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1 Strong Data Processing Inequality and Applications II

1.1 Input Dependent Contraction Coefficient

Previously we have defined contraction coefficient ηf (PY |X), as the maximum contraction of an
f -divergences over all channel input distributions. We now define an analogous concept for a specific
input distribution PX .

Definition 1 (Input Dependent Contraction Coefficient). For any input distribution PX , Markov
kernel PY |X and convex function f , we define

ηf (PX , PY |X) , sup
QX :QX 6=PX

Df (QY ||PY )

Df (QX ||PX)

where QY = PY |XQX .

We refer to ηf (PX , PY |X) as the input dependent contraction coefficient, to contrast it with the
input independent contraction coefficient ηf (PY |X).
Remarks:

• As for ηKL(PY |X), we also have a corresponding mutual information characterization of
ηKL(PX , PY |X) as

ηKL(PX , PY |X) = sup
PU|X :U→X→Y

I(U ;Y )

I(U ;X)
.

• From the definition, the following inequality holds

ηf (PX , PY |X) ≤ ηf (PY |X).

• Although we have the equality ηKL(PY |X) = ηχ2(PY |X) when PY |X is a BMS channel, we do
not have the same equality for ηKL(PX , PY |X).

Example 1. (ηKL(PX , PY |X) for Erasure Channel) We define ECτ as the following channel,

Y =

{
X w.p. 1− τ
? w.p. τ.

Let us define an auxiliary random variable B = 1{Y =?}. Thus we have the following equality,

I(U ;Y ) = I(U ;Y,B) = I(U ;B)︸ ︷︷ ︸
0,B⊥⊥U

+I(U ;Y |B) = (1− τ)I(U ;X).

where the last equality is due to the fact that I(U ;Y |B = 1) = 0 and I(U ;Y |B = 0) = I(U ;X). By
the mutual information characterization of ηKL(PX , PY |X), we have ηKL(PX , ECτ ) = 1− τ .

The ηKL(PX , ECτ ) is an important quantity. Because in SDPI arguments, we frequently reduces
a model into erasure channels by channel degradation argument. As we will see in the subsequent
sections.
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1.2 Broadcasting on Trees

Consider an infinite b-ary tree G = (V, E). We assign a random variable Xv for each v ∈ V. These
random variables Xv’s are defined on the same alphabet X . In this model, the joint distribution
is induced by the distribution on the root vertex π, i.e., Xρ ∼ π, and the edge kernel PX′|X , i.e.
∀(p, c) ∈ E , PXc|Xp = PX′|X .
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To simplify our discussion, we will assume that π is a reversible measure on kernel PX′|X , i.e.,

PX′|X(a|b)π(b) = PX′|X(b|a)π(a).

By standard result on Markov chain, this also implies that π is a stationary distribution of the
reversed Markov kernel PX|X′ .
Remarks:

• We can think of this model as a broadcasting scenario, where the root broadcasts its message
Xρ to the leaves through noisy channels PX′|X .

• This model arises frequently in community detection, sparse codes and statistical physics.

• The joint distribution of this tree can be written as a Gibbs distribution

PXall =
1

Z
exp

 ∑
(p,c)∈E

f(Xp, Xc) +
∑
v∈V

g(Xv)


for a certain f, g, and Z. When X = {0, 1}, this model is equivalent to the Ising model.

We can define a corresponding inference problem, where we want to reconstruct the root variable
Xρ given the observations XLd = {Xv : v ∈ Ld}, with Ld = {v : v ∈ V,depth(v) = d}. A natural
question is to upper bound the performance of any inference algorithm on this problem. The
following theorem shows that there exists a phase transition depending on the branching factor b
and the contraction coefficient of the kernel PX′|X .

Theorem 1. Consider the broadcasting problem on infinite b-ary tree (b > 1), with root distribution
π and edge kernel PX′|X . If π is a reversible measure of PX′|X such that

ηKL(π, PX′|X)b < 1,

then I(Xρ;XLd)→ 0 as d→ 0.

Proof. For every v ∈ L1, we define the set Ld,v = {u : u ∈ Ld, v ∈ ancestor(u)}. We can upper
bound the mutual information between the root vertex and leaves at depth d

I(Xρ;XLd) ≤
∑
v∈L1

I(Xρ;XLd,v ).

2



For each term in the summation, we consider the Markov chain

XLd,v → Xv → Xρ.

Due to our assumption on π and PX′|X , we have PXρ|Xv = PX′|X and PXv = π. By the definition
of the contraction coefficient, we have

I(XLd,v ;Xρ) ≤ ηKL(π, PX′|X)I(XLd,v ;Xv).

Observe that because PXv = π and all edges have the same kernel, then I(XLd,v ;Xv) = I(XLd−1
;Xρ).

This gives us the inequality

I(Xρ;XLd) ≤ ηKL(π, PX′|X)bI(Xρ;XLd−1
),

which implies
I(Xρ;XLd) ≤ (ηKL(π, PX′|X)b)dH(Xρ).

Therefore if ηKL(π, PX′|X)b < 1 then I(Xρ;XLd)→ 0 exponentially fast as d→∞.

Remarks: Another version of this theorem for ηKL(PX′|X)b ≤ 1 is implied by the directed
information percolation theorem.

Example 2. (Broadcasting on BSC tree.) Consider a broadcasting problem on b-ary tree with vertex
alphabet X = {0, 1}, edge kernel PX′|X = BSCδ, and π = Unif . Note that uniform distribution
is a reversible measure for BSCδ. In the previous lecture, we calculated ηKL(BSCδ) = (1− 2δ)2.
Therefore, using theorem 1, we can deduce that if

b(1− 2δ)2 < 1

then no inference algorithm can recover the root nodes as depth of the tree goes to infinity. This
result is originally proved in [BRZ95].

Example 3 (k-coloring on tree). Given a b-ary tree, we assign a k-coloring Xvall by sampling
uniformly from the ensemble of all valid k-coloring. For this model, we can define a corresponding
inference problem, namely given all the colors of the leaves at a certain depth, i.e., XLd , determine
the color of the root node, i.e., Xρ.

This problem can be modeled as a broadcasting problem on tree where the root distribution π is
given by the uniform distribution on k colors, and the edge kernel PX′|X is defined as

PX′|X(a|b) =

{
1

k−1 a 6= b

0, a = b.

It has been shown in [GP19], that ηKL(Unif, PX′|X) = 1
k log k(1+o(1)) . By theorem 1, this implies

that if b < k log k(1 + o(1)) then reliable reconstruction of the root node is not possible. This result
is originally proved in [Sly09] and [Bha+11]

The other direction b > k log k(1 + o(1)) can be shown by observing that if b > k log k(1 + o(1))
then the probability of the children of a node taking all available colors is close to 1. Hence, an
inference algorithm can always determine the color of a node by finding a color that is not assigned to
any of its children. In this regime, this reconstruction algorithm will succeed with high probability.

1.3 Undirected Information Percolation

In this section we will study the problem of inference on undirected graph. Consider an undirected
graph G = (V, E). We assign a random variable Xv on the alphabet X to each vertex v. For each
e = (u, v) ∈ E , we assign Ye sampled according to the kernel PYe|Xe with Xe = (Xu, Xv). The goal
of this inference model is to determine the value of Xv’s given the value of Ye’s.
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Example 4 (Community Detection). In this model, we consider a complete graph with n vertices,
i.e. Kn, and the random variables Xv representing the membership of each vertex to one of the
m communities. We assume that Xv is sampled uniformly from [m] and independent of the other
vertices. The observation Yu,v is defined as

Yuv ∼

{
Ber(a/n) Xu = Xv

Ber(b/n) Xu 6= Xv.

Example 5 (Z2 Synchronization). For any graph G, we sample Xv uniformly from {−1,+1} and
Ye = BSCδ(XuXv).

Example 6 (Spiked Wigner Model). We consider the inference problem of determining the value
of vector (Xi)i∈[n] given the observation (Yij)i,j∈[n],i≤j . The Xi’s and Yij ’s are related by a linear
model

Yij =

√
λ

n
XiXj +Wij ,

where the value of Xi is sampled uniformly from {−1,+1} and Wij ∼ N(0, 1). This model can also
be written in matrix form as

Y = XXT

√
λ

n
+ W

where W is the Wigner matrix, hence the name of the model.
This problem can also be treated as a problem of inference on undirected graph. In this case,

the underlying graph is a complete graph, and we assign Xi to each vertex. Under this model, the
edge observations is given by Yij = BIAWGNλ/n(XiXj).

Although seemingly different, these problems share similar characteristics, namely:

• Xi’s are uniformly distributed,

• If we define an auxiliary random variable B = 1{Xu 6= Xv} for any edges e = (u, v), then the
following Markov chain holds

(Xu, Xv)→ B → Ye.

In other words, the observation on each edge only depends on whether the random variables
on its endpoints are similar.

We will refer to the problem which have this characteristics as the Special Case (S.C.). Due to S.C.,the
reconstructed Xv’s is symmetric up to any permutation on X . In the case of alphabet X = {−1,+1},
this implies that for any realization σ then PXall|Yall

(σ|b) = PXall|Yall
(−σ|b). Consequently, our

reconstruction metric also needs to accommodate this symmetry. For X = {−1,+1}, this leads to
the use of 1

n |
∑n
i=1XiX̂i| as our reconstruction metric.

Our main theorem for undirected inference problem can be seen as the analogue of the information
percolation theorem for DAG. However, instead of controlling the contraction coefficient, the
percolation probability is used to directly control the conditional mutual information between any
subsets of vertices in the graph.

Before stating our main theorem, we will need to define the corresponding percolation model for
inference on undirected graph. For any undirected graph G = (V, E) we define a percolation model
on this graph as follows :
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• Every edge e ∈ E is open with the probability ηKL(PYe|Xe), independent of the other edges,

• For any v ∈ V and S ⊂ V, we define the v ↔ S as the event that there exists an open path
from v to any vertex in S,

• For any S1, S2 ⊂ V, we define the function percu(S1, S2) as

percu(S1, S2) ,
∑
v∈S1

P (v ↔ S2).

Notice that this function is different from the percolation function for information percolation
in DAG. Most importantly, this function is not equivalent to the exact percolation probability.
Instead, it is an upper bound on the percolation probability by union bounding with respect to
S1. Hence, it is natural that this function is not symmetric, i.e. percu(S1, S2) 6= percu(S2, S1).

Theorem 2 (Undirected Information Percolation). Consider an inference problem on undirected
graph G = (V, E). For any S1, S2 ⊂ V, then

I(XS1
;XS2

|Y ) ≤ percu(S1, S2) log |X |.

The following theorem shows how the undirected information percolation concept allows us to
derive a converse result for spiked Wigner model.

Theorem 3. Consider the spiked Wigner model. If λ ≤ 1, then for any sequence of estimator
X̂n(Y ),

1

n
E


∣∣∣∣∣∣
n∑
i=1

XiX̂i

∣∣∣∣∣∣
→ 0

as n→∞.

Proof of Theorem 3. First of all, we observe that because spiked Wigner model fulfills the S.C.
condition, then there is an inherent symmetry of the solution up to a global flip. Without loss of
generality, we take X1 = 1 to break the symmetry.

Due to this choice, the optimal estimator for this problem is equal to

X̂j(y) = argmaxσ∈{−1,+1}PXj |Y,X1
(σ|y, 1).

In our case I(Xi;X1, Y ) = I(Xi;X1|Y ), as I(Xi;Y ) = 0 due to the symmetry up to a global
flip. In other words, it suffices to show that if I(Xi;X1|Y )→ 0 then no reliable reconstruction is
possible. Furthermore, by symmetry of the problem, for any i 6= 1 then I(Xi;X1|Y ) = I(X2;X1|Y ).

By using the undirected information percolation theorem, we have

I(X2;X1|Y ) ≤ percu({1}, {2})

in which the percolation model is defined on a complete graph with edge probability λ/n as
ηKL(BIAWGNλ/n) = λ

n (1 + o(1)). This percolation random graph is equivalent to the Erdős-Rényi
random graph with n vertices and λ/n edge probability, i.e., ER(n, λ/n). Using this observation,
the inequality can be rewritten as

I(X2;X1|Y ) ≤ P (Vertex 1 and 2 is connected on ER(n, λ/n)).

The largest components on ER(n, λ/n) contains O(n2/3) if λ ≤ 1. This implies that the probability
that two specific vertices are connected is o(1), hence I(X2;X1|Y )→ 0 as n→∞.

Remarks: This reduction changes the underlying structure of the graph. Instead of dealing with a
complete graph, the percolation problem is defined on an Erdős-Rényi random graph. Moreover, if
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ηKL is small enough, then the underlying percolation graph tends to have a locally tree-like structure.

Instead of proving theorem 2 in its full generality, we will prove the theorem under S.C. condition.
The main step of the proof utilizes the fact we can upper bound the mutual information of any
channel by its degraded channel. To this end, we will define the less noisy partial ordering on the
channels.

Definition 2 (Less Noisy Ordering). We define PY |X ≤LN PZ|X iff for every PU,X on the following
Markov chain

U X

Y

Z

we have I(U ;Y ) ≤ I(U ;Z).

Remarks: We also have the equivalent definition in terms of the divergence, namely PY |X ≤LN
PZ|X if and only if for all PX , QX we have D(QY ||PY ) ≤ D(QZ ||PZ).

Proposition 1. ηKL(PY |X) ≤ 1− τ if and only if PY |X ≤LN ECτ .

Proof. For ECτ we always have

I(U ;Z) = (1− τ)I(U ;X).

By the mutual information characterization of ηKL we have,

I(U ;Y ) ≤ (1− τ)I(U ;X).

Combining these two inequalities gives us

I(U ;Y ) ≤ I(U ;Z).

Remarks: This proposition gives us an intuitive interpretation of contraction coefficient as the
worst erasure channel that still dominates the channel.

Proposition 2. (Tensorization of Less Noisy Ordering) If for all i ∈ [n], PYi|Xi ≤LN PZi|Xi , then
PY1|X1

⊗ PY2|X2
≤LN PZ1|X1

⊗ PZ2|X2
. Note that P ⊗Q refers to the product channel of P and Q.

Proof. Consider the following Markov chain.

U

X1

X2

Y1

Z2

Z1

Y2
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It can be seen from the Markov chain that I(U ;Y1, Y2) ≤ I(U ;Y1, Z2) implies I(U ;Y1, Y2) ≤
I(U ;Z1, Z2). Consider the following inequalities,

I(U ;Y1, Y2) = I(U ;Y1) + I(U ;Y2|Y1)

≤ I(U ;Y1) + I(U ;Z2|Y1)

= I(U ;Y1, Z2).

Hence I(U ;Y1, Y2) ≤ I(U ;Y1, Z2) for any PX1,X2,U .

Theorem 4. Consider the problem of inference on undirected graph G = (V, E) with X1, ..., Xn are
not necessarily independent. If PYe|Xe ≤LN PZe|Xe , then for any S1, S2 ⊂ V and E ⊂ E

I(XS1
;YE |XS2

) ≤ I(XS1
;ZE |XS2

)

Proof. Consider the following Markov chain.

X1 X2 X3 X4

Y12 Y23 Y34

Z12 Z23 Z34

From our assumption and the tensorization property of less noisy ordering, we have PYE |XS1 ,XS2 ≤LN
PZE |XS1 ,XS2 . This implies that for σ as a valid realization of XS2

we will have

I(XS1
;YE |XS2

= σ) = I(XS1
, XS2

;YE |XS2
= σ) ≤ I(XS1

, XS2
;ZE |XS2

= σ) = I(XS1
;ZE |XS2

= σ).

As this inequality holds for all realization of XS2
, then the following inequality also holds

I(XS1
;YE |XS2

) ≤ I(XS1
;ZE |XS2

).

Using these results, we can give a proof for our main theorem under S.C. conditions.

Proof of Theorem 2. Under S.C. conditions, we have the following equalities for any i ∈ S1

I(Xi;XS2
|YE) = I(Xi;XS2

, YE) = I(Xi;YE |XS2
) (1.1)

where the first inequality is due to the fact BE ⊥⊥ Xi under S.C, and the second inequality is due to
Xi ⊥⊥ XS2 under S.C.

Due to our previous result, if ηKL(PYe|Xe) = 1−τ then PYe|Xe ≤LN PZe|Xe where PZe|Xe = ECτ .
By tensorization property, this ordering also holds for the channel PYE |XE , thus we have

I(Xi;YE |XS2
) ≤ I(Xj ;ZE |XS2

).

Let us define another auxiliary random variable D = 1{i ↔ S2}, namely it is the indicator that
there is an open path from i to S2. Notice that D is fully determined by ZE . By the same argument
as in (1.1), we have

I(Xi;ZE |XS2) = I(Xi;XS2 |ZE)

= I(Xi;XS2 |ZE , D)

= (1− P (i↔ S2)) I(Xi;XS2 |ZE , D = 0)︸ ︷︷ ︸
0

+P (i↔ S2) I(Xi;XS2
|ZE , D = 1)︸ ︷︷ ︸

≤log |X |

≤ P (i↔ S2) log |X |.

7



Summing over all the elements of S1 gives us

I(XS1 ;ZE |XS2) ≤
∑
i∈S1

I(Xi;ZE |XS2) ≤ log |X |
∑
i∈S1

P (i↔ S2) = percu(S1, S2) log |X |.
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