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1 Strong Data Processing Inequality and Applications

1.1 Motivation: Computing a boolean function with noisy gates

A boolean function with n inputs is defined as f : {0, 1}n → {0, 1}. Note that a boolean function
can be described as a network of primitive logic gates of the three following kinds:

a

b

a

b
aOR a ∨ b AND a ∧ b NOT a′

Side Note: In 1938, Shannon has found that any boolean function f can be represented with
primitive logic gates. [Sha38]

Now suppose there are additive noise components on the output of each primitive gate. In this
case, we have a network of the following noisy gates.

a

b
⊕

Z

Y
a

b
⊕

Z

Y a ⊕

Z

YOR AND NOT

Here, Z ∼ Bern(δ) and assumed to be independent of the inputs. In other words, with probability
δ, the output of a gate will be flipped no matter what input is given to that gate. Hence, we
sometimes refer to these gates as δ-noisy gates.

An interesting question is: Can we compute any boolean function f with δ-noisy gates? Note
that any circuit that consists of noisy gates simulates a random boolean function. Therefore, we
want to approximate f with high probability with a noisy circuit C. In a mathematically convenient
way, we want

P
(
C(X1, . . . , Xn) 6= f(X1, . . . , Xn)

)
≤ 1

2
− ε0 (1.1)

where C(X1, . . . , Xn) is the output of the noisy circuit and ε0 > 0 is a constant independent of the
inputs X1, . . . , Xn. Von Neumann has proven this is indeed possible for sufficiently small δ values.

Theorem 1 (Von Neumann, 1957). There exists δ∗ > 0 such that for all δ < δ∗ it is possible to
compute every boolean function f via δ-noisy 3-majority gates.

Von Neumann’s original estimate δ∗ > 0.087 was subsequently improved by Pippenger. The
main (still open) question of this area is to find the largest δ∗ for which the above theorem holds.

Intuitively, the condition in (1.1) implies the output should be correlated with the inputs.
Otherwise, a uniformly random guess of the output would yield an error probability of 1

2 . This
requires the mutual information between the inputs and the output to be greater than zero. We
now give a theorem of Evans and Schulman that gives an upper bound to the mutual information
between any of the inputs and the output. We will prove the theorem in Section 1.3.

Theorem 2 ([ES99]). Suppose an n-input noisy boolean circuit composed of gates with at most K
inputs and with noise components having at most δ probability of error. Then, the mutual information
between any input Xi and output Y is upper bounded as

I(Xi;Y ) ≤
(
K(1− 2δ)2

)di
log 2

where di is the minimum length between Xi and Y (i.e, the minimum number of gates required to be
passed through until reaching Y ).
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Theorem 2 implies that noisy computation is only possible for δ < 1
2 −

1
2
√
K

. This is the best

known threshold. An illustration is given below:
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Y

Figure 1.1: An example of a 9-input Boolean Circuit

The above 9-input circuit has gates with at most 3 inputs. The 3-input gates are G4, G5 and
G6. The minimum distance between X3 and Y is d3 = 2, and the minimum distance between X5

and Y is d5 = 3. If Gi’s are δ-noisy gates, we can invoke Theorem 2 between any input and the output.

Not surprisingly, Theorem 2 also tells there are some circuits that are not computable with
δ-noisy gates. For instance, take f(X1, . . . , Xn) = XOR(X1, . . . , Xn). Then for at least one input Xi,
we have di ≥ logn

logK . This shows that I(Xi;Y )→ 0 as n→∞, hence Xi and Y will be almost inde-

pendent for large n. Note that XOR(X1, . . . , Xn) = XOR
(
XOR(X1, . . . , Xi−1, Xi+1, . . . , Xn), Xi

)
.

Therefore, it is impossible to compute an n-input XOR with δ-noisy gates for large n.

Computation with formulas: Note that the graph structure given in Figure 1.1 contains some
undirected loops. A formula is a type of boolean circuits that does not contain any undirected loops
unlike the case in Figure 1.1. In other words, for a formula the underlying graph structure forms a
tree. Removing one of the outputs of G2 of Figure 1.1, we obtain a formula as given below.

G6

G4 G5

G1 G2 G3

X1 X2 X3 X4 X5 X6 X7 X8 X9

Y

In Theorem 1 of [EP98], it is shown that we can compute reliably any boolean function f that
is represented with a formula with at most K-input gates with K odd and every gate are at most
δ-noisy and δ < δ∗f , and no such computation is possible for δ > δ∗f , where

δ∗f =
1

2
− 2K−1

K
(K−1

K−1
2

)
where the approximation holds for large K. This threshold is better than the upper-bound on the
threshold given by Theorem 2 for general boolean circuits. However, for large K we have

δ∗f ≈
1

2
−
√
π/2

2
√
K

,K � 1

showing that the estimate of Evans-Schulman δ∗ ≤ 1
2 −

1
2
√
K

is order-tight for large K. This

demonstrates the tightness of Theorem 2.
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1.2 Strong Data Processing Inequality

Definition 1. (Contraction coefficient for PY |X) For a fixed conditional distribution (or kernel)
PY |X , define

ηf = ηf (PY |X) = sup
PX,QX

Df (PX ||QX)>0

Df (PY ||QY )

Df (PX ||QX)
.

From DPI, we know ηfDf (PX ||QX) ≥ Df (PY ||QY ). This is called Strong data processing
inequality (SDPI). The reason it is called such is that contrary to the ordinary DPI, which only
shows that the f -divergence decreases, SDPI helps to quantify the multiplicative decrease between
the two f -divergences.

Some remarks:

1. ηf is very hard to compute in general.

2. Suppose PY |X is a kernel for a time-homogeneous Markov chain with stationary distribution
π (i.e., PY |X = PXt+1|Xt

). Then for any initial distribution q, SDPI gives the following bound:

Df (qPn||π) ≤ ηnfDf (q||π)

These type of exponential decreases are frequently encountered in the Markov chains literature.

We have stated that ηf is very hard to compute for most f . However, the following theorem states
that for f = 1

2 |1− t|, i.e. for total variation, ηf can be characterized in a simple fashion. We simply
denote this coefficient as ηTV.

Theorem 3 ([Dob56]). ηTV = supx 6=x′ TV(PY |X=x, PY |X=x′).

Before proving theorem 3, we give the following definition and lemma.

Definition 2 (Coupling). Suppose there are two random variables X and X ′ with distributions
PX and PX′ . Fix a joint distribution PXX′ on (X,X ′) with marginals PX and PX′ respectively.
(X,X ′) is called a coupling of X and X ′.

Lemma 1 (Characterizations of Total Variation). For any distributions PX and QX on a discrete
alphabet X , the total variation TV(PX , QX) can be characterized in two ways:

(i) TV(PX , QX) = supE⊆X PX(E)−QX(E)

(ii)
TV(PX , QX) = inf

P
X0X′0

:PX0
=PX

PX′0
=QX

P(X0 6= X ′0)

Note that (ii) of Lemma 1 implies that the total variation is the infimal value of P(X0 6= X ′0)
over all possible couplings (X0, X

′
0) with marginals PX and QX .

Proof of Theorem 3. We consider the following two cases

• ηTV ≥ supx0 6=x′0 TV(PY |X=x0
, PY |X=x′0

):

This case is obvious. Take PX = δx0
and QX = δx′0 .1 Then from the definition of ηTV,

we have ηTV ≥ TV(PY |X=x0
, PY |X=x′0

) for any x0 and x′0, x0 6= x′0.

1δx0 is the probability distribution with P(X = x0) = 1

4



• ηTV ≤ supx0 6=x′0 TV(PY |X=x0
, PY |X=x′0

):

Define η̃ , supx0 6=x′0 TV(PY |X=x0
, PY |X=x′0

). We consider the discrete alphabet case. Fix any
PX , QX and PY = PX ◦ PY |X , QY = QX ◦ PY |X . Observe that for any E ⊆ Y

PY |X=x0
(E)− PY |X=x′0

(E) ≤ η̃1{x0 6= x′0}. (1.2)

Now suppose there are random variables X0 and X ′0 having some marginals PX and QX
respectively. Consider any coupling (X0,X ′0). Then averaging (1.2) and taking the supremum,
we obtain

sup
E⊆Y

PY (E)−QY (E) = TV(PY , QY ) ≤ η̃P(X0 6= X ′0)

where the equality follows from Lemma 1 (i). To complete the proof, we use Lemma 1 (ii):
Total variation is the infimal value of P(X0 6= X ′0) for any possible couplings. Therefore for
the coupling (X0, X

′
0) attaining the infimal value, we have

TV(PY , QY ) ≤ η̃TV(PX , QX).

Example 1 (ηTV of a Binary Symmetric Channel). Consider the Binary Symmetric Channel with
crossover probability δ (BSC(δ)).

0

1 1

0

1− δ

δ

Then ηTV of the BSC(δ) is given by

ηTV(BSC(δ)) =TV(Bern(δ),Bern(1− δ))

=
1

2

(
|δ − (1− δ)|+ |1− δ − δ|

)
= |1− 2δ|.

We sometimes want to relate ηf with the f -mutual informations instead of f -divergences. This
relation is given in the following theorem.

Theorem 4.

ηf (PY |X) = sup
PUX : U→X→Y

If (U ;Y )

If (U ;X)
.

Recall that for any Markov chain U → X → Y , DPI states that If (U ;Y ) ≤ If (U ;X) and
Theorem 4 gives the stronger bound If (U ;Y ) ≤ ηfIf (U ;X).

Sketch of Proof for Theorem 4. Similar to Theorem 3, we consider the two directions:

• ηf ≥ sup PUX :

U→X→Y

If (U ;Y )
If (U ;X) :

For any u0, we have Df (PY |U=u0
||PY ) ≤ ηfDf (PX|U=u0

||PX). Averaging the above expression
over any PU , we obtain

If (U ;Y ) ≤ ηfIf (U ;X)

• ηf ≤ sup PUX :

U→X→Y

If (U ;Y )
If (U ;X) :

Fix P̃X , Q̃X and let U ∼ Bern(λ) for some λ ∈ [0, 1]. Define the conditional distibution PX|U
as PX|U=1 = P̃X , PX|U=0 = Q̃X . Take λ→ 0, then

If (U ;X) = λDf (P̃X ||Q̃X) + o(λ)
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and avoiding some technical subtleties we obtain

If (U ;Y ) = λDf (P̃Y ||Q̃Y ) + o(λ)

The ratio
If (U ;Y )
If (U ;X) will then converge to

Df (P̃Y ||Q̃Y )

Df (P̃X ||Q̃X)
≥ ηf (some technicalities avoided here as

well).

Some Important Theorems:

1- For any f , ηf ≤ ηTV.

2- ηKL = ηχ2 .

Sketch of Proof for 2. Observe the following two conditions:

– ηKL ≥ ηχ2 by locality. Recall that every f -divergence behaves locally as χ2.

– Using the identity D(P ||Q) =
∫∞
0
χ2(P ||Qt)dt where Qt = tP+Q

1+t , we have

D(PY ||QY ) =

∫ ∞
0

χ2(PY ||QY t)dt ≤ ηχ2

∫ ∞
0

χ2(PX ||QXt)dt = ηχ2D(PX ||QX).

3- ηχ2 = supPX ,f,g ρ(f(X), g(Y )), where ρ(X,Y ) , E[XY ]√
Var(X)Var(Y )

is the correlation coefficient

between X and Y .

4- For binary-input channels, denote P0 = PY |X=0 and P1 = PY |X=1. Then we have

ηKL = sup
0<β<1

LCβ(P0||P1)

where 2

LCβ(P ||Q) = Df (P ||Q), f(x) = β̄β
(1− x)2

β̄x+ β

is the Le Cam divergence of order β.

4’- In particular,
1

2
H2(P0, P1) ≤ ηKL ≤ H2(P0, P1)

where H2(P,Q) = Df (P ||Q), f(x) = (1−
√
x)2 is the Hellinger distance.

5- Suppose a binary-input channel with transition probabilities P0 = PY |X=0, P1 = PY |X=1. If
there exists a bijection Φ : Y → Y satisfying P0 ◦ Φ−1 = P1 and P1 ◦ Φ−1 = P0, we call the
channel as a binary-input symmetric channel (BMS).

For any BMS, we have ηKL = Iχ2(X;Y ) for X ∼ Bern(0.5).

Example 2. (ηKL of a BSC(δ)) Suppose we have the same BSC as in Example 1. Then,

ηKL = ηχ2 = sup
α6=β

χ2(Bern(αδ̄ + ᾱδ)||Bern(βδ̄ + β̄δ))

χ2(Bern(α)||Bern(β))
= (1− 2δ)2.

2β̄ , 1 − β
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1.3 Information Percolation for Directed Acyclic Graphs

In this section, we are concerned about the amount of information percolation in a directed acyclic
graph (DAG) G = (V,E). In the following context the vertex set V refers to a set of vertices v,
each associated with a random variable Xv and the edge set E refers to a set of directed edges
whose configuration allows us to factorize the joint distribution over V . Throughout the section, we
consider Shannon mutual information, i.e., f = x log x. Let us give a detailed example below.

Example 3. Suppose we have a graph G = (V,E) as below and define η , η(PW |AB):

X

B

A

W

Now, prepend another random variable U ∼ Bern(λ) at the beginning, the new graph G′ =
(V ′, E′) is shown below: We want to verify the relation

U X

B

A

W

I(U ;BW ) ≤ η̄I(U ;B) + ηI(U ;AB). (1.3)

Recall that from chain rule we have I(U ;BW ) = I(U ;B) + I(U ;W |B) ≥ I(U ;B). Hence, if
(1.3) is correct, then η → 0 implies I(U ;BW ) ≈ I(U ;B) and symmetrically I(U ;AW ) ≈ I(U ;A).
Therefore for small δ, observing W,A or W,B does not give advantage over observing solely A or B,
respectively.

Observe that G′ forms a Markov chain U → X0 → (A,B)→W , which allows us to factorize the
joint distribution over E′ as

PUXABW = PUPX|UPAB|XPW |AB .

Now consider the joint distribution conditioned on B = b, i.e., PUXAW |B. The conditional joint
distribution yields the conditional Markov chain U → X → A→W |B = b. Note that given B and
A, X is independent of W and this results in the factorization

PX|ABPW |AB = PXW |AB ,

from which follows the mentioned conditional Markov chain. Using the conditional Markov chain,
SDPI gives us for any b,

I(U ;W |B = b) ≤ ηI(U ;A|B = b).

Averaging over b and adding I(U ;B) to both sides we obtain

I(U ;WB) ≤ ηI(U ;A|B) + I(U ;B)

= ηI(U ;AB) + η̄I(U ;B).

Now, we provide another example which has in some sense an analogous setup to Example 3.

Example 4 (Percolation). Take the graph G = (V,E) in example 3 with a small modification.

X

B

A

W
R
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Now, suppose X,A,B,W are some cities and the edge set E represents the roads between
these cities. Let R be a random variable denoting the state of the road connecting to W with
P(R is open) = η and P(R is closed) = η̄. For any Y ∈ V , let the event {X → Y } indicate that
one can drive from X to Y . Then

P(X → B or W ) = ηP(X → A or B) + η̄P(X → B). (1.4)

Observe the resemblance between (1.3) and (1.4). For any X and A, we will refer to the proba-
bility P(X → A) as perc(X → A), i.e., percolation probability from X to A.

We will now give a theorem that relates ηKL to percolation probability on a DAG under the
following settting: Consider a DAG G = (V,E).

• All edges are open

• Every vertex is open with probability p(v) = ηKL

(
PXv|XPa(v)

)
where Pa(v) denotes the set of

parents of v.

Note that PXv|XPa(v)
describe the stochastic recipee for producing Xv based on its parent variables.

We assume that in addition to a DAG we also have been given all these constituent channels (or at
least bounds on their ηKL coefficients).

Theorem 5 ([PW17]). Let G = (V,E) be a DAG and let X0 be a node with in-degree equal to zero
(i.e. a source node). Note that for any S ⊂ V we can inductively stitch together constituent channels
PXv|XPa(v)

and obtain PXS |X0
. Then we have

ηKL(PXS |X0
) ≤ perc(X0 → XS).

Sketch of Proof. The graph in Example 3 satisfies this relation. The proof follows from an induction
on the size of G. It can be shown that for every DAG G, the base case reduces to the graph in
Example 3.

Note that the above setting includes the case for δ-noisy gates as well. Suppose the out-
put of the gate is open with probability p(v) = ηKL

(
PXv|XPa(v)

)
= ηKL(BSC(δ)) as the con-

ditional distribution PXv|XPa(v)
is no different than those of a BSC(δ). Therefore, we have

ηKL(δ-noisy gate) ≤ p(v) = (1− 2δ)2.

We are now in the position to prove Theorem 2.

Proof of Theorem 2. First observe the noisy boolean circuit is a form of DAG. From SPDI, for each
i, we have I(Xi;Y ) ≤ ηKL(PY |Xi

)H(Xi). From Theorem 5, we know ηKL(PY |Xi
) ≤ perc(Xi → Y ).

We now want to upper bound perc(Xi → Y ). Recall that the minimum distance between Xi

and Y is di. Any vertex having minimum distance di from Y has the percolation probability
p(v)di ≤ (1− 2δ)2di if the error probability is smaller than δ for all gates. For a noisy-circuit that
consists of gates with at most K-inputs, the number of possible paths of length di from Y is at most
Kdi . Since the circuit is DAG, we know that any possible path connecting Xi to Y must contain
some of the Kdi possible paths. Therefore, the probability of percolation perc(Xi → Y ) is upper
bounded by Kdi(1− 2δ)2di . We obtain the final result by upper bounding H(Xi) ≤ log 2 as

I(Xi;Y ) ≤ ηKL(PY |Xi
)H(Xi) ≤ Kdi(1− 2δ)2di log 2

We conclude the section with an example illustrating that Theorem 5 may give stronger bounds
when compared to Theorem 2.
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Example 5. Suppose we have the topological restriction on the placement of gates (namely that
the inputs to each gets should be from nearest neighbors to the left), resulting in the following
circuit of 2-input δ-noisy gates.

Y

Note that each gate may be a simple passthrough (i.e. serve as router) or a constant output.
Theorem 2 states that if (1− 2δ)2 < 1

2 , then noisy computation within arbitrary topology is not
possible. Theorem 5 improves this to (1 − 2δ)2 < pc, where pc is the oriented site-percolation
threshold for the particular graph we have. Namely, if each vertex is open with probability p < pc
then with probability 1 the connected component emanating from any given node (and extending to
the right) is finite. For the example above the site percolation threshold is estimated as p ≈ 0.705
(so called Stavskaya automata).
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