{\phi} H^{2}\left(P_{Y \mid X=0} \| P_{Y \mid X=1}\right)-\frac{H^{4}\left(P_{Y \mid X=0} \| P_{Y \mid X=1}\right)}{4} & \stackrel{\phi=1}{=} H_{\phi=1}^{2}\left(P_{Y \mid X=0} \| P_{Y \mid X=1}\right)-\frac{H_{\phi=1}^{4}\left(P_{Y \mid X=0} \| P_{Y \mid X=1}\right)}{4} \\
& =(1-2 \delta)^{2}
\end{aligned}
$$

Now observe that $P_{X, Y}$ in Theorem 2 satisfies the property of the lemma with X and Y exchanged, hence $\eta_{\mathrm{KL}}\left(P_{Y}, P_{X \mid Y}\right) \leq(1-2 \delta)^{2}$ which implies that $\eta_{\mathrm{KL}}^{(p)}\left(P_{Y \mid X}\right)=\sup _{P_{X}} \eta_{\mathrm{KL}}\left(P_{Y}, P_{X \mid Y}\right) \leq(1-2 \delta)^{2}$ with equality if P_{X} is uniform.
Theorem 3. Let $P_{Y \mid X}=\mathrm{BMS}$, then for any $X \rightarrow Y \rightarrow U$

$$
I(X ; U) \leq \eta_{\mathrm{KL}}\left(P_{Y \mid X}\right) \cdot \log |\mathcal{U}|
$$

where recall that $\eta_{\mathrm{KL}}\left(P_{Y \mid X}\right)=I_{\chi^{2}}(X ; Y)$ when $X \sim \operatorname{Bern}(1 / 2)$.

Proof. Every BMS channel is a mixture of BSCs, it can be represented as follow, let $(0,1) \ni \Delta \sim P_{\Delta}$ independently of $X, P_{\tilde{Y} \mid X, \Delta}=\mathrm{BSC}_{\Delta}$ and let $Y=(\tilde{Y}, \Delta)$. Then

$$
\begin{aligned}
I(X ; U) & \leq I(X ; U, \Delta) \\
& =I(X ; U \mid \Delta) \\
& =\mathbb{E}_{\Delta}[I(X ; U \mid \Delta=\Delta)] \\
& \leq \mathbb{E}_{\Delta}\left[\left(1-2 \Delta^{2}\right) I(Y ; U \mid \Delta=\Delta)\right] \\
& \leq \mathbb{E}_{\Delta}\left[\left(1-2 \Delta^{2}\right) \log |\mathcal{U}|\right] \\
& =\eta_{\mathrm{KL}}\left(P_{Y \mid X}\right) \cdot \log |\mathcal{U}|
\end{aligned}
$$

1.3 Distributed Mean Estimation

We want to estimate $\theta \in[-1,1]^{d}$ and we have m machines observing $X_{i}=\theta+\sigma Z_{i}$ where $Z_{i} \sim \mathcal{N}\left(0, I_{d}\right)$ independently. They can send a total of B bits to a remote estimator. The goal of the estimator is to minimize $\sup _{\theta} \mathbb{E}\left[\|\theta-\hat{\theta}\|^{2}\right]$ over $\hat{\theta}$. If we denote by $U_{i} \in \mathcal{U}_{i}$ the messages then $\sum_{i}\left|\mathcal{U}_{i}\right| \leq B$ then the diagram is

Finally, let

$$
R^{*}\left(m, d, \sigma^{2}, B\right)=\inf _{U_{1}, \ldots, U_{m}, \hat{\theta}} \sup _{\theta} \mathbb{E}\left[\|\theta-\hat{\theta}\|^{2}\right]
$$

Observations:

- Without constraint on the magnitude of $\theta \in[-1,1]^{d}$, we could give $\theta \sim \mathcal{N}\left(0, b I_{d}\right)$ and from rate-distortion quickly conclude that estimating θ within risk R requires communicating at least $\frac{d}{2} \log \frac{b d}{R}$ bits, which diverges as $b \rightarrow \infty$. Thus, restricting the magnitude of θ is necessary in order to be able to estimate it with finitely many bits communicated.
- It is easy to esstablish that $R^{*}\left(m, d, \sigma^{2}, \infty\right)=\mathbb{E}\left[\left\|\frac{\sigma}{m} \sum_{i} Z_{i}\right\|^{2}\right]=\frac{d \sigma^{2}}{m}$ by taking $U_{i}=X_{i}$ and $\hat{\theta}=\frac{1}{m} \sum_{i} U_{i}$.
- In order to approach the risk of order $\frac{d \sigma^{2}}{m}$ we could do the following. Let $U_{i}=\operatorname{sign}\left(X_{i}\right)$ (coordinate-wise sign). This yields $B=m d$ and it is easy to show that the achievable risk is $O\left(\frac{d \sigma^{2}}{m}\right)$.
- Our main result is that this is optimal. This simplifies the proofs (in the non-interactive case) of $[\mathrm{Duc}+14]$; $[\mathrm{Bra}+16]$.
- We want to point out, however, that all of these results (again in the non-interactive case, but with essentially sharp constants) are contained in the long line of work in the information theoretic literature on the so-called Gaussian CEO problem. We recommend consulting [EG19]. In particular, Theorem 3 there implies the $B \gtrsim d m$ lower bound. The Gaussian CEO work uses a lot more sophisticated machinery (the entropy power inequality and related results). The advantage of our SDPI proof is simplicity.

Theorem 4. There exists a $c_{1}, c_{2}>0$ such that for all m, d, σ^{2} if $R^{*}\left(m, d, \sigma^{2}, B\right) \leq c_{1} \frac{\sigma^{2} d}{m}$ then $B \geq c_{2} d m$.
Proof. for $d=1$, if we have $\hat{\theta}$ with risk $\mathbb{E}\left[(\theta-\hat{\theta})^{2}\right] \leq c \cdot \frac{\sigma^{2}}{m}$ for all $\theta \in[-1,1]$ then picking $\theta \sim \mathcal{U}(\{-\varepsilon, \varepsilon\})$ we get that if $\varepsilon \gtrsim \sqrt{\frac{\sigma^{2}}{m}}$ then $I(\theta ; \hat{\theta}) \gtrsim 1$, now

$$
I(\theta ; \hat{\theta}) \leq I\left(\theta ; U^{m}\right) \leq \sum_{i=1}^{m} I\left(\theta ; U_{i}\right) \leq \sum_{i=1}^{m} \frac{\varepsilon^{2}}{\sigma^{2}} \log \left|\mathcal{U}_{i}\right|
$$

since $\eta_{\mathrm{KL}}\left(P_{X_{i} \mid \theta}\right)=\frac{\varepsilon^{2}}{\sigma^{2}}$. Hence $I(\theta ; \hat{\theta}) \leq \frac{\varepsilon^{2}}{\sigma^{2}} \cdot B$. Hence if $\varepsilon \lesssim \sqrt{c \cdot \frac{\sigma^{2}}{m}}$ then $B \gtrsim m$
This proof does not extend to the d-dimensional case because the variant of the post-SDPI in Theorem 3 does not tensorize. So we need a more refined version.
Lemma 2 (restricted post-SDPI for the BIAWGN channel). if $X= \pm 1$ uniformly and $Y=\varepsilon X+Z$ with $Z \sim \mathcal{N}(0,1)$. Then for all $c>0$, there exist $c^{\prime}>0$ such that for all $\varepsilon \leq \varepsilon_{0}(c)$, and all $P_{U \mid Y}$ we $h a v e^{2}$

$$
I(U ; X) \geq c \cdot \varepsilon^{2} \Rightarrow I(U ; Y) \geq c^{\prime}
$$

where $X \rightarrow Y \rightarrow U$.
Furthermore, we have tensorization: Let $X^{d}=(\pm 1)^{d}$ uniformly and $Y^{d}=\varepsilon X^{d}+Z^{d}$ with $Z^{d} \sim \mathcal{N}\left(0, I_{d}\right)$. Then for all $c>0$, there exist $c^{\prime}>0$ such that for all $\varepsilon \leq \varepsilon_{0}(c)$, and all $P_{U \mid Y^{d}}$ we have

$$
I\left(U ; Y^{d}\right) \geq c d \varepsilon^{2} \Longrightarrow I\left(U ; X^{d}\right) \geq c^{\prime} d
$$

where $X^{d} \rightarrow Y^{d} \rightarrow U$.
Proof. The proof of the first part is as follows. Let us represent the channel as a mixture of BSC with the output $(\tilde{Y}, \Delta), \tilde{Y}=\mathrm{BSC}_{\Delta}(X)$. The relation between Y and Δ is $\Delta(Y)=\frac{1}{1+e^{2|Y| \epsilon}}$. Thus, we have

$$
(1-2 \Delta)^{2}=f^{2}(\epsilon Y), f(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}=\tanh (x)
$$

Note that $|f(x)| \leq x$. Fix $\eta_{1}=c_{1} \epsilon^{2}$ with $c_{1}>1$ to be specified. We have

$$
\begin{align*}
\mathbb{E}\left[(1-2 \Delta)^{2} 1\left\{(1-2 \Delta)^{2}>\eta_{1}\right\}\right] & =\mathbb{E}\left[f^{2}(\epsilon Y) 1\left\{f^{2}(\epsilon Y)>\eta_{1}\right\}\right] \\
& \leq \epsilon^{2} \mathbb{E}\left[Y^{2} 1\left\{f^{2}(\epsilon Y)>\eta_{1}\right\}\right. \\
& \leq \epsilon^{2} \mathbb{E}\left[Y^{2} 1\left\{Y^{2}>c_{1}\right\}\right] \\
& \leq \epsilon^{2} \mathbb{E}\left[2\left(\epsilon^{2}+Z^{2}\right) 1\left\{\epsilon^{2}+Z^{2}>c_{1} / 2\right\}\right. \\
& \leq 2 \epsilon^{2}\left(\epsilon^{2}+\mathbb{E}\left[Z^{2} 1\left\{Z^{2}>c_{1} / 4\right\}\right] \text { assuming } \epsilon^{2}<c_{1} / 4\right. \\
& \leq \frac{c \epsilon^{2}}{4 \log 2} \tag{1.4}
\end{align*}
$$

where in the last step we selected c_{1} so large and ϵ_{0} so small that $\epsilon^{2}+\mathbb{E}\left[Z^{2} 1\left\{Z^{2}>c_{1} / 4\right\}\right]<$ $c_{1} /(8 \log 2)$.

Now let $F=1\left\{(1-2 \Delta)^{2}>\eta_{1}\right\}$. We have

$$
\begin{align*}
I(X ; U) & \leq I(X ; U, F)=I(X ; U \mid F) \\
& =\mathbb{P}[F=0] I(X ; U \mid F=0)+\mathbb{P}[F=1] I(X ; U \mid F=1) \\
& \leq \eta_{1} \mathbb{P}[F=0] I(Y ; U \mid F=0)+\mathbb{P}[F=1] I(X ; Y \mid F=1) \tag{1.5}\\
& \leq \eta_{1} I(Y ; U \mid F)+\log 2 \mathbb{E}\left[(1-2 \Delta)^{2} 1\{F=1\}\right] \tag{1.6}\\
& \leq \eta_{1} I(Y ; U)+\frac{c \epsilon^{2}}{4} \tag{1.7}
\end{align*}
$$

[^1]where in (1.5) we applied BSC Post-SDPI conditioned on $\Delta=\delta$ and noted that under $F=0$ the $\eta_{K L}^{(\text {post })} \leq \eta_{1}$, in (1.6) we applied Theorem 3, and in (1.7) we noted that $I(Y, F ; U)=I(Y ; U)$ and invoked our estimate (1.4). In all we see from (1.7) that if $I(X ; U)>c \epsilon^{2}$ then $I(U ; Y) \geq \frac{3}{4} \frac{c \epsilon^{2}}{\eta_{1}} \triangleq c^{\prime}$, as required.

To prove the second part, consider an expansion

$$
c \varepsilon^{2} d \leq I\left(U ; X^{d}\right)=\sum_{i=1}^{d} I\left(U ; X_{i} \mid X^{i-1}\right)
$$

Note that $I\left(U ; X_{i} \mid X^{i-1}\right) \leq I\left(X_{i} ; Y_{i}\right) \leq \frac{1}{2} \log \left(1+\varepsilon^{2}\right) \leq \frac{\varepsilon^{2}}{2}$. Hence, we must have

$$
\left|\left\{i: I\left(U ; X_{i} \mid X^{i-1}\right) \geq c \varepsilon^{2} / 2\right\}\right| \geq c d
$$

Now for every such i we can apply the first part of the lemma which guarantees then $I\left(U ; Y_{i} \mid X^{i-1}\right) \geq$ c^{\prime}. Thus, also $I\left(U ; Y_{i} \mid Y^{i-1}\right) \geq c^{\prime}$. And hence, we should have

$$
I\left(U ; Y^{d}\right)=\sum_{i} I\left(U ; Y_{i} \mid Y^{i-1}\right) \geq c^{\prime} \cdot(c d) .
$$

General d proof. To see how Lemma implies the result, let again $\theta \sim \mathcal{U}\left(\{-\varepsilon, \varepsilon\}^{d}\right)$ with $\varepsilon=c \sqrt{\frac{\sigma^{2}}{m}}$ for some fixed (sufficiently small) $c>0$. Then the estimator $\hat{\theta}$ with risk $\leq c_{1} \frac{m d}{\sigma^{2}}$, where $c_{1}=c_{1}(c)$ also sufficiently small, can be converted into an estimator of θ within expected Hamming distance $\leq d / 2$. This in turn implies $I(\theta ; \hat{\theta}) \geq c_{3} d$.

Now notice that $I\left(\theta ; U_{i}\right) \leq I\left(\theta ; X_{i}\right)=d I\left(\theta_{1} ; X_{i, 1}\right)$. Note that the $\theta_{1} \mapsto X_{i, 1}$ is a BIAWGN ${ }_{\epsilon}$ channel with $\epsilon=\frac{\varepsilon}{\sigma}$. So we have $I\left(\theta_{1} ; X_{i, 1}\right) \leq \frac{1}{2} \log \left(1+\varepsilon^{2} / \sigma^{2}\right) \leq \frac{\varepsilon^{2}}{2 \sigma^{2}}=\frac{c^{2}}{2 m}$. So we have $I\left(\theta ; U_{i}\right) \leq \frac{c^{2} d}{2 m}$. But the total sum $\sum_{i} I\left(\theta ; U_{i}\right) \geq c_{3} d$. Therefore, we should have This implies that for some $c_{4}>0$ we must have

$$
\left|\left\{i \in[m]: I\left(\theta ; U_{i}\right)>c_{3} \frac{d}{2 m}\right\}\right| \geq c_{4} m
$$

For each such i, we apply the second part of Lemma to get $I\left(X_{i} ; U_{i}\right)>c_{3}^{\prime} d$ which implies

$$
\sum_{i} \log \left|\mathcal{U}_{i}\right| \geq \sum_{i} I\left(X_{i} ; U_{i}\right) \geq\left(c_{3}^{\prime} d\right) \cdot\left(c_{4} m\right) \asymp d m
$$

References

[Bra+16] Mark Braverman, Ankit Garg, Tengyu Ma, Huy L Nguyen, and David P Woodruff. "Communication lower bounds for statistical estimation problems via a distributed data processing inequality". In: Proceedings of the forty-eighth annual ACM symposium on Theory of Computing. ACM. 2016, pp. 1011-1020.
[Duc+14] John C Duchi, Michael I Jordan, Martin J Wainwright, and Yuchen Zhang. "Optimality guarantees for distributed statistical estimation". In: arXiv preprint arXiv:1405.0782 (2014).
[EG19] Krishnan Eswaran and Michael Gastpar. "Remote source coding under Gaussian noise: Dueling roles of power and entropy power". In: IEEE Transactions on Information Theory (2019).
[Had+19] Uri Hadar, Jingbo Liu, Yury Polyanskiy, and Ofer Shayevitz. "Communication complexity of estimating correlations". In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing. ACM. 2019, pp. 792-803.
[PW17] Yury Polyanskiy and Yihong Wu. "Strong Data-Processing Inequalities for Channels and Bayesian Networks". In: Convexity and Concentration. Ed. by Eric Carlen, Mokshay Madiman, and Elisabeth M. Werner. New York, NY: Springer New York, 2017, pp. 211249. ISBN: 978-1-4939-7005-6.

[^0]: ${ }^{1}$ This requires some technical justification about smoothness of fisher information $I_{F}(\rho)$.

[^1]: ${ }^{2}$ Note: If we had $\eta_{K L}^{(p)}\left(\operatorname{BIAWGN}_{\epsilon}\right) \leq c_{1} \epsilon^{2}$, then the statement would follow with $c^{\prime}=\frac{c}{c_{1}}$. However, we do not yet know what is $\eta_{K L}^{(p)}$ for the BIAWGN.

