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1 Strong Data Processing Inequality and Distributed Estimation

1.1 More on Strong Data Processing Inequalities

Proposition 1 (Tensorisation). For a given number n, two measures PX and PY |X , the following
tensorisation holds

ηKL(P⊗nX , P⊗nY |X) = ηKL(PX , PY |X)

In particular, if (Xi, Yi)
i.i.d.∼ PX,Y , then ∀PU |Xn then

I(U ;Y n) ≤ ηKL(PX , PY |X)× I(U ;Xn)

Proof. Without loss of generality (by induction) it is sufficient to prove the proposition for n = 2. It
is always useful to keep in mind the following diagram

U

X1

X2

Y1

Y2

Let η = ηKL(PX , PY |X)

I(U ;Y1, Y2) = I(U ;Y1) + I(U ;Y2|Y1)

≤ η
[
I(U ;X1) + I(U ;X2|Y1)

]
(1.1)

= η
[
I(U ;X1) + I(U ;X2|X1) + I(U ;X1|Y1)− I(U ;X1|Y1, X2)

]
(1.2)

≤ η
[
I(U ;X1) + I(U ;X2|Y1)

]
(1.3)

= ηI(U ;X1, X2)

Where 1.1 is due to the fact that conditioned on Y1, U −X2 − Y2 is still a Markov chain, 1.2 is
because U −X1 − Y1 is a Markov chain and 1.3 follows from the fact that X2 −U −X1 is a Markov
chain even when condition Y1.

This tensorisation property can be used for correlation estimation. Suppose Alice have samples

{Xi}i≥1
i.i.d.∼ B(1/2) and Bob have samples {Yi}i≥1

i.i.d.∼ B(1/2) such that the (Xi, Yi) are i.i.d. with
E[XiYi] = ρ ∈ [−1, 1]. The goal is for Bob to send W to Alice with H(W ) = B bits and for Alice to
estimate ρ̂ = ρ̂(X∞,W ) with objective

R∗(B) = inf
W,ρ̂

sup
ρ

E[(ρ− ρ̂)2]

Notice that if Bob sends W = (Y1, . . . , YB) then the optimal estimator is ρ̂(X∞,W ) = 1
n

∑B
i=1XiYi

which has error 1
B , hence R∗(B) ≤ 1

B .

Theorem 1. The optimal rate when B →∞ is given by

R∗(X∞,W ) =
1 + o(1)

2 ln 2
· 1

B
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Proof. Fix PW |Y∞ , we get the following decomposition

W

X1

Xi

Y1

Yi

...
...

...
...

Note that once the messages W are fixed we have a parameter estimation problem {Qρ, ρ ∈
[−1, 1]} where Qρ is a distribution of (X∞,W ) when A∞, B∞ are ρ-correlated. Since we minimize
MMSE, we know from the Bayesian Cramer-Rao lower bound (van Trees inequality)1 that R∗(B) ≥

1+o(1)
minρ IF (ρ) ≥

1+o(1)
IF (0) where IF (ρ) is the Fisher Information of the family {Qρ}.

Recall, that we also know from the local approximation that

D(Qρ‖Q0) =
ρ2

2 ln(2)
IF (0) + o(ρ2)

Furthermore, notice that under ρ = 0 we have X∞ and W independent and thus

D(Qρ‖Q0) = D(P ρX∞,W ‖P
0
X∞,W )

= D(P ρX∞,W ‖P
ρ
X∞ × P ρW )

= I(W ;X∞)

≤ ρ2I(W ;Y∞)

≤ ρ2B

hence IF (0) ≤ 2 ln 2B + o(1) which in turns implies the theorem. For full details, the upper bound
and the extension to interactive communication between Alice and Bob see [Had+19].

1.2 Post Strong Data Processing Inequality (Post-SDPI)

Definition 1. Given a conditional measure PY |X , define

η
(p)
KL(PY |X) = sup

PX ,PU|Y

{
I(U ;X)

I(U ;Y )
: X → Y → U

}
= sup

PX

ηKL(PY , PX|Y )

where PY (·) = PX × PY |X(X , ·).

It is easy to see that by the data processing inequality, η
(p)
KL(PY |X) ≤ 1. This bound can be

achieved with equality in some non trivial cases, in example let PY |X = BECτ and X → Y → U be
given by

X Y U

1 1 1

?

0 0 0

ε

ε̄

τ̄

τ̄

τ

τ

1This requires some technical justification about smoothness of fisher information IF (ρ).
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Then we can compute I(Y ;U) = H(U) = h(ετ̄) and I(X;U) = H(U)−H(U |X) = h(ετ̄)− εh(τ)
hence

η
(p)
KL(PY |X) ≥ I(X;U)

I(Y ;U)

= 1− h(τ)
ε

h(ετ̄)

This last term tends to 1 when ε tends to 0 hence

η
(p)
KL(BECτ ) = 1

even though Y is not a one to one function of X.

The second bad news is that by taking ε = 1
2 , we have that η

(p)
KL(Unif,BECτ ) > 1− τ for τ → 1.

Thus, the natural conjecture that for any BMS we should have η
(p)
KL(Unif,BMS) = ηKL(BMS) is

incorrect.
Nevertheless, the post-SDPI constant is often non-trivial, most importantly for the BSC:

Theorem 2.

η
(p)
KL(BSCδ) = (1− 2δ)2

to prove the theorem, the following lemma is of help.

Lemma 1. If for any X and Y in {0, 1} we have

pX,Y (x, y) = f(x)

(
δ

1− δ

)1(x 6=y)

g(Y )

for some functions f and g, then ηKL(PY |X) ≤ (1− 2δ)2

Proof. It is known that for binary input chanels PY |X [PW17].

ηKL(PY |X) ≤ H2(PY |X=0‖PY |X=1)−
H4(PY |X=0‖PY |X=1)

4

If we let φ = g(0)
g(1) , then we have pY |X=0 = B

(
λ

φ+λ

)
and pY |X=1 = B

(
1

1+φλ

)
and a simple check

shows that

max
φ

H2(PY |X=0‖PY |X=1)−
H4(PY |X=0‖PY |X=1)

4

φ=1
= H2

φ=1(PY |X=0‖PY |X=1)−
H4
φ=1(PY |X=0‖PY |X=1)

4

= (1− 2δ)2

Now observe that PX,Y in Theorem 2 satisfies the property of the lemma with X and Y exchanged,

hence ηKL(PY , PX|Y ) ≤ (1−2δ)2 which implies that η
(p)
KL(PY |X) = supPX ηKL(PY , PX|Y ) ≤ (1−2δ)2

with equality if PX is uniform.

Theorem 3. Let PY |X = BMS, then for any X → Y → U

I(X;U) ≤ ηKL(PY |X) · log |U|

where recall that ηKL(PY |X) = Iχ2(X;Y ) when X ∼ Bern(1/2).
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Proof. Every BMS channel is a mixture of BSCs, it can be represented as follow, let (0, 1) 3 ∆ ∼ P∆

independently of X, PỸ |X,∆ = BSC∆ and let Y = (Ỹ ,∆). Then

I(X;U) ≤ I(X;U,∆)

= I(X;U |∆)

= E∆[I(X;U |∆ = ∆)]

≤ E∆[(1− 2∆2)I(Y ;U |∆ = ∆)]

≤ E∆[(1− 2∆2) log |U|]
= ηKL(PY |X) · log |U|

1.3 Distributed Mean Estimation

We want to estimate θ ∈ [−1, 1]d and we have m machines observing Xi = θ+σZi where Zi ∼ N (0, Id)
independently. They can send a total of B bits to a remote estimator. The goal of the estimator is
to minimize supθ E[‖θ − θ̂‖2] over θ̂. If we denote by Ui ∈ Ui the messages then

∑
i |Ui| ≤ B then

the diagram is

θ

X1

...

Xm

U1

...

Um

θ̂

Finally, let

R∗(m, d, σ2, B) = inf
U1,...,Um,θ̂

sup
θ

E[‖θ − θ̂‖2]

Observations:

• Without constraint on the magnitude of θ ∈ [−1, 1]d, we could give θ ∼ N (0, bId) and from
rate-distortion quickly conclude that estimating θ within risk R requires communicating at
least d

2 log bd
R bits, which diverges as b→∞. Thus, restricting the magnitude of θ is necessary

in order to be able to estimate it with finitely many bits communicated.

• It is easy to esstablish that R∗(m, d, σ2,∞) = E
[∥∥ σ

m

∑
i Zi
∥∥2
]

= dσ2

m by taking Ui = Xi and

θ̂ = 1
m

∑
i Ui.

• In order to approach the risk of order dσ2

m we could do the following. Let Ui = sign(Xi)
(coordinate-wise sign). This yields B = md and it is easy to show that the achievable risk is

O(dσ
2

m ).

• Our main result is that this is optimal. This simplifies the proofs (in the non-interactive case)
of [Duc+14]; [Bra+16].

• We want to point out, however, that all of these results (again in the non-interactive case, but
with essentially sharp constants) are contained in the long line of work in the information
theoretic literature on the so-called Gaussian CEO problem. We recommend consulting [EG19].
In particular, Theorem 3 there implies the B & dm lower bound. The Gaussian CEO work
uses a lot more sophisticated machinery (the entropy power inequality and related results).
The advantage of our SDPI proof is simplicity.
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Theorem 4. There exists a c1, c2 > 0 such that for all m, d, σ2 if R∗(m, d, σ2, B) ≤ c1
σ2d
m then

B ≥ c2dm.

Proof. for d = 1, if we have θ̂ with risk E[(θ − θ̂)2] ≤ c · σ
2

m for all θ ∈ [−1, 1] then picking

θ ∼ U({−ε, ε}) we get that if ε &
√

σ2

m then I(θ; θ̂) & 1, now

I(θ; θ̂) ≤ I(θ;Um) ≤
m∑
i=1

I(θ;Ui) ≤
m∑
i=1

ε2

σ2
log |Ui|

since ηKL(PXi|θ) = ε2

σ2 . Hence I(θ; θ̂) ≤ ε2

σ2 ·B. Hence if ε .
√
c · σ2

m then B & m

This proof does not extend to the d-dimensional case because the variant of the post-SDPI in
Theorem 3 does not tensorize. So we need a more refined version.

Lemma 2 (restricted post-SDPI for the BIAWGN channel). if X = ±1 uniformly and Y = εX +Z
with Z ∼ N (0, 1). Then for all c > 0, there exist c′ > 0 such that for all ε ≤ ε0(c), and all PU |Y we
have2

I(U ;X) ≥ c · ε2 ⇒ I(U ;Y ) ≥ c′

where X → Y → U .
Furthermore, we have tensorization: Let Xd = (±1)d uniformly and Y d = εXd + Zd with

Zd ∼ N (0, Id). Then for all c > 0, there exist c′ > 0 such that for all ε ≤ ε0(c), and all PU |Y d we
have

I(U ;Y d) ≥ cdε2 =⇒ I(U ;Xd) ≥ c′d .
where Xd → Y d → U .

Proof. The proof of the first part is as follows. Let us represent the channel as a mixture of BSC
with the output (Ỹ ,∆), Ỹ = BSC∆(X). The relation between Y and ∆ is ∆(Y ) = 1

1+e2|Y |ε . Thus,
we have

(1− 2∆)2 = f2(εY ), f(x) =
ex − e−x

ex + e−x
= tanh(x) .

Note that |f(x)| ≤ x. Fix η1 = c1ε
2 with c1 > 1 to be specified. We have

E[(1− 2∆)21{(1− 2∆)2 > η1}] = E[f2(εY )1{f2(εY ) > η1}]
≤ ε2E[Y 21{f2(εY ) > η1}
≤ ε2E[Y 21{Y 2 > c1}]
≤ ε2E[2(ε2 + Z2)1{ε2 + Z2 > c1/2}
≤ 2ε2(ε2 + E[Z21{Z2 > c1/4}] assuming ε2 < c1/4

≤ cε2

4 log 2
, (1.4)

where in the last step we selected c1 so large and ε0 so small that ε2 + E[Z21{Z2 > c1/4}] <
c1/(8 log 2).

Now let F = 1{(1− 2∆)2 > η1}. We have

I(X;U) ≤ I(X;U,F ) = I(X;U |F )

= P[F = 0]I(X;U |F = 0) + P[F = 1]I(X;U |F = 1)

≤ η1P[F = 0]I(Y ;U |F = 0) + P[F = 1]I(X;Y |F = 1) (1.5)

≤ η1I(Y ;U |F ) + log 2E[(1− 2∆)21{F = 1}] (1.6)

≤ η1I(Y ;U) +
cε2

4
(1.7)

2Note: If we had η
(p)
KL(BIAWGNε) ≤ c1ε2, then the statement would follow with c′ = c

c1
. However, we do not yet

know what is η
(p)
KL for the BIAWGN.
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where in (1.5) we applied BSC Post-SDPI conditioned on ∆ = δ and noted that under F = 0 the

η
(post)
KL ≤ η1, in (1.6) we applied Theorem 3, and in (1.7) we noted that I(Y, F ;U) = I(Y ;U) and

invoked our estimate (1.4). In all we see from (1.7) that if I(X;U) > cε2 then I(U ;Y ) ≥ 3
4
cε2

η1
, c′,

as required.
To prove the second part, consider an expansion

cε2d ≤ I(U ;Xd) =

d∑
i=1

I(U ;Xi|Xi−1) .

Note that I(U ;Xi|Xi−1) ≤ I(Xi;Yi) ≤ 1
2 log(1 + ε2) ≤ ε2

2 . Hence, we must have

|{i : I(U ;Xi|Xi−1) ≥ cε2/2}| ≥ cd .

Now for every such i we can apply the first part of the lemma which guarantees then I(U ;Yi|Xi−1) ≥
c′. Thus, also I(U ;Yi|Y i−1) ≥ c′. And hence, we should have

I(U ;Y d) =
∑
i

I(U ;Yi|Y i−1) ≥ c′ · (cd) .

General d proof. To see how Lemma implies the result, let again θ ∼ U({−ε, ε}d) with ε = c
√

σ2

m

for some fixed (sufficiently small) c > 0. Then the estimator θ̂ with risk ≤ c1mdσ2 , where c1 = c1(c)
also sufficiently small, can be converted into an estimator of θ within expected Hamming distance
≤ d/2. This in turn implies I(θ; θ̂) ≥ c3d.

Now notice that I(θ;Ui) ≤ I(θ;Xi) = dI(θ1;Xi,1). Note that the θ1 7→ Xi,1 is a BIAWGNε

channel with ε = ε
σ . So we have I(θ1;Xi,1) ≤ 1

2 log(1+ε2/σ2) ≤ ε2

2σ2 = c2

2m . So we have I(θ;Ui) ≤ c2d
2m .

But the total sum
∑
i I(θ;Ui) ≥ c3d. Therefore, we should have This implies that for some c4 > 0

we must have

|{i ∈ [m] : I(θ;Ui) > c3
d

2m
}| ≥ c4m

For each such i, we apply the second part of Lemma to get I(Xi;Ui) > c′3d which implies∑
i

log |Ui| ≥
∑
i

I(Xi;Ui) ≥ (c′3d) · (c4m) � dm .
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