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1 STRONG DATA PROCESSING INEQUALITY AND DISTRIBUTED ESTIMATION

1.1 More on Strong Data Processing Inequalities

Proposition 1 (Tensorisation). For a given number n, two measures Px and Py|x, the following
tensorisation holds

nxr(PE", P{?&) = nkL(Px, Py|x)
In particular, if (Xi,Yi)i'fisl'PXy, then Y Py xn then
I(U;Y"™) <nku(Px, Pyx) x I(U; X™)

Proof. Without loss of generality (by induction) it is sufficient to prove the proposition for n = 2. It
is always useful to keep in mind the following diagram

X1

/ Y
U\
Xo—Y,

Let n = nkL(Px, Py|x)

I(U;Y1,Ys) = I(U; Y1) + I(U; Yz Y1)

<n[I(U; X1) + 1(U; X2|Y1)] (1.1)
< [I(U; X1) + I(U; Xo|Y1)] (1.3)

=nI(U; X1, X7)

Where 1.1 is due to the fact that conditioned on Y7, U — X5 — Y5 is still a Markov chain, 1.2 is
because U — X7 — Y7 is a Markov chain and 1.3 follows from the fact that Xo — U — X; is a Markov
chain even when condition Y. O

This tensorisation property can be used for correlation estimation. Suppose Alice have samples
{X;}i>1"~"B(1/2) and Bob have samples {Y;};>1'~ B(1/2) such that the (X;,Y;) are i.i.d. with
E[X,Y;] = p € [-1,1]. The goal is for Bob to send W to Alice with H(W) = B bits and for Alice to
estimate p = p(X >, W) with objective

R*(B) = jut supEl(p — )’

Notice that if Bob sends W = (Y1,...,Y) then the optimal estimator is p(X>°, W) = 1 Zil X.Y;

which has error &, hence R*(B) < +.

Theorem 1. The optimal rate when B — oo is given by

R (x>, W) = L +o(l) 1
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Proof. Fix Py |y, we get the following decomposition

X1

Y

Note that once the messages W are fixed we have a parameter estimation problem {Q,,p €
[—1,1]} where Q, is a distribution of (X°°, W) when A>, B> are p-correlated. Since we minimize
MMSE, we know from the Bayesian Cramer-Rao lower bound (van Trees inequality)! that R*(B) >
miln”:‘}(;zp) > 11-; %1)) where Ir(p) is the Fisher Information of the family {Q,}.

Recall, that we also know from the local approximation that

2

D(@lIQ0) = 7T (0) +0(47)

Furthermore, notice that under p = 0 we have X*° and W independent and thus
D(Q,lQo) = D(Pyw | PRoe w)
— D(P§ yy | P x PY)
=I(W; X*)
< pPPI(W;Y)
<p’B

hence Ir(0) < 21n2B + o(1) which in turns implies the theorem. For full details, the upper bound
and the extension to interactive communication between Alice and Bob see [Had+19]. O

1.2 Post Strong Data Processing Inequality (Post-SDPT)
Definition 1. Given a conditional measure Py x, define

(p) 1U; X)
et (P = sup { X —=>Y U
KL( YlX) Px,Py|y I(L ;Y )

= sup kL (Py, Px|y)

Px
where Py() = Px X Py|X(X, )
It is easy to see that by the data processing inequality, ngﬁ(Pw x) < 1. This bound can be

achieved with equality in some non trivial cases, in example let Py |X = BEC, and X - Y — U be
given by

X Y U

g0 L 0 0
\/

e 1 T 1 1

I This requires some technical justification about smoothness of fisher information I (p).



Then we can compute [(Y;U) = H(U) = h(eT) and I(X;U) = H({U) — H{U|X) = h(eT) —eh(r)
hence

nI(?E(PYlX) 2 _I,(();: gg
=1- h(T)h(;)

This last term tends to 1 when € tends to 0 hence
W) (BEC,) = 1

even though Y is not a one to one function of X.
The second bad news is that by taking ¢ = %, we have that nI(fg(Unif, BEC,)>1—r71for 7 — 1.

Thus, the natural conjecture that for any BMS we should have nI(fIZ(Unif,BMS) = nk(BMS) is
tncorrect.
Nevertheless, the post-SDPI constant is often non-trivial, most importantly for the BSC:

Theorem 2.
P (BSCy) = (1 — 26)?
to prove the theorem, the following lemma is of help.

Lemma 1. If for any X and Y in {0,1} we have

5 L(z#y)
pxy(z,y) = f(2) <1_5) g9(Y)
for some functions f and g, then nxyL(Py|x) < (1 — 26)?2
Proof. Tt is known that for binary input chanels Py x [PW17].

H*(Py|x—o|Pyix=1)
4

nkL(Py|x) < H*(Py|x—ollPy|x=1) —

If we let ¢ = 900 “then we have Py|x=0 = B (ﬁ) and py|x—1 = B (ﬁ) and a simple check

g(1)°
shows that

H*(Py|x—ol Py|x=1) Hj_\(Pyix=ollPy|x=1)

p=1
= H;_,(Py|xollPyx=1) —

= (1—-20)°

IngXHZ(Py\X:OHPY|X:1) -

4 4

Now observe that Px y in Theorem 2 satisfies the property of the lemma with X and Y exchanged,
hence it (Py, Px|y) < (1—26)2 which implies that ni) (Py|x) = supp, nkr.(Py, Pxjy) < (1—26)?
with equality if Px is uniform. O

Theorem 3. Let Py x = BMS, then for any X =Y — U
I(X;U) < nxuL(Pyx) - log [U]

where recall that nxy(Py|x) = I,2(X;Y) when X ~ Bern(1/2).



Proof. Every BMS channel is a mixture of BSCs, it can be represented as follow, let (0,1) > A ~ Pa
independently of X, PY\X,A =BSCa and let Y = (Y, A). Then

1.3

I(X:U) < I(X;U,A)
= I(X;U|A)
=EA[I(X;U|A = A)]
< EA[(1—-2A%I(Y;U|A = A)]
< Ea[(1—-2A%) log |U]
= nkL(Py|x) - log |U|

Distributed Mean Estimation

We want to estimate # € [—1,1]¢ and we have m machines observing X; = 0+0Z; where Z; ~ N(0, ;)
independently. They can send a total of B bits to a remote estimator. The goal of the estimator is
to minimize sup, E[||6 — 4]|?] over §. If we denote by U; € U; the messages then Y, [t4;| < B then
the diagram is

X1

U,

S

Xm—>Um

Finally, let

R*(m,d,0%, B)= inf supE[|6 —0|?
UtooiUm 0 6

Observations:

Without constraint on the magnitude of € [—1,1]¢, we could give § ~ N(0,bl;) and from
rate-distortion quickly conclude that estimating € within risk R requires communicating at
least %log % bits, which diverges as b — co. Thus, restricting the magnitude of 6 is necessary
in order to be able to estimate it with finitely many bits communicated.

It is easy to esstablish that R*(m,d, 02, 00) = E [H% > ZZ-HZ} = % by taking U; = X; and
b= w2 Ui

In order to approach the risk of order % we could do the following. Let U; = sign(Xj;)
(coordinate-wise sign). This yields B = md and it is easy to show that the achievable risk is
O(%).

Our main result is that this is optimal. This simplifies the proofs (in the non-interactive case)
of [Duc+14]; [Bra+16].

We want to point out, however, that all of these results (again in the non-interactive case, but
with essentially sharp constants) are contained in the long line of work in the information
theoretic literature on the so-called Gaussian CEO problem. We recommend consulting [EG19).
In particular, Theorem 3 there implies the B 2 dm lower bound. The Gaussian CEO work
uses a lot more sophisticated machinery (the entropy power inequality and related results).
The advantage of our SDPI proof is simplicity.



Theorem 4. There exists a c1,co > 0 such that for all m,d,o* if R*(m,d,o? B) < e d then
B > codm.

Proof. for d = 1, if we have § with risk E[(§ — 0)?] < ¢- "% for all @ € [—1,1] then picking
U({—e,e}) we get that if ¢ > 1/%2 then 1(6;6) > 1, now

m m 2
. 5
1(6;0) < I(6;U™) _E (0;U;) < 2_1 =) log [U;
since nkr(Px,|6) = ;—22 Hence 1(6;6) < fj—z -B. Hence if ¢ < 4/c- ‘7’—5 then B 2 m O

This proof does not extend to the d-dimensional case because the variant of the post-SDPI in
Theorem 3 does not tensorize. So we need a more refined version.

Lemma 2 (restricted post-SDPI for the BIAWGN channel). if X = £1 uniformly andY =eX +Z
with Z ~ N(0,1). Then for all ¢ > 0, there exist ¢ > 0 such that for all € < eq(c), and all Pyy we
have?

IU;X)>c- 2= 1(U;Y) > ¢

where X - Y — U.

Furthermore, we have tensorization: Let X% = (£1)* uniformly and Y?¢ = ¢X¢ 4+ Z¢ with
Z% ~ N(0,14). Then for all ¢ > 0, there exist ¢ > 0 such that for all e < eo(c), and all Pypya we
have

IU; Y > cde? = I(U; X%) > dd.
where X4 Y9 = U.

Proof. The proof of the first part is as follows. Let us represent the channel as a mixture of BSC

with the output (Y, A), ¥ = BSCa(X). The relation between Y and A is A(Y) = ﬁ Thus,
we have
PNy _e-er
(1 =2A)° = f2(eY), f(=x) pr— tanh(z) .
Note that |f(z)| < z. Fix 1 = c1€* with ¢; > 1 to be specified. We have
E[(1-2A)"1{(1 - 24)* > m}] = E[fQ(GY)l{fZ(EY) > m}]
E[Y?1{f*(eY) > m}
IE[Y HY? > ¢1}]
< 62]E[2(6 + ZOU{E + 2% > ¢1/2}
< 26*(e? + E[Z*1{Z? > ¢1/4}] assuming € < ¢; /4
< (1.4)
~ 4log2’ '
where in the last step we selected c; so large and €y so small that €2 + E[Z21{Z? > ¢1/4}] <
c1/(8log2).
Now let F' = 1{(1 — 2A)? > n;}. We have
I(X;U) < I(X;U,F) = I(X;U|F)
= P[F = 0/[(X;U|F = 0) + P[F = 1][(X;U|F = 1)
< mP[F = 0[I(Y;U|F = 0) + P[F = 1]I(X;Y|F = 1)
<mI(Y;U|F) +1log2E[(1 — 2A)*1{F = 1}] (1.6)
2
<mI(Y:U)+ % (1.7)

2Note: If we had n(p) (BIAWGN,) < c1€2, then the statement would follow with ¢/ = i However, we do not yet
know what is nﬁf)L for the BIAWGN.



where in (1.5) we applied BSC Post-SDPI conditioned on A = § and noted that under F' = 0 the
n}figt) <, in (1.6) we applied Theorem 3, and in (1.7) we noted that I(Y, F;U) = I(Y;U) and
invoked our estimate (1.4). In all we see from (1.7) that if I(X;U) > ce? then I(U;Y) > %C;—f £ ¢
as required.

To prove the second part, consider an expansion

7

d
c?d < I(U; X4 = I(U; XX
i=1

Note that I(U; X;|X*71) < I(X;;Y;) < 2 log(1 +&?) < % Hence, we must have
i« T(U; X4 XY > ee?/2} > cd.

Now for every such i we can apply the first part of the lemma which guarantees then I(U;Y;|X¢~1) >
¢’. Thus, also I(U;Y;|Y*™1) > ¢/. And hence, we should have

U YY) =Y I(U; YY) > ¢ - (cd).

3

O

General d proof. To see how Lemma implies the result, let again 6 ~ U ({—¢,e}?) with ¢ = c\/%
for some fixed (sufficiently small) ¢ > 0. Then the estimator § with risk < e where ¢; = ¢1(c)
also sufficiently small, can be converted into an estimator of § within expected Hamming distance
< d/2. This in turn implies 1(6;6) > csd.

Now notice that I(0;U;) < I(0; X;) = dI(61;X;1). Note that the §; — X, 1 is a BIAWGN,
channel with e = £. So we have I(61; X;1) < 3log(1+¢2?/0?) < % = % So we have I(0;U;) < ;%‘f.

But the total sum >, 1(6;U;) > c3d. Therefore, we should have This implies that for some ¢4 > 0
we must have

. d
i€ [m]: 1(0;U;) > CS%H > cam

For each such 4, we apply the second part of Lemma to get I(X;;U;) > chd which implies

> loglths] > > I(Xi;U;) > (chd) - (cam) < dm.
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